aboutsummaryrefslogtreecommitdiff
path: root/pyecsca/ec/mult/window.py
blob: d025cc104b9201893df31454986ed13ce118b472 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""Provides sliding window and fixed window scalar multipliers (including m-ary, for non power-of-2 m)."""
from copy import copy
from typing import Optional, MutableMapping
from public import public

from ..params import DomainParameters
from .base import (
    ScalarMultiplier,
    AccumulationOrder,
    ScalarMultiplicationAction,
    PrecomputationAction,
    ProcessingDirection,
    AccumulatorMultiplier,
)
from ..formula import (
    AdditionFormula,
    DoublingFormula,
    ScalingFormula,
    NegationFormula,
)
from ..point import Point
from ..scalar import convert_base, sliding_window_rtl, sliding_window_ltr, booth_window


@public
class SlidingWindowMultiplier(AccumulatorMultiplier, ScalarMultiplier):
    """
    Sliding window scalar multiplier.

    :param width: The width of the sliding-window recoding.
    :param recoding_direction: The direction for the sliding-window recoding.
    :param accumulation_order: The order of accumulation of points.
    """

    requires = {AdditionFormula, DoublingFormula}
    optionals = {ScalingFormula}
    width: int
    """The width of the sliding-window recoding."""
    recoding_direction: ProcessingDirection
    """The direction for the sliding-window recoding."""
    _points: MutableMapping[int, Point]

    def __init__(
        self,
        add: AdditionFormula,
        dbl: DoublingFormula,
        width: int,
        scl: Optional[ScalingFormula] = None,
        recoding_direction: ProcessingDirection = ProcessingDirection.LTR,
        accumulation_order: AccumulationOrder = AccumulationOrder.PeqPR,
        short_circuit: bool = True,
    ):
        super().__init__(
            short_circuit=short_circuit,
            accumulation_order=accumulation_order,
            add=add,
            dbl=dbl,
            scl=scl,
        )
        self.width = width
        self.recoding_direction = recoding_direction

    def __hash__(self):
        return id(self)

    def __eq__(self, other):
        if not isinstance(other, SlidingWindowMultiplier):
            return False
        return (
            self.formulas == other.formulas
            and self.short_circuit == other.short_circuit
            and self.width == other.width
            and self.recoding_direction == other.recoding_direction
            and self.accumulation_order == other.accumulation_order
        )

    def __repr__(self):
        return f"{self.__class__.__name__}({', '.join(map(str, self.formulas.values()))}, short_circuit={self.short_circuit}, width={self.width}, recoding_direction={self.recoding_direction.name}, accumulation_order={self.accumulation_order.name})"

    def init(self, params: DomainParameters, point: Point):
        with PrecomputationAction(params, point):
            super().init(params, point)
            self._points = {}
            current_point = point
            double_point = self._dbl(point)
            for i in range(0, 2 ** (self.width - 1)):
                self._points[2 * i + 1] = current_point
                current_point = self._add(current_point, double_point)

    def multiply(self, scalar: int) -> Point:
        if not self._initialized:
            raise ValueError("ScalarMultiplier not initialized.")
        with ScalarMultiplicationAction(self._point, scalar) as action:
            if scalar == 0:
                return action.exit(copy(self._params.curve.neutral))
            if self.recoding_direction is ProcessingDirection.LTR:
                scalar_sliding = sliding_window_ltr(scalar, self.width)
            elif self.recoding_direction is ProcessingDirection.RTL:
                scalar_sliding = sliding_window_rtl(scalar, self.width)
            q = copy(self._params.curve.neutral)
            for val in scalar_sliding:
                q = self._dbl(q)
                if val != 0:
                    q = self._accumulate(q, self._points[val])
            if "scl" in self.formulas:
                q = self._scl(q)
            return action.exit(q)


@public
class FixedWindowLTRMultiplier(AccumulatorMultiplier, ScalarMultiplier):
    """
    Like LTRMultiplier, but m-ary, not binary.

    For `m` a power-of-2 this is a fixed window multiplier
    that works on `log_2(m)` wide windows and uses only doublings
    to perform the multiplication-by-m between each window addition.

    For other `m` values, this is the m-ary multiplier.

    :param m: The arity of the multiplier.
    :param accumulation_order: The order of accumulation of points.
    """

    requires = {AdditionFormula, DoublingFormula}
    optionals = {ScalingFormula}
    m: int
    """The arity of the multiplier."""
    _points: MutableMapping[int, Point]

    def __init__(
        self,
        add: AdditionFormula,
        dbl: DoublingFormula,
        m: int,
        scl: Optional[ScalingFormula] = None,
        accumulation_order: AccumulationOrder = AccumulationOrder.PeqPR,
        short_circuit: bool = True,
    ):
        super().__init__(
            short_circuit=short_circuit,
            accumulation_order=accumulation_order,
            add=add,
            dbl=dbl,
            scl=scl,
        )
        if m < 2:
            raise ValueError("Invalid base.")
        self.accumulation_order = accumulation_order
        self.m = m

    def __hash__(self):
        return id(self)

    def __eq__(self, other):
        if not isinstance(other, FixedWindowLTRMultiplier):
            return False
        return (
            self.formulas == other.formulas
            and self.short_circuit == other.short_circuit
            and self.m == other.m
            and self.accumulation_order == other.accumulation_order
        )

    def __repr__(self):
        return f"{self.__class__.__name__}({', '.join(map(str, self.formulas.values()))}, short_circuit={self.short_circuit}, m={self.m}, accumulation_order={self.accumulation_order.name})"

    def init(self, params: DomainParameters, point: Point):
        with PrecomputationAction(params, point):
            super().init(params, point)
            double_point = self._dbl(point)
            self._points = {1: point, 2: double_point}
            current_point = double_point
            for i in range(3, self.m):
                current_point = self._add(current_point, point)
                self._points[i] = current_point

    def _mult_m(self, point: Point) -> Point:
        if self.m & (self.m - 1) == 0:
            # Power of 2
            q = point
            for _ in range(self.m.bit_length() - 1):
                q = self._dbl(q)
        else:
            # Not power of 2
            r = copy(point)
            q = self._dbl(point)
            # TODO: This could be made via a different chain.
            for _ in range(self.m - 2):
                q = self._accumulate(q, r)
        return q

    def multiply(self, scalar: int) -> Point:
        if not self._initialized:
            raise ValueError("ScalarMultiplier not initialized.")
        with ScalarMultiplicationAction(self._point, scalar) as action:
            if scalar == 0:
                return action.exit(copy(self._params.curve.neutral))
            # General case (any m) and special case (m = 2^k) are handled together here
            converted = convert_base(scalar, self.m)
            q = copy(self._params.curve.neutral)
            for digit in reversed(converted):
                q = self._mult_m(q)
                if digit != 0:
                    q = self._accumulate(q, self._points[digit])
            if "scl" in self.formulas:
                q = self._scl(q)
            return action.exit(q)


@public
class WindowBoothMultiplier(AccumulatorMultiplier, ScalarMultiplier):
    """

    :param short_circuit: Whether the use of formulas will be guarded by short-circuit on inputs
                          of the point at infinity.
    :param width: The width of the window.
    :param accumulation_order: The order of accumulation of points.
    :param precompute_negation: Whether to precompute the negation of the precomputed points as well.
                                It is computed on the fly otherwise.
    """

    requires = {AdditionFormula, DoublingFormula, NegationFormula}
    optionals = {ScalingFormula}
    _points: MutableMapping[int, Point]
    _points_neg: MutableMapping[int, Point]
    precompute_negation: bool = False
    """Whether to precompute the negation of the precomputed points as well."""
    width: int
    """The width of the window."""

    def __init__(
        self,
        add: AdditionFormula,
        dbl: DoublingFormula,
        neg: NegationFormula,
        width: int,
        scl: Optional[ScalingFormula] = None,
        accumulation_order: AccumulationOrder = AccumulationOrder.PeqPR,
        precompute_negation: bool = False,
        short_circuit: bool = True,
    ):
        super().__init__(
            short_circuit=short_circuit,
            accumulation_order=accumulation_order,
            add=add,
            dbl=dbl,
            neg=neg,
            scl=scl,
        )
        self.width = width
        self.precompute_negation = precompute_negation

    def __hash__(self):
        return id(self)

    def __eq__(self, other):
        if not isinstance(other, WindowBoothMultiplier):
            return False
        return (
            self.formulas == other.formulas
            and self.short_circuit == other.short_circuit
            and self.width == other.width
            and self.precompute_negation == other.precompute_negation
            and self.accumulation_order == other.accumulation_order
        )

    def __repr__(self):
        return f"{self.__class__.__name__}({', '.join(map(str, self.formulas.values()))}, short_circuit={self.short_circuit}, width={self.width}, precompute_negation={self.precompute_negation}, accumulation_order={self.accumulation_order.name})"

    def init(self, params: DomainParameters, point: Point):
        with PrecomputationAction(params, point):
            super().init(params, point)
            double_point = self._dbl(point)
            self._points = {1: point, 2: double_point}
            if self.precompute_negation:
                self._points_neg = {1: self._neg(point), 2: self._neg(double_point)}
            current_point = double_point
            for i in range(3, 2 ** (self.width - 1) + 1):
                current_point = self._add(current_point, point)
                self._points[i] = current_point
                if self.precompute_negation:
                    self._points_neg[i] = self._neg(current_point)

    def multiply(self, scalar: int) -> Point:
        if not self._initialized:
            raise ValueError("ScalarMultiplier not initialized.")
        with ScalarMultiplicationAction(self._point, scalar) as action:
            if scalar == 0:
                return action.exit(copy(self._params.curve.neutral))
            scalar_booth = booth_window(
                scalar, self.width, self._params.order.bit_length()
            )
            q = copy(self._params.curve.neutral)
            for val in scalar_booth:
                for _ in range(self.width):
                    q = self._dbl(q)
                if val > 0:
                    q = self._accumulate(q, self._points[val])
                elif val < 0:
                    if self.precompute_negation:
                        neg = self._points_neg[-val]
                    else:
                        neg = self._neg(self._points[-val])
                    q = self._accumulate(q, neg)
            if "scl" in self.formulas:
                q = self._scl(q)
            return action.exit(q)