1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
|
import random
from functools import partial
import pytest
from pyecsca.ec.coordinates import EFDCoordinateModel
from pyecsca.ec.mult import *
from pyecsca.sca.re.rpa import multiple_graph, multiples_from_graph
from pyecsca.sca.re.epa import errors_out, graph_to_check_inputs
def test_errors_out(secp128r1):
precomp_ctx, full_ctx, out = multiple_graph(
scalar=15,
params=secp128r1,
mult_class=LTRMultiplier,
mult_factory=LTRMultiplier,
)
res_empty_checks = errors_out(
precomp_ctx,
full_ctx,
out,
check_funcs={},
check_condition="all",
precomp_to_affine=True,
)
assert not res_empty_checks
def add_check(k, l): # noqa
return k == 6
res_check_k_add = errors_out(
precomp_ctx,
full_ctx,
out,
check_funcs={"add": add_check},
check_condition="all",
precomp_to_affine=True,
)
assert res_check_k_add
def affine_check(k):
return k == 15
res_check_k_affine = errors_out(
precomp_ctx,
full_ctx,
out,
check_funcs={"affine": affine_check},
check_condition="all",
precomp_to_affine=True,
)
assert res_check_k_affine
def test_errors_out_comb(secp128r1):
precomp_ctx, full_ctx, out = multiple_graph(
scalar=15,
params=secp128r1,
mult_class=CombMultiplier,
mult_factory=partial(CombMultiplier, width=2),
)
def affine_check_comb(k):
return k == 2**64
res_check_k_affine_precomp = errors_out(
precomp_ctx,
full_ctx,
out,
check_funcs={"affine": affine_check_comb},
check_condition="all",
precomp_to_affine=True,
)
assert res_check_k_affine_precomp
res_check_k_no_affine_precomp = errors_out(
precomp_ctx,
full_ctx,
out,
check_funcs={"affine": affine_check_comb},
check_condition="all",
precomp_to_affine=False,
)
assert not res_check_k_no_affine_precomp
@pytest.mark.skip(reason="Debug only")
def test_memory_consumption(secp128r1):
precomp_ctx, full_ctx, out = multiple_graph(
scalar=2**127 + 12127486321,
params=secp128r1,
mult_class=LTRMultiplier,
mult_factory=LTRMultiplier,
)
try:
from pympler.asizeof import Asizer
sizer = Asizer()
sizer.exclude_types(EFDCoordinateModel)
print(sizer.asized(precomp_ctx, detail=2).format())
print(sizer.asized(full_ctx, detail=2).format())
print(sizer.asized(out, detail=2).format())
except ImportError:
pass
def test_errors_out_precomp(secp128r1):
precomp_ctx, full_ctx, out = multiple_graph(
scalar=15,
params=secp128r1,
mult_class=WindowNAFMultiplier,
mult_factory=partial(
WindowNAFMultiplier, width=3, complete=False, precompute_negation=True
),
)
affine_multiples = []
def affine_check(k):
affine_multiples.append(k)
return False
add_multiples = []
def add_check(k, l): # noqa
add_multiples.append((k, l))
return False
# Here we check "all" but only during the precomp.
errors_out(
precomp_ctx,
full_ctx,
out,
check_funcs={"affine": affine_check, "add": add_check},
check_condition="all",
precomp_to_affine=True,
use_init=True,
use_multiply=False,
)
assert set(affine_multiples) == set(precomp_ctx.precomp.keys())
assert set(add_multiples) == {(1, 2), (3, 2)}
# Here we check all, during both precomp and final multiply.
affine_multiples = []
add_multiples = []
errors_out(
precomp_ctx,
full_ctx,
out,
check_funcs={"affine": affine_check, "add": add_check},
check_condition="all",
precomp_to_affine=True,
use_init=True,
use_multiply=True,
)
# There should be all of the results of the precomp, plus the final multiply result.
assert set(affine_multiples) == set(precomp_ctx.precomp.keys()) | {
full_ctx.points[out]
}
# The add multiples should be the same as before, plus any inputs to add that happened
# during the final multiply, there is only one, rest are doubles.
assert set(add_multiples) == {(1, 2), (3, 2), (16, -1)}
# Now check just the multiply with all.
affine_multiples = []
add_multiples = []
errors_out(
precomp_ctx,
full_ctx,
out,
check_funcs={"affine": affine_check, "add": add_check},
check_condition="all",
precomp_to_affine=True,
use_init=False,
use_multiply=True,
)
# Only the final result should be converted to affine, because we ignore precomp.
assert set(affine_multiples) == {full_ctx.points[out]}
# Only the single add in the multiply should be checked.
assert set(add_multiples) == {(16, -1)}
# Now check just the multiply with necessary only.
affine_multiples = []
add_multiples = []
errors_out(
precomp_ctx,
full_ctx,
out,
check_funcs={"affine": affine_check, "add": add_check},
check_condition="necessary",
precomp_to_affine=True,
use_init=False,
use_multiply=True,
)
# Only the final result should be converted to affine, because we ignore precomp.
assert set(affine_multiples) == {full_ctx.points[out]}
# Only the single add in the multiply should be checked.
assert set(add_multiples) == {(16, -1)}
# Doing use_init = False and use_multiply = False does not make sense.
with pytest.raises(ValueError):
errors_out(
precomp_ctx,
full_ctx,
out,
check_funcs={"affine": affine_check, "add": add_check},
check_condition="all",
precomp_to_affine=True,
use_init=False,
use_multiply=False,
)
@pytest.fixture(
params=[
(
SlidingWindowMultiplier,
dict(width=2, recoding_direction=ProcessingDirection.LTR),
),
(
SlidingWindowMultiplier,
dict(width=3, recoding_direction=ProcessingDirection.LTR),
),
(
SlidingWindowMultiplier,
dict(width=4, recoding_direction=ProcessingDirection.LTR),
),
(
SlidingWindowMultiplier,
dict(width=5, recoding_direction=ProcessingDirection.LTR),
),
(
SlidingWindowMultiplier,
dict(width=6, recoding_direction=ProcessingDirection.LTR),
),
(
SlidingWindowMultiplier,
dict(width=2, recoding_direction=ProcessingDirection.RTL),
),
(
SlidingWindowMultiplier,
dict(width=3, recoding_direction=ProcessingDirection.RTL),
),
(
SlidingWindowMultiplier,
dict(width=4, recoding_direction=ProcessingDirection.RTL),
),
(
SlidingWindowMultiplier,
dict(width=5, recoding_direction=ProcessingDirection.RTL),
),
(
SlidingWindowMultiplier,
dict(width=6, recoding_direction=ProcessingDirection.RTL),
),
(FixedWindowLTRMultiplier, dict(m=2**1)),
(FixedWindowLTRMultiplier, dict(m=2**2)),
(FixedWindowLTRMultiplier, dict(m=2**3)),
(FixedWindowLTRMultiplier, dict(m=2**4)),
(FixedWindowLTRMultiplier, dict(m=2**5)),
(FixedWindowLTRMultiplier, dict(m=2**6)),
(WindowBoothMultiplier, dict(width=2)),
(WindowBoothMultiplier, dict(width=3)),
(WindowBoothMultiplier, dict(width=4)),
(WindowBoothMultiplier, dict(width=5)),
(WindowBoothMultiplier, dict(width=6)),
(WindowNAFMultiplier, dict(width=2)),
(WindowNAFMultiplier, dict(width=3)),
(WindowNAFMultiplier, dict(width=4)),
(WindowNAFMultiplier, dict(width=5)),
(WindowNAFMultiplier, dict(width=6)),
(BinaryNAFMultiplier, dict(always=False, direction=ProcessingDirection.LTR)),
(BinaryNAFMultiplier, dict(always=False, direction=ProcessingDirection.RTL)),
(BinaryNAFMultiplier, dict(always=True, direction=ProcessingDirection.LTR)),
(BinaryNAFMultiplier, dict(always=True, direction=ProcessingDirection.RTL)),
(CombMultiplier, dict(width=2, always=True)),
(CombMultiplier, dict(width=3, always=True)),
(CombMultiplier, dict(width=4, always=True)),
(CombMultiplier, dict(width=5, always=True)),
(CombMultiplier, dict(width=6, always=True)),
(CombMultiplier, dict(width=2, always=False)),
(CombMultiplier, dict(width=3, always=False)),
(CombMultiplier, dict(width=4, always=False)),
(CombMultiplier, dict(width=5, always=False)),
(CombMultiplier, dict(width=6, always=False)),
(BGMWMultiplier, dict(width=2, direction=ProcessingDirection.LTR)),
(BGMWMultiplier, dict(width=3, direction=ProcessingDirection.LTR)),
(BGMWMultiplier, dict(width=4, direction=ProcessingDirection.LTR)),
(BGMWMultiplier, dict(width=5, direction=ProcessingDirection.LTR)),
(BGMWMultiplier, dict(width=6, direction=ProcessingDirection.LTR)),
(BGMWMultiplier, dict(width=2, direction=ProcessingDirection.RTL)),
(BGMWMultiplier, dict(width=3, direction=ProcessingDirection.RTL)),
(BGMWMultiplier, dict(width=4, direction=ProcessingDirection.RTL)),
(BGMWMultiplier, dict(width=5, direction=ProcessingDirection.RTL)),
(BGMWMultiplier, dict(width=6, direction=ProcessingDirection.RTL)),
(LTRMultiplier, dict(always=False, complete=True)),
(LTRMultiplier, dict(always=True, complete=True)),
(LTRMultiplier, dict(always=False, complete=False)),
(LTRMultiplier, dict(always=True, complete=False)),
(RTLMultiplier, dict(always=False, complete=True)),
(RTLMultiplier, dict(always=True, complete=True)),
(RTLMultiplier, dict(always=False, complete=False)),
(RTLMultiplier, dict(always=True, complete=False)),
(CoronMultiplier, dict()),
(FullPrecompMultiplier, dict(always=False, complete=True)),
(FullPrecompMultiplier, dict(always=True, complete=True)),
(FullPrecompMultiplier, dict(always=False, complete=False)),
(FullPrecompMultiplier, dict(always=True, complete=False)),
(SimpleLadderMultiplier, dict(complete=True)),
(SimpleLadderMultiplier, dict(complete=False)),
],
ids=lambda p: f"{p[0].__name__}-{','.join(f'{k}={v}' for k, v in p[1].items())}",
)
def mult(secp128r1, request):
mult_class, mult_kwargs = request.param
return mult_class, partial(mult_class, **mult_kwargs)
def test_independent_check_inputs(secp128r1, mult):
"""
Check that the set of check inputs is constant if (use_init = True, use_multiply = False) for all scalars
so that it only depends on the multiplier, countermeasure and error model, not particular scalars.
"""
mult_class, mult_factory = mult
for check_condition in ("all", "necessary"):
for precomp_to_affine in (True, False):
last_check_inputs = None
for i in range(20):
scalar = random.getrandbits(secp128r1.order.bit_length())
precomp_ctx, full_ctx, out = multiple_graph(
scalar=scalar,
params=secp128r1,
mult_class=mult_class,
mult_factory=mult_factory,
)
check_inputs = graph_to_check_inputs(
precomp_ctx,
full_ctx,
out,
check_condition=check_condition,
precomp_to_affine=precomp_to_affine,
use_init=True,
use_multiply=False,
)
if last_check_inputs is not None:
assert (
check_inputs == last_check_inputs
), f"Failed for {check_condition}, precomp_to_affine={precomp_to_affine}, scalar={scalar}, mult={mult_class.__name__}"
else:
last_check_inputs = check_inputs
@pytest.mark.parametrize("check_condition,precomp_to_affine,multiples_kind", [
("all", True, "all"),
("all", False, "all"),
("necessary", True, "precomp+necessary"),
("necessary", False, "necessary"),
])
def test_consistency_multiples(secp128r1, mult, check_condition, precomp_to_affine, multiples_kind):
"""
Test consistency between the graph_to_check_inputs and multiples_computed functions for the same error model
"""
for _ in range(10):
mult_class, mult_factory = mult
scalar = random.getrandbits(secp128r1.order.bit_length())
precomp_ctx, full_ctx, out = multiple_graph(
scalar=scalar,
params=secp128r1,
mult_class=mult_class,
mult_factory=mult_factory,
)
check_inputs = graph_to_check_inputs(
precomp_ctx,
full_ctx,
out,
check_condition=check_condition,
precomp_to_affine=precomp_to_affine,
use_init=True,
use_multiply=True,
)
# Now map the check inputs to the set of multiples they cover
multiples_from_check_inputs = set()
for k, in check_inputs.get("neg", []):
multiples_from_check_inputs.add(k)
multiples_from_check_inputs.add(-k)
for k, in check_inputs.get("affine", []):
multiples_from_check_inputs.add(k)
for k, l in check_inputs.get("add", []):
multiples_from_check_inputs.add(k)
multiples_from_check_inputs.add(l)
multiples_from_check_inputs.add(k + l)
for k, in check_inputs.get("dbl", []):
multiples_from_check_inputs.add(k)
multiples_from_check_inputs.add(2 * k)
# Multiples computed removes the zero
multiples_from_check_inputs.discard(0)
# Now compute the multiples via the other function to compare.
multiples = multiples_from_graph(
precomp_ctx,
full_ctx,
out,
kind=multiples_kind
)
assert multiples_from_check_inputs == multiples
|