1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
import pickle
from contextlib import nullcontext as does_not_raise
import pytest
from pyecsca.ec.coordinates import AffineCoordinateModel
from pyecsca.ec.mod import mod
from pyecsca.ec.model import ShortWeierstrassModel, MontgomeryModel
from pyecsca.ec.params import get_params
from pyecsca.ec.point import Point, InfinityPoint
from pyecsca.ec.error import UnsatisfiedAssumptionError
@pytest.fixture()
def secp128r1_coords(secp128r1):
return secp128r1.curve.coordinate_model
@pytest.fixture()
def affine_model():
return AffineCoordinateModel(ShortWeierstrassModel())
def test_construction(secp128r1_coords):
with pytest.raises(ValueError):
Point(secp128r1_coords)
with pytest.raises(ValueError):
Point(secp128r1_coords, X=mod(1, 3), Y=mod(2, 7), Z=mod(1, 3))
def test_to_affine(secp128r1, secp128r1_coords, affine_model):
pt = Point(
secp128r1_coords,
X=mod(0x161FF7528B899B2D0C28607CA52C5B86, secp128r1.curve.prime),
Y=mod(0xCF5AC8395BAFEB13C02DA292DDED7A83, secp128r1.curve.prime),
Z=mod(1, secp128r1.curve.prime),
)
affine = pt.to_affine()
assert isinstance(affine.coordinate_model, AffineCoordinateModel)
assert set(affine.coords.keys()) == set(affine_model.variables)
assert affine.coords["x"] == pt.coords["X"]
assert affine.coords["y"] == pt.coords["Y"]
assert affine.to_affine() == affine
affine = InfinityPoint(secp128r1_coords).to_affine()
assert isinstance(affine, InfinityPoint)
secp128r1_xz = get_params("secg", "secp128r1", "xz")
with pytest.raises(NotImplementedError):
secp128r1_xz.generator.to_affine()
secp128r1_modified = get_params("secg", "secp128r1", "modified")
modified = secp128r1_modified.generator.to_affine()
assert modified is not None
def test_to_model(secp128r1, secp128r1_coords, affine_model):
affine = Point(
affine_model,
x=mod(0xABCD, secp128r1.curve.prime),
y=mod(0xEF, secp128r1.curve.prime),
)
other = affine.to_model(secp128r1_coords, secp128r1.curve)
assert other.coordinate_model == secp128r1_coords
assert set(other.coords.keys()) == set(secp128r1_coords.variables)
assert other.coords["X"] == affine.coords["x"]
assert other.coords["Y"] == affine.coords["y"]
assert other.coords["Z"] == mod(1, secp128r1.curve.prime)
infty = InfinityPoint(AffineCoordinateModel(secp128r1.curve.model))
other_infty = infty.to_model(secp128r1_coords, secp128r1.curve)
assert isinstance(other_infty, InfinityPoint)
with pytest.raises(ValueError):
secp128r1.generator.to_model(secp128r1_coords, secp128r1.curve)
@pytest.mark.parametrize("category,curve,coords,raises", [
("secg", "secp128r1", "projective", does_not_raise()),
("secg", "secp128r1", "jacobian", does_not_raise()),
("secg", "secp128r1", "modified", does_not_raise()),
("secg", "secp128r1", "xyzz", does_not_raise()),
("secg", "secp128r1", "xz", pytest.raises(NotImplementedError)), # Not really possible
("other", "Curve25519", "xz", pytest.raises(NotImplementedError)), # Not really possible
("other", "E-222", "inverted", does_not_raise()),
("other", "E-222", "projective", does_not_raise()),
# ("other", "E-222", "yz", does_not_raise()), # No STD curve satisfies this formula assumption
# ("other", "E-222", "yzsquared", does_not_raise()), # No STD curve satisfies this formula assumption
("other", "Ed25519", "extended", does_not_raise()),
("other", "Ed25519", "inverted", does_not_raise()),
("other", "Ed25519", "projective", does_not_raise()),
])
def test_to_from_affine(category, curve, coords, raises):
params = get_params(category, curve, coords)
with raises:
other = params.generator.to_affine().to_model(params.curve.coordinate_model, params.curve)
assert params.generator == other
random_affine = params.curve.affine_random()
assert random_affine.to_model(params.curve.coordinate_model, params.curve).to_affine() == random_affine
def test_equals(secp128r1, secp128r1_coords):
pt = Point(
secp128r1_coords,
X=mod(0x4, secp128r1.curve.prime),
Y=mod(0x6, secp128r1.curve.prime),
Z=mod(2, secp128r1.curve.prime),
)
other = Point(
secp128r1_coords,
X=mod(0x2, secp128r1.curve.prime),
Y=mod(0x3, secp128r1.curve.prime),
Z=mod(1, secp128r1.curve.prime),
)
third = Point(
secp128r1_coords,
X=mod(0x5, secp128r1.curve.prime),
Y=mod(0x3, secp128r1.curve.prime),
Z=mod(1, secp128r1.curve.prime),
)
assert pt.equals(other)
assert pt != other
assert not pt.equals(2) # type: ignore
assert pt != 2
assert not pt.equals(third)
assert pt != third
assert pt.equals_scaled(other)
assert pt.equals_affine(other)
assert not pt.equals_scaled(third)
assert pt.equals_homog(pt)
assert pt.equals_homog(other)
assert other.equals_homog(pt)
assert not pt.equals_homog(third)
assert not third.equals_homog(pt)
infty_one = InfinityPoint(secp128r1_coords)
infty_other = InfinityPoint(secp128r1_coords)
assert infty_one.equals(infty_other)
assert infty_one.equals_affine(infty_other)
assert infty_one.equals_scaled(infty_other)
assert infty_one.equals_homog(infty_other)
assert infty_one == infty_other
assert not pt.equals(infty_one)
assert not pt.equals_affine(infty_one)
assert not pt.equals_scaled(infty_one)
assert not pt.equals_homog(infty_one)
mont = MontgomeryModel()
different = Point(
mont.coordinates["xz"],
X=mod(
0x64DACCD2656420216545E5F65221EB,
0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,
),
Z=mod(1, 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA),
)
assert not pt.equals(different)
assert pt != different
def test_homog():
model = ShortWeierstrassModel()
for coords_name, coords in model.coordinates.items():
try:
params = get_params("secg", "secp128r1", coords_name, infty=False)
except UnsatisfiedAssumptionError:
continue
infty = params.curve.neutral
rand_aff = params.curve.affine_random()
one1 = rand_aff.to_model(coords, params.curve)
one2 = rand_aff.to_model(coords, params.curve, randomized=True)
one3 = rand_aff.to_model(coords, params.curve, randomized=True)
assert one1.equals_homog(one2)
assert one1.equals_homog(one3)
assert one2.equals_homog(one3)
assert not one1.equals_homog(infty)
assert infty.equals_homog(infty)
while True:
other_aff = params.curve.affine_random()
if other_aff != rand_aff:
break
other = other_aff.to_model(coords, params.curve)
assert not one1.equals_homog(other)
assert not one2.equals_homog(other)
assert not one3.equals_homog(other)
def test_bytes(secp128r1, secp128r1_coords):
pt = Point(
secp128r1_coords,
X=mod(0x4, secp128r1.curve.prime),
Y=mod(0x6, secp128r1.curve.prime),
Z=mod(2, secp128r1.curve.prime),
)
assert bytes(pt) == \
b"\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02"
assert bytes(InfinityPoint(secp128r1_coords)) == b"\x00"
def test_iter(secp128r1, secp128r1_coords):
pt = Point(
secp128r1_coords,
X=mod(0x4, secp128r1.curve.prime),
Y=mod(0x6, secp128r1.curve.prime),
Z=mod(2, secp128r1.curve.prime),
)
t = tuple(pt)
assert len(t) == 3
assert len(pt) == 3
assert len(InfinityPoint(secp128r1_coords)) == 0
assert len(tuple(InfinityPoint(secp128r1_coords))) == 0
def test_pickle(secp128r1, secp128r1_coords):
pt = Point(
secp128r1_coords,
X=mod(0x4, secp128r1.curve.prime),
Y=mod(0x6, secp128r1.curve.prime),
Z=mod(2, secp128r1.curve.prime),
)
pickle.dumps(secp128r1_coords)
assert pt == pickle.loads(pickle.dumps(pt))
|