aboutsummaryrefslogtreecommitdiff
path: root/pyecsca/ec/mult/binary.py
blob: 6145828201519d5a347d08e10b4b2c242ab886ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from abc import ABC
from copy import copy
from typing import Optional

from public import public

from .base import ScalarMultiplier, ProcessingDirection, AccumulationOrder, ScalarMultiplicationAction, \
    AccumulatorMultiplier
from ..formula import (
    AdditionFormula,
    DoublingFormula,
    ScalingFormula,
)
from ..point import Point


@public
class DoubleAndAddMultiplier(AccumulatorMultiplier, ScalarMultiplier, ABC):
    """
    Classic double and add scalar multiplication algorithm.

    :param always: Whether the double and add always method is used.
    :param direction: Whether it is LTR or RTL.
    :param accumulation_order: The order of accumulation of points.
    :param complete: (Only for LTR, always false for RTL) Whether it starts processing at full order-bit-length.
    """
    requires = {AdditionFormula, DoublingFormula}
    optionals = {ScalingFormula}
    always: bool
    direction: ProcessingDirection
    complete: bool

    def __init__(
            self,
            add: AdditionFormula,
            dbl: DoublingFormula,
            scl: Optional[ScalingFormula] = None,
            always: bool = False,
            direction: ProcessingDirection = ProcessingDirection.LTR,
            accumulation_order: AccumulationOrder = AccumulationOrder.PeqPR,
            complete: bool = True,
            short_circuit: bool = True,
    ):
        super().__init__(short_circuit=short_circuit, accumulation_order=accumulation_order, add=add, dbl=dbl, scl=scl)
        self.always = always
        self.direction = direction
        self.complete = complete

    def __hash__(self):
        return id(self)

    def __eq__(self, other):
        if not isinstance(other, DoubleAndAddMultiplier):
            return False
        return self.formulas == other.formulas and self.short_circuit == other.short_circuit and self.direction == other.direction and self.accumulation_order == other.accumulation_order and self.always == other.always and self.complete == other.complete

    def __repr__(self):
        return f"{self.__class__.__name__}({tuple(self.formulas.values())}, short_circuit={self.short_circuit}, accumulation_order={self.accumulation_order}, always={self.always}, complete={self.complete})"

    def _ltr(self, scalar: int) -> Point:
        if self.complete:
            q = self._point
            r = copy(self._params.curve.neutral)
            top = self._params.order.bit_length() - 1
        else:
            q = copy(self._point)
            r = copy(self._point)
            top = scalar.bit_length() - 2
        for i in range(top, -1, -1):
            r = self._dbl(r)
            if scalar & (1 << i) != 0:
                r = self._accumulate(r, q)
            elif self.always:
                # dummy add
                self._accumulate(r, q)
        return r

    def _rtl(self, scalar: int) -> Point:
        q = self._point
        r = copy(self._params.curve.neutral)
        if self.complete:
            top = self._params.order.bit_length()
        else:
            top = scalar.bit_length()
        for _ in range(top):
            if scalar & 1 != 0:
                r = self._accumulate(r, q)
            elif self.always:
                # dummy add
                self._accumulate(r, q)
            # TODO: This double is unnecessary in the last iteration.
            q = self._dbl(q)
            scalar >>= 1
        return r

    def multiply(self, scalar: int) -> Point:
        if not self._initialized:
            raise ValueError("ScalarMultiplier not initialized.")
        with ScalarMultiplicationAction(self._point, scalar) as action:
            if scalar == 0:
                return action.exit(copy(self._params.curve.neutral))
            if self.direction is ProcessingDirection.LTR:
                r = self._ltr(scalar)
            elif self.direction is ProcessingDirection.RTL:
                r = self._rtl(scalar)
            if "scl" in self.formulas:
                r = self._scl(r)
            return action.exit(r)


@public
class LTRMultiplier(DoubleAndAddMultiplier):
    """
    Classic double and add scalar multiplication algorithm, that scans the scalar left-to-right (msb to lsb).
    """

    def __init__(
            self,
            add: AdditionFormula,
            dbl: DoublingFormula,
            scl: Optional[ScalingFormula] = None,
            always: bool = False,
            accumulation_order: AccumulationOrder = AccumulationOrder.PeqPR,
            complete: bool = True,
            short_circuit: bool = True,
    ):
        super().__init__(short_circuit=short_circuit, direction=ProcessingDirection.LTR,
                         accumulation_order=accumulation_order, always=always, complete=complete,
                         add=add, dbl=dbl, scl=scl)


@public
class RTLMultiplier(DoubleAndAddMultiplier):
    """
    Classic double and add scalar multiplication algorithm, that scans the scalar right-to-left (lsb to msb).
    """

    def __init__(
            self,
            add: AdditionFormula,
            dbl: DoublingFormula,
            scl: Optional[ScalingFormula] = None,
            always: bool = False,
            accumulation_order: AccumulationOrder = AccumulationOrder.PeqPR,
            complete: bool = True,
            short_circuit: bool = True,
    ):
        super().__init__(short_circuit=short_circuit, direction=ProcessingDirection.RTL,
                         accumulation_order=accumulation_order, always=always,
                         add=add, dbl=dbl, scl=scl, complete=complete)


@public
class CoronMultiplier(ScalarMultiplier):
    """
    Coron's double and add resistant against SPA.

    From:
    **Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems**

    https://link.springer.com/content/pdf/10.1007/3-540-48059-5_25.pdf
    """

    requires = {AdditionFormula, DoublingFormula}
    optionals = {ScalingFormula}

    def __init__(
            self,
            add: AdditionFormula,
            dbl: DoublingFormula,
            scl: Optional[ScalingFormula] = None,
            short_circuit: bool = True,
    ):
        super().__init__(short_circuit=short_circuit, add=add, dbl=dbl, scl=scl)

    def __hash__(self):
        return id(self)

    def __eq__(self, other):
        if not isinstance(other, CoronMultiplier):
            return False
        return self.formulas == other.formulas and self.short_circuit == other.short_circuit

    def multiply(self, scalar: int) -> Point:
        if not self._initialized:
            raise ValueError("ScalarMultiplier not initialized.")
        with ScalarMultiplicationAction(self._point, scalar) as action:
            if scalar == 0:
                return action.exit(copy(self._params.curve.neutral))
            q = self._point
            p0 = copy(q)
            for i in range(scalar.bit_length() - 2, -1, -1):
                p0 = self._dbl(p0)
                p1 = self._add(p0, q)
                if scalar & (1 << i) != 0:
                    p0 = p1
            if "scl" in self.formulas:
                p0 = self._scl(p0)
            return action.exit(p0)