aboutsummaryrefslogtreecommitdiff
path: root/pyecsca/sca/re/zvp.py
blob: 7e6c7ce36308ca0444b2818d70eabd752cecb3d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
"""
Provides functionality inspired by the Zero-value point attack [ZVP]_.

Implements ZVP point construction from [FFD]_.
"""

from typing import List, Set, Tuple, Dict, Type, Callable
from public import public
import warnings
from astunparse import unparse

from sympy import FF, Poly, Monomial, Symbol, Expr, sympify, symbols, div

from pyecsca.ec.mult.fake import cached_fake_mult
from pyecsca.sca.re.rpa import MultipleContext
from pyecsca.ec.context import local
from pyecsca.ec.curve import EllipticCurve
from pyecsca.ec.model import CurveModel
from pyecsca.ec.divpoly import mult_by_n
from pyecsca.ec.formula import Formula
from pyecsca.ec.formula.fake import FakePoint
from pyecsca.ec.formula.unroll import unroll_formula
from pyecsca.ec.mod import mod
from pyecsca.ec.mult import ScalarMultiplier
from pyecsca.ec.params import DomainParameters
from pyecsca.ec.point import Point

has_pari = False
try:
    import cypari2

    has_pari = True
except ImportError:
    cypari2 = None


@public
def map_to_affine(
    formula: Formula, polys: List[Tuple[str, Poly]]
) -> List[Tuple[str, Poly]]:
    """
    Map unrolled polynomials of a formula to affine form, using some assumptions along the way (e.g. `Z = 1`).

    :param formula: The formula the polynomials belong to.
    :param polys: The polynomials (intermediate values) to map.
    :return: The mapped intermediate values, with associated variable names.
    """
    # tosystem_map is the mapping of system variables (without indices) in affine variables (without indices)
    tosystem_map = {}
    for code in formula.coordinate_model.tosystem:
        un = unparse(code).strip()
        lhs, rhs = un.split(" = ")
        tosystem_map[lhs] = sympify(rhs, evaluate=False)
    subs_map = {}
    # subs_map specializes the tosystem_map by adding appropriate indices
    for i in range(1, formula.num_inputs + 1):
        for lhs, rhs in tosystem_map.items():
            subs_lhs = lhs + str(i)
            subs_rhs = rhs.subs("x", f"x{i}").subs("y", f"y{i}")
            subs_map[subs_lhs] = subs_rhs

    results = []
    for result_var, value in polys:
        expr = value
        for lhs, rhs in subs_map.items():
            expr = expr.subs(lhs, rhs)
        if expr.free_symbols:
            gens = list(expr.free_symbols)
            gens.sort(key=str)
            poly = Poly(expr, *gens)
            results.append((result_var, poly))
        else:
            # TODO: We cannot create a Poly here, because the result does not have free symbols (i.e. it is a constant)
            #       Though here we do not care.
            pass
    return results


def filter_out_nonhomogenous_polynomials(
    formula: Formula, unrolled: List[Tuple[str, Poly]]
) -> List[Tuple[str, Poly]]:
    """
    Remove unrolled polynomials from unrolled formula that are not homogenous.

    :param formula: The original formula.
    :param unrolled: The unrolled formula to filter.
    :return: The filtered unrolled formula.
    """
    if "mmadd" in formula.name:
        return unrolled
    homogenity_weights = formula.coordinate_model.homogweights

    # we have to group variables by points and check homogenity for each group
    input_variables_grouped: Dict[int, List[str]] = {}
    for var in formula.inputs:
        # here we assume that the index of the variable is <10 and on the last position
        group = input_variables_grouped.setdefault(int(var[-1]), [])
        group.append(var)

    # zadd formulas have Z1=Z2 and so we put all variables in the same group
    if "zadd" in formula.name:
        input_variables_grouped = {1: sum(input_variables_grouped.values(), [])}

    filtered_unroll = []
    for name, polynomial in unrolled:
        homogenous = True
        for point_index, variables in input_variables_grouped.items():
            weighted_variables = [
                (var, homogenity_weights[var[:-1]]) for var in variables
            ]

            # we dont check homogenity for the second point in madd formulas (which is affine)
            if "madd" in formula.name and point_index == 2:
                continue
            homogenous &= is_homogeneous(Poly(polynomial), weighted_variables)
        if homogenous:
            filtered_unroll.append((name, polynomial))
    return filtered_unroll


def is_homogeneous(polynomial: Poly, weighted_variables: List[Tuple[str, int]]) -> bool:
    """
    Determines whether the polynomial is homogenous with respect to the variables and their weights.

    :param polynomial: The polynomial.
    :param weighted_variables: The variables and their weights.
    :return: True if the polynomial is homogenous, otherwise False.
    """
    hom = symbols("hom")
    new_gens = polynomial.gens + (hom,)  # type: ignore[attr-defined]
    univariate_poly = polynomial.subs(
        {var: hom**weight for var, weight in weighted_variables}
    )
    univariate_poly = Poly(univariate_poly, *new_gens, domain=polynomial.domain)
    hom_index = univariate_poly.gens.index(hom)
    degrees = {monom[hom_index] for monom in univariate_poly.monoms()}
    return len(degrees) <= 1


@public
def compute_factor_set(
    formula: Formula,
    affine: bool = True,
    filter_nonhomo: bool = True,
    xonly: bool = False,
) -> Set[Poly]:
    """
    Compute a set of factors present in the :paramref:`~.compute_factor_set.formula`.

    :param formula: Formula to compute the factor set of.
    :param affine: Whether to transform the polynomials into affine form.
    :param filter_nonhomo: Whether to filter out non-homogenous polynomials.
    :param xonly: Whether to make the factor set "x"-only by eliminating y-coords using the curve equation.
    :return: The set of factors present in the formula.
    """
    unrolled = unroll_formula(formula)
    if filter_nonhomo:
        unrolled = filter_out_nonhomogenous_polynomials(formula, unrolled)
    if affine:
        unrolled = map_to_affine(formula, unrolled)
    if xonly:
        unrolled = list(
            {
                (name, eliminate_y(poly, formula.coordinate_model.curve_model))
                for name, poly in unrolled
            }
        )

    curve_params = set(formula.coordinate_model.curve_model.parameter_names)

    factors = set()
    # Go over all the unrolled intermediates
    for name, poly in unrolled:
        # Factor the intermediate, don't worry about the coeff
        coeff, factor_list = poly.factor_list()
        # Go over all the factors of the intermediate, forget the power
        for factor, power in factor_list:
            # Remove unnecessary variables from the Poly
            reduced = factor.exclude() if not factor.is_univariate else factor
            # If there are only curve parameters, we do not care about the polynomial
            if set(reduced.gens).issubset(curve_params):  # type: ignore[attr-defined]
                continue
            # Divide out the GCD of the coefficients from the poly
            _, reduced = reduced.primitive()
            # Make sure the poly has canonical gens order
            canonical = reduced.reorder()
            factors.add(canonical)

    factors = filter_out_rpa_polynomials(factors, formula, unrolled)
    return factors


def filter_out_rpa_polynomials(
    factor_set: Set[Poly], formula: Formula, unrolled: List[Tuple[str, Poly]]
) -> Set[Poly]:
    """
    Remove polynomials from factorset that imply RPA points (on input or output).

    :param factor_set: The factor set to filter.
    :param formula: The formula that the factor set belongs to.
    :param unrolled: The unrolled formula.
    :return: The filtered factor set.
    """

    # Find polynomials that define the output variables
    # We save the latest occurrence of output variable in the list of ops
    output_polynomials = {}
    for name, polynomial in unrolled:
        if name in formula.outputs:
            output_polynomials[name] = polynomial

    filtered_factorset = set()
    for poly in factor_set:
        # ignore poly = constant*input_variable
        if poly.is_monomial and poly.is_linear:
            continue
        divisible = False
        for _, output_poly in output_polynomials.items():
            if div(output_poly, poly)[1] == 0:
                divisible = True
        if not divisible:
            filtered_factorset.add(poly)
    return filtered_factorset


def symbolic_curve_equation(x: Symbol, model: CurveModel) -> Expr:
    """
    Get the "ysquared" curve polynomial in :paramref:`~.x` for the :paramref:`~.curve`,
    symbolically.

    :param x: The sympy symbol to use in place of x.
    :param model: The curve model to use.
    :return: The sympy expression of the "ysquared" curve polynomial.
    """
    parameters = {name: symbols(name) for name in model.parameter_names}
    return eval(
        compile(model.ysquared, "", mode="eval"), {"x": x, **parameters}
    )  # eval is OK here, skipcq: PYL-W0123


def curve_equation(x: Symbol, curve: EllipticCurve) -> Expr:
    """
    Get the "ysquared" curve polynomial in :paramref:`~.x` for the :paramref:`~.curve`,
    with concrete parameter values.

    :param x: The sympy symbol to use in place of x.
    :param curve: The elliptic curve to use.
    :return: The sympy expression of the "ysquared" curve polynomial.
    """
    return eval(
        compile(curve.model.ysquared, "", mode="eval"), {"x": x, **curve.parameters}
    )  # eval is OK here, skipcq: PYL-W0123


def subs_curve_equation(poly: Poly, curve: EllipticCurve) -> Poly:
    """
    Substitute in the curve equation "ysquared" for `y{1,2}` repeatedly to
    eliminate all but singular powers of y.

    :param poly: The sympy polynomial to substitute in.
    :param curve: The elliptic curve to use.
    :return: A polynomial with eliminated all but singular powers of y.
    """
    poly = Poly(poly, domain=FF(curve.prime))
    gens = poly.gens  # type: ignore[attr-defined]
    terms = []
    for term in poly.terms():
        sub = 1
        new_term = []
        for power, gen in zip(term[0], gens):
            if str(gen).startswith("y"):
                x = symbols("x" + str(gen)[1:])
                ysquared = symbolic_curve_equation(x, curve.model)
                sub *= ysquared ** (power // 2)
                power %= 2
            new_term.append(power)
        expr = Monomial(new_term, gens).as_expr() * sub * term[1]
        terms.append(expr)
    return Poly(sum(terms), domain=poly.domain)


def subs_curve_params(poly: Poly, curve: EllipticCurve) -> Poly:
    """
    Substitute in the concrete curve parameters.

    :param poly: The sympy polynomial to substitute in.
    :param curve: The elliptic curve to use.
    :return: A polynomial with substituted in concrete curve parameters.
    """
    poly = Poly(poly, domain=FF(curve.prime))
    for name, value in curve.parameters.items():
        symbol = symbols(name)
        if symbol in poly.gens:  # type: ignore[attr-defined]
            poly = poly.subs(symbol, value)
    return poly


def subs_dlog(poly: Poly, k: int, curve: EllipticCurve):
    """
    Substitute in the multiplication-by-k-map(x1) in place of x2.

    :param poly: The sympy polynomial to substitute in.
    :param k: The dlog between the points.
    :param curve: The elliptic curve to use.
    :return: A polynomial with the map substituted (with only x1 coords remaining).
    """
    poly = Poly(poly, domain=FF(curve.prime))
    x1, x2 = symbols("x1,x2")
    gens = poly.gens  # type: ignore[attr-defined]
    if x2 not in gens or x1 not in gens:
        return poly
    max_degree = poly.degree(x2)
    x2i = gens.index(x2)
    new_gens = set(gens)
    new_gens.remove(x2)

    mx, _ = mult_by_n(curve, k, x_only=True)
    u, v = mx[0].subs("x", x1), mx[1].subs("x", x1)

    # The polynomials are quite dense, hence it makes sense
    # to compute all of the u and v powers in advance and
    # just use them, because they will likely all be needed.
    # Note, this has a memory cost...
    u_powers = [1]
    v_powers = [1]
    for i in range(1, max_degree + 1):
        u_powers.append(u_powers[i - 1] * u)
        v_powers.append(v_powers[i - 1] * v)

    uv_factors = {}
    for term in poly.terms():
        u_power = term[0][x2i]
        v_power = max_degree - u_power
        if (u_power, v_power) in uv_factors:
            continue
        uv_factors[(u_power, v_power)] = u_powers[u_power] * v_powers[v_power]

    res = 0
    for term in poly.terms():
        powers = list(term[0])
        u_power = powers[x2i]
        v_power = max_degree - u_power
        powers[x2i] = 0
        monom = Monomial(powers, gens).as_expr() * term[1]
        res += (
            Poly(monom, *new_gens, domain=poly.domain) * uv_factors[(u_power, v_power)]
        )
    return Poly(res, domain=poly.domain)


def remove_z(poly: Poly) -> Poly:
    """
    Substitute in 1 for all Zs (because we can do that ;).

    :param poly: The sympy polynomial to substitute in.
    :return: A polynomial with Zs eliminated.
    """
    for gen in poly.gens:  # type: ignore[attr-defined]
        if str(gen).startswith("Z"):
            poly = poly.subs(gen, 1)
    return poly


def eliminate_y(poly: Poly, model: CurveModel) -> Poly:
    """
    Eliminate the remaining ys (only power 1).

    See [FFD]_ page 11.

    :param poly: The sympy polynomial to eliminate in.
    :param model: The elliptic curve to use.
    :return:
    """
    x1, x2, y1, y2 = symbols("x1,x2,y1,y2")
    gens = poly.gens  # type: ignore[attr-defined]
    y1i = gens.index(y1) if y1 in gens else None
    y2i = gens.index(y2) if y2 in gens else None
    if y1i is None and y2i is None:
        # Already y-only.
        return poly
    f0 = 0
    f1 = 0
    f2 = 0
    f12 = 0
    for term in poly.terms():
        monom = term[0]
        monom_expr = Monomial(term[0], gens).as_expr() * term[1]
        y1_present = not (y1i is None or monom[y1i] == 0)
        y2_present = not (y2i is None or monom[y2i] == 0)
        if y1_present and y2_present:
            f12 += monom_expr.subs(y1, 1).subs(y2, 1)
        elif y1_present and not y2_present:
            f1 += monom_expr.subs(y1, 1)
        elif not y1_present and y2_present:
            f2 += monom_expr.subs(y2, 1)
        elif not y1_present and not y2_present:
            f0 += monom_expr
    fe_x1 = symbolic_curve_equation(x1, model)
    fe_x2 = symbolic_curve_equation(x2, model)

    # [FFD] page 11
    f_prime = (
        fe_x2 * (fe_x1 * 2 * f1 * f12 - 2 * f0 * f2) ** 2
        - (f0**2 + f2**2 * fe_x2 - fe_x1 * (f1**2 + f12**2 * fe_x2)) ** 2
    )
    return Poly(f_prime, domain=poly.domain)


@public
def zvp_points(poly: Poly, curve: EllipticCurve, k: int, n: int) -> Set[Point]:
    """
    Find a set of (affine) ZVP points for a given intermediate value and dlog relationship.

    :param poly: The polynomial to zero out, obtained as a result of :py:meth:`.unroll_formula` (or its factor).
    :param curve: The curve to compute over.
    :param k: The discrete-log relationship between the two points, i.e. (x2, x2) = [k](x1, x1)
    :param n: The curve order.
    :return: The set of points (x1, y1).
    """
    # If input poly is trivial (only in params), abort early
    if not set(symbols("x1,x2,y1,y2")).intersection(poly.gens):  # type: ignore[attr-defined]
        return set()
    poly = Poly(poly, domain=FF(curve.prime))
    only_1 = all((not str(gen).endswith("2")) for gen in poly.gens)  # type: ignore[attr-defined]
    only_2 = all((not str(gen).endswith("1")) for gen in poly.gens)  # type: ignore[attr-defined]
    # Start with removing all squares of Y1, Y2
    subbed = subs_curve_equation(poly, curve)
    # Remove the Zs by setting them to 1
    removed = remove_z(subbed)
    # Now remove the rest of the Ys by clever curve equation use, the poly is x-only now
    eliminated = eliminate_y(removed, curve.model)
    points = set()
    # Now decide on the special case:
    if only_1:
        # if only_1, dlog sub is not necessary, also computing the other point is not necessary
        for point in solve_easy_dcp(eliminated, curve):
            inputs = {"x1": point.x, "y1": point.y, **curve.parameters}
            res = poly.eval([inputs[str(gen)] for gen in poly.gens])  # type: ignore[attr-defined]
            if res == 0:
                points.add(point)
    elif only_2:
        # if only_2, dlog sub is not necessary, then multiply with k_inverse to obtain target point
        k_inv = mod(k, n).inverse()
        for point in solve_easy_dcp(eliminated, curve):
            inputs = {"x2": point.x, "y2": point.y, **curve.parameters}
            res = poly.eval([inputs[str(gen)] for gen in poly.gens])  # type: ignore[attr-defined]
            if res == 0:
                one = curve.affine_multiply(point, int(k_inv))
                points.add(one)
    else:
        # otherwise we need to sub in the dlog and solve the general case
        for point in solve_hard_dcp(eliminated, curve, k):
            # Check that the points zero out the original polynomial to filter out erroneous candidates
            other = curve.affine_multiply(point, k)
            inputs = {
                "x1": point.x,
                "y1": point.y,
                "x2": other.x,
                "y2": other.y,
                **curve.parameters,
            }
            res = poly.eval([inputs[str(gen)] for gen in poly.gens])  # type: ignore[attr-defined]
            if res == 0:
                points.add(point)
    return points


def _deterministic_point_x(curve: EllipticCurve) -> int:
    """Obtain a "random" coordinate `x` on  given curve."""
    x = mod(1, curve.prime)
    while True:
        points = curve.affine_lift_x(x)
        if points:
            return int(x)
        x += 1


def solve_easy_dcp(xonly_polynomial: Poly, curve: EllipticCurve) -> Set[Point]:
    """
    Solve an easy case of the DCP (see [FFD]_) on the `curve` given the `xonly_polynomial`.

    :param xonly_polynomial: The polynomial to zero out.
    :param curve: The curve to work on.
    :return: A set of points that zero out the polynomial.
    """
    points = set()
    final = subs_curve_params(xonly_polynomial, curve)
    # Solve either via pari or if not available sympy.
    if final.is_zero:
        roots = {_deterministic_point_x(curve)}
    elif final.total_degree() == 0:
        roots = set()
    elif has_pari:
        pari = cypari2.Pari()
        polynomial = pari(str(final.expr).replace("**", "^"))
        roots = set(map(int, pari.polrootsmod(polynomial, curve.prime)))
    else:
        roots = final.ground_roots().keys()

    for root in roots:
        points.update(curve.affine_lift_x(mod(int(root), curve.prime)))
    return points


def solve_hard_dcp(xonly_polynomial: Poly, curve: EllipticCurve, k: int) -> Set[Point]:
    """
    Solve a hard case of DCP (see [FFD]_) on the `curve` given the `xonly_polynomial` and the
    dlog relationship between the points `k`.

    :param xonly_polynomial: The polynomial to zero out.
    :param curve: The curve to work on.
    :param k: The relationship between the two points.
    :return: A set of points that zero out the polynomial.
    """
    points = set()
    # Solve either via pari or if not available sympy.
    if has_pari:
        roots = solve_hard_dcp_cypari(xonly_polynomial, curve, k)
    else:
        warnings.warn(
            "Falling-back to slow hard-DCP computation due to missing [pari] (cypari2 and libpari) dependency."
        )
        # Substitute in the mult-by-k map
        dlog = subs_dlog(xonly_polynomial, k, curve)
        # Put in concrete curve parameters
        final = subs_curve_params(dlog, curve)
        if final.is_zero:
            roots = {_deterministic_point_x(curve)}
        else:
            # Find the roots (X1)
            roots = final.ground_roots().keys()

    # Finally lift the roots to find the points (if any)
    for root in roots:
        points.update(curve.affine_lift_x(mod(int(root), curve.prime)))
    return points


def solve_hard_dcp_cypari(
    xonly_polynomial: Poly, curve: EllipticCurve, k: int
) -> Set[int]:
    """Solve hard DCP via pari."""
    try:
        a, b = int(curve.parameters["a"]), int(curve.parameters["b"])
        xonly_polynomial = subs_curve_params(xonly_polynomial, curve)
        if xonly_polynomial.is_zero:
            return {_deterministic_point_x(curve)}

        # k^2 * degree
        # k=25, deg=6, 128bit -> 3765, a 20MB
        # k=32, deg=6, 128bit -> 6150, a 32MB
        # k=10, deg=6, 128bit -> 606, a 4MB
        outdegree = k**2 * xonly_polynomial.total_degree()
        # Magic heuristic, plus some constant term for very small polys
        stacksize = 2 * (outdegree * (40 * curve.prime.bit_length())) + 1000000
        stacksizemax = 15 * stacksize

        pari = cypari2.Pari()
        pari.default("debugmem", 0)  # silence stack warnings
        pari.allocatemem(stacksize, stacksizemax, silent=True)
        e = pari.ellinit([a, b], curve.prime)
        mul = pari.ellxn(e, k)
        x1, x2 = pari("x1"), pari("x2")
        polynomial = pari(str(xonly_polynomial.expr).replace("**", "^"))

        polydeg = pari.poldegree(polynomial, x2)
        subspoly = 0
        x = pari("x")
        num, den = pari.subst(mul[0], x, x1), pari.subst(mul[1], x, x1)
        for deg in range(polydeg + 1):
            monomial = pari.polcoef(polynomial, deg, x2)
            monomial *= num**deg
            monomial *= den ** (polydeg - deg)
            subspoly += monomial
        if subspoly == pari.zero():
            return {_deterministic_point_x(curve)}
        res = set(map(int, pari.polrootsmod(subspoly, curve.prime)))
    except cypari2.PariError as err:
        raise ValueError("PariError " + err.errtext())
    except Exception as err:
        raise ValueError(str(err))
    return res


@public
def addition_chain(
    scalar: int,
    params: DomainParameters,
    mult_class: Type[ScalarMultiplier],
    mult_factory: Callable,
    use_init: bool = False,
    use_multiply: bool = True,
) -> List[Tuple[str, Tuple[int, ...]]]:
    """
    Compute the addition chain for a given scalar and multiplier.

    :param scalar: The scalar to compute for.
    :param params: The domain parameters to use.
    :param mult_class: The class of the scalar multiplier to use.
    :param mult_factory: A callable that takes the formulas and instantiates the multiplier.
    :param use_init: Whether to consider the point multiples that happen in scalarmult initialization.
    :param use_multiply: Whether to consider the point multiples that happen in scalarmult multiply (after initialization).
    :return: A list of tuples, where the first element is the formula shortname (e.g. "add") and the second is a tuple of the dlog
    relationships to the input of the input points to the formula.

    .. note::
        The scalar multiplier must not short-circuit.
    """
    mult = cached_fake_mult(mult_class, mult_factory, params)
    ctx = MultipleContext(keep_base=True)
    if use_init:
        with local(ctx, copy=False):
            mult.init(params, FakePoint(params.curve.coordinate_model))
    else:
        mult.init(params, FakePoint(params.curve.coordinate_model))

    if use_multiply:
        with local(ctx, copy=False):
            mult.multiply(scalar)
    else:
        mult.multiply(scalar)

    chain = []
    for point, parents in ctx.parents.items():
        if not parents:
            continue
        formula_type = ctx.formulas[point]
        ks = tuple(ctx.points[parent] for parent in parents)
        chain.append((formula_type, ks))
    return chain