1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
"""Provides scalar multipliers based on the Non Adjacent Form (NAF) recoding."""
from copy import copy
from typing import Optional, List, MutableMapping
from public import public
from pyecsca.ec.mult.base import (
ScalarMultiplier,
ScalarMultiplicationAction,
ProcessingDirection,
AccumulationOrder,
PrecomputationAction,
AccumulatorMultiplier,
)
from pyecsca.ec.formula import (
AdditionFormula,
DoublingFormula,
ScalingFormula,
NegationFormula,
)
from pyecsca.ec.params import DomainParameters
from pyecsca.ec.point import Point
from pyecsca.ec.scalar import naf, wnaf
@public
class BinaryNAFMultiplier(AccumulatorMultiplier, ScalarMultiplier):
"""
Binary NAF (Non Adjacent Form) multiplier.
:param short_circuit: Whether the use of formulas will be guarded by short-circuit on inputs
of the point at infinity.
:param direction: Whether it is LTR or RTL.
:param accumulation_order: The order of accumulation of points.
"""
requires = {AdditionFormula, DoublingFormula, NegationFormula}
optionals = {ScalingFormula}
direction: ProcessingDirection
_point_neg: Point
def __init__(
self,
add: AdditionFormula,
dbl: DoublingFormula,
neg: NegationFormula,
scl: Optional[ScalingFormula] = None,
direction: ProcessingDirection = ProcessingDirection.LTR,
accumulation_order: AccumulationOrder = AccumulationOrder.PeqPR,
short_circuit: bool = True,
):
super().__init__(
short_circuit=short_circuit,
accumulation_order=accumulation_order,
add=add,
dbl=dbl,
neg=neg,
scl=scl,
)
self.direction = direction
def __hash__(self):
return hash(
(
BinaryNAFMultiplier,
super().__hash__(),
self.direction,
self.accumulation_order,
)
)
def __eq__(self, other):
if not isinstance(other, BinaryNAFMultiplier):
return False
return (
self.formulas == other.formulas
and self.short_circuit == other.short_circuit
and self.direction == other.direction
and self.accumulation_order == other.accumulation_order
)
def __repr__(self):
return f"{self.__class__.__name__}({', '.join(map(str, self.formulas.values()))}, short_circuit={self.short_circuit}, direction={self.direction.name}, accumulation_order={self.accumulation_order.name})"
def init(self, params: DomainParameters, point: Point):
with PrecomputationAction(params, point):
super().init(params, point)
self._point_neg = self._neg(point)
def _ltr(self, scalar_naf: List[int]) -> Point:
q = copy(self._params.curve.neutral)
for val in scalar_naf:
q = self._dbl(q)
if val == 1:
q = self._accumulate(q, self._point)
if val == -1:
# TODO: Whether this negation is precomputed can be a parameter
q = self._accumulate(q, self._point_neg)
return q
def _rtl(self, scalar_naf: List[int]) -> Point:
q = self._point
r = copy(self._params.curve.neutral)
for val in reversed(scalar_naf):
if val == 1:
r = self._accumulate(r, q)
if val == -1:
neg = self._neg(q)
r = self._accumulate(r, neg)
q = self._dbl(q)
return r
def multiply(self, scalar: int) -> Point:
if not self._initialized:
raise ValueError("ScalarMultiplier not initialized.")
with ScalarMultiplicationAction(self._point, self._params, scalar) as action:
if scalar == 0:
return action.exit(copy(self._params.curve.neutral))
scalar_naf = naf(scalar)
if self.direction is ProcessingDirection.LTR:
q = self._ltr(scalar_naf)
elif self.direction is ProcessingDirection.RTL:
q = self._rtl(scalar_naf)
if "scl" in self.formulas:
q = self._scl(q)
return action.exit(q)
@public
class WindowNAFMultiplier(AccumulatorMultiplier, ScalarMultiplier):
"""
Window NAF (Non Adjacent Form) multiplier, left-to-right.
:param short_circuit: Whether the use of formulas will be guarded by short-circuit on inputs
of the point at infinity.
:param width: The width of the window.
:param accumulation_order: The order of accumulation of points.
:param precompute_negation: Whether to precompute the negation of the precomputed points as well.
It is computed on the fly otherwise.
"""
requires = {AdditionFormula, DoublingFormula, NegationFormula}
optionals = {ScalingFormula}
_points: MutableMapping[int, Point]
_points_neg: MutableMapping[int, Point]
precompute_negation: bool = False
"""Whether to precompute the negation of the precomputed points as well."""
width: int
"""The width of the window."""
def __init__(
self,
add: AdditionFormula,
dbl: DoublingFormula,
neg: NegationFormula,
width: int,
scl: Optional[ScalingFormula] = None,
accumulation_order: AccumulationOrder = AccumulationOrder.PeqPR,
precompute_negation: bool = False,
short_circuit: bool = True,
):
super().__init__(
short_circuit=short_circuit,
accumulation_order=accumulation_order,
add=add,
dbl=dbl,
neg=neg,
scl=scl,
)
self.width = width
self.precompute_negation = precompute_negation
def __hash__(self):
return hash(
(
WindowNAFMultiplier,
super().__hash__(),
self.width,
self.precompute_negation,
self.accumulation_order,
)
)
def __eq__(self, other):
if not isinstance(other, WindowNAFMultiplier):
return False
return (
self.formulas == other.formulas
and self.short_circuit == other.short_circuit
and self.width == other.width
and self.precompute_negation == other.precompute_negation
and self.accumulation_order == other.accumulation_order
)
def __repr__(self):
return f"{self.__class__.__name__}({', '.join(map(str, self.formulas.values()))}, short_circuit={self.short_circuit}, width={self.width}, precompute_negation={self.precompute_negation}, accumulation_order={self.accumulation_order.name})"
def init(self, params: DomainParameters, point: Point):
with PrecomputationAction(params, point):
super().init(params, point)
self._points = {}
self._points_neg = {}
current_point = point
double_point = self._dbl(point)
for i in range(0, 2 ** (self.width - 2)):
self._points[2 * i + 1] = current_point
if self.precompute_negation:
self._points_neg[2 * i + 1] = self._neg(current_point)
current_point = self._add(current_point, double_point)
def multiply(self, scalar: int) -> Point:
if not self._initialized:
raise ValueError("ScalarMultiplier not initialized.")
with ScalarMultiplicationAction(self._point, self._params, scalar) as action:
if scalar == 0:
return action.exit(copy(self._params.curve.neutral))
scalar_naf = wnaf(scalar, self.width)
q = copy(self._params.curve.neutral)
for val in scalar_naf:
q = self._dbl(q)
if val > 0:
q = self._accumulate(q, self._points[val])
elif val < 0:
if self.precompute_negation:
neg = self._points_neg[-val]
else:
neg = self._neg(self._points[-val])
q = self._accumulate(q, neg)
if "scl" in self.formulas:
q = self._scl(q)
return action.exit(q)
|