aboutsummaryrefslogtreecommitdiff
path: root/pyecsca/sca/trace/combine.py
blob: 8b80869a5fa82c91d35e1ac9290a6cb38ec700e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
This module provides functions for combining traces sample-wise.
"""
from typing import Callable, Optional, Tuple

import numpy as np
from public import public

from .trace import Trace, CombinedTrace


@public
def average(*traces: Trace) -> Optional[CombinedTrace]:
    """
    Average `traces`, sample-wise.

    :param traces:
    :return:
    """
    if not traces:
        return None
    if len(traces) == 1:
        return CombinedTrace(traces[0].samples.copy())
    min_samples = min(map(len, traces))
    s = np.zeros(min_samples, dtype=np.float64)
    for t in traces:
        s = np.add(s, t.samples[:min_samples])
    avg = ((1 / len(traces)) * s)
    del s
    return CombinedTrace(avg)


@public
def conditional_average(*traces: Trace, condition: Callable[[Trace], bool]) -> Optional[CombinedTrace]:
    """
    Average `traces` for which the `condition` is True, sample-wise.

    :param traces:
    :param condition:
    :return:
    """
    return average(*filter(condition, traces))


@public
def standard_deviation(*traces: Trace) -> Optional[CombinedTrace]:
    """
    Compute the sample standard-deviation of the `traces`, sample-wise.

    :param traces:
    :return:
    """
    if not traces:
        return None
    if len(traces) == 1:
        return CombinedTrace(np.zeros(len(traces[0]), dtype=np.float64))
    min_samples = min(map(len, traces))
    s = np.zeros(min_samples, dtype=np.float64)
    for t in traces:
        s = np.add(s, t.samples[:min_samples])
    s = (1 / len(traces)) * s
    ts = np.zeros(min_samples, dtype=np.float64)
    for t in traces:
        d = np.subtract(t.samples[:min_samples], s)
        ts = np.add(ts, np.multiply(d, d, dtype=np.float64))
    std = np.sqrt((1 / (len(traces) - 1)) * ts)
    del s
    del ts
    return CombinedTrace(std)


@public
def variance(*traces: Trace) -> Optional[CombinedTrace]:
    """
    Compute the sample variance of the `traces`, sample-wise.

    :param traces:
    :return:
    """
    if not traces:
        return None
    if len(traces) == 1:
        return CombinedTrace(np.zeros(len(traces[0]), dtype=np.float64))
    min_samples = min(map(len, traces))
    s = np.zeros(min_samples, dtype=np.float64)
    for t in traces:
        s = np.add(s, t.samples[:min_samples])
    s = (1 / len(traces)) * s
    ts = np.zeros(min_samples, dtype=np.float64)
    for t in traces:
        d = np.subtract(t.samples[:min_samples], s)
        ts = np.add(ts, np.multiply(d, d, dtype=np.float64))
    var = (1 / (len(traces) - 1)) * ts
    del s
    del ts
    return CombinedTrace(var)


@public
def average_and_variance(*traces) -> Optional[Tuple[CombinedTrace, CombinedTrace]]:
    """
    Compute the average and sample variance of the `traces`, sample-wise.

    :param traces:
    :return:
    """
    if not traces:
        return None
    if len(traces) == 1:
        return (CombinedTrace(traces[0].samples.copy()),
                CombinedTrace(np.zeros(len(traces[0]), dtype=np.float64)))
    min_samples = min(map(len, traces))
    s = np.zeros(min_samples, dtype=np.float64)
    for t in traces:
        s = np.add(s, t.samples[:min_samples])
    s = (1 / len(traces)) * s
    ts = np.zeros(min_samples, dtype=np.float64)
    for t in traces:
        d = np.subtract(t.samples[:min_samples], s)
        ts = np.add(ts, np.multiply(d, d, dtype=np.float64))
    var = (1 / (len(traces) - 1)) * ts
    del ts
    return (CombinedTrace(s), CombinedTrace(var))


@public
def add(*traces: Trace) -> Optional[CombinedTrace]:
    """
    Add `traces`, sample-wise.

    :param traces:
    :return:
    """
    if not traces:
        return None
    if len(traces) == 1:
        return CombinedTrace(traces[0].samples.copy())
    min_samples = min(map(len, traces))
    s = np.zeros(min_samples, dtype=np.float64)
    for t in traces:
        s = np.add(s, t.samples[:min_samples])
    return CombinedTrace(s)


@public
def subtract(one: Trace, other: Trace) -> CombinedTrace:
    """
    Subtract `other` from `one`, sample-wise.

    :param one:
    :param other:
    :return:
    """
    return CombinedTrace(np.subtract(one.samples, other.samples))