1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
import random
import secrets
from functools import lru_cache, wraps
from public import public
from typing import Tuple, Any, Dict, Type, Set, TypeVar, Generic
from pyecsca.ec.context import ResultAction
from pyecsca.misc.cfg import getconfig
M = TypeVar("M", bound="Mod")
@public
def gcd(a: int, b: int) -> int:
"""Euclid's greatest common denominator algorithm."""
if abs(a) < abs(b):
return gcd(b, a)
while abs(b) > 0:
_, r = divmod(a, b)
a, b = b, r
return a
@public
def extgcd(a: int, b: int) -> Tuple[int, int, int]:
"""Compute the extended Euclid's greatest common denominator algorithm."""
if abs(b) > abs(a):
x, y, d = extgcd(b, a)
return y, x, d
if abs(b) == 0:
return 1, 0, a
x1, x2, y1, y2 = 0, 1, 1, 0
while abs(b) > 0:
q, r = divmod(a, b)
x = x2 - q * x1
y = y2 - q * y1
a, b, x2, x1, y2, y1 = b, r, x1, x, y1, y
return x2, y2, a
@public
def jacobi(x: int, n: int) -> int:
"""Jacobi symbol."""
if n <= 0:
raise ValueError("'n' must be a positive integer.")
if n % 2 == 0:
raise ValueError("'n' must be odd.")
x %= n
r = 1
while x != 0:
while x % 2 == 0:
x //= 2
nm8 = n % 8
if nm8 in (3, 5):
r = -r
x, n = n, x
if x % 4 == 3 and n % 4 == 3:
r = -r
x %= n
return r if n == 1 else 0
@public
def square_roots(x: M) -> Set[M]:
"""
Compute all square roots of x.
:param x:
:return:
"""
if not x.is_residue():
return set()
sqrt = x.sqrt()
return {sqrt, -sqrt} # type: ignore
@public
def cube_roots(x: M) -> Set[M]:
"""
Compute all cube roots of x.
:param x:
:return:
"""
if not x.is_cubic_residue():
return set()
cube_root = x.cube_root()
if (x.n - 1) % 3 != 0:
# gcd(3, p - 1) = 1
return {cube_root} # type: ignore
else:
# gcd(3, p - 1) = 3
m = (x.n - 1) // 3
# Find 3rd root of unity
while True:
z = x.__class__(random.randrange(2, x.n - 1), x.n)
r = z ** m
if r != 1:
break
return {cube_root, cube_root * r, cube_root * (r ** 2)} # type: ignore
def square_root_inner(x: M, intwrap, mod_class) -> M:
if x.n % 4 == 3:
return x ** int((x.n + 1) // 4) # type: ignore
q = x.n - 1
s = 0
while q % 2 == 0:
q //= 2
s += 1
z = intwrap(2)
while mod_class(z).is_residue():
z += 1
m = s
c = mod_class(z) ** q
t = x ** q
r_exp = (q + 1) // 2
r = x ** r_exp
while t != 1:
i = 1
while not (t ** (2 ** i)) == 1:
i += 1
two_exp = m - (i + 1)
b = c ** int(mod_class(intwrap(2)) ** two_exp)
m = int(mod_class(intwrap(i)))
c = b ** 2
t *= c
r *= b
return r
def cube_root_inner(x: M, intwrap, mod_class) -> M:
if x.n % 3 == 2:
inv3 = x.__class__(3, x.n - 1).inverse()
return x ** int(inv3) # type: ignore
q = x.n - 1
s = 0
while q % 3 == 0:
q //= 3
s += 1
t = q
if t % 3 == 1:
k = (t - 1) // 3
else:
k = (t + 1) // 3
b = intwrap(2)
while mod_class(b).is_cubic_residue():
b += 1
c = mod_class(b) ** t
r = x ** t
h = mod_class(intwrap(1))
cp = c ** (3 ** (s - 1))
c = c.inverse()
for i in range(1, s):
d = r ** (3 ** (s - i - 1))
if d == cp:
h *= c
r *= c ** 3
elif d != 1:
h *= c ** 2
r *= c ** 6
c = c ** 3
x = (x ** k) * h
if t % 3 == 1:
return x.inverse() # type: ignore
else:
return x
@public
@lru_cache
def miller_rabin(n: int, rounds: int = 50) -> bool:
"""Miller-Rabin probabilistic primality test."""
if n in (2, 3):
return True
if n % 2 == 0:
return False
r, s = 0, n - 1
while s % 2 == 0:
r += 1
s //= 2
for _ in range(rounds):
a = random.randrange(2, n - 1)
x = pow(a, s, n)
if x in (1, n - 1):
continue
for _ in range(r - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def _check(func):
@wraps(func)
def method(self, other):
if self.__class__ is not type(other):
other = self.__class__(other, self.n)
elif self.n != other.n:
raise ValueError
return func(self, other)
return method
@public
class RandomModAction(ResultAction):
"""A random sampling from Z_n."""
order: int
def __init__(self, order: int):
super().__init__()
self.order = order
def __repr__(self):
return f"{self.__class__.__name__}({self.order:x})"
_mod_classes: Dict[str, Type] = {}
_mod_order = ["gmp", "flint", "python"]
@public
class Mod(Generic[M]):
"""
An element x of ℤₙ.
.. attention:
Do not instantiate this class, it will not work, instead use the :py:func:`mod` function.
Has all the usual special methods that upcast integers automatically:
>>> a = mod(3, 5)
>>> b = mod(2, 5)
>>> a + b
0
>>> a * 2
1
>>> a == 3
True
>>> a == -2
True
>>> -a
2
Plus some additional useful things:
>>> a.inverse()
2
>>> a.is_residue()
False
>>> (a**2).is_residue()
True
>>> (a**2).sqrt() in (a, -a)
True
"""
x: Any
n: Any
__slots__ = ("x", "n")
def __init__(self, x, n):
raise TypeError("Abstract")
@_check
def __add__(self: M, other) -> M:
return self.__class__((self.x + other.x) % self.n, self.n)
@_check
def __radd__(self: M, other) -> M:
return self + other
@_check
def __sub__(self: M, other) -> M:
return self.__class__((self.x - other.x) % self.n, self.n)
@_check
def __rsub__(self: M, other) -> M:
return -self + other
def __neg__(self: M) -> M:
return self.__class__(self.n - self.x, self.n)
def bit_length(self: M) -> int:
"""
Compute the bit length of this element (in its positive integer representation).
:return: The bit-length.
"""
raise NotImplementedError
def inverse(self: M) -> M:
"""
Invert the element.
:return: The inverse.
:raises: :py:class:`NonInvertibleError` if the element is not invertible.
"""
raise NotImplementedError
def __invert__(self: M) -> M:
return self.inverse()
def is_residue(self: M) -> bool:
"""Whether this element is a quadratic residue (only implemented for prime modulus)."""
raise NotImplementedError
def sqrt(self: M) -> M:
"""
Compute the modular square root of this element (only implemented for prime modulus).
Uses the `Tonelli-Shanks <https://en.wikipedia.org/wiki/Tonelli–Shanks_algorithm>`_ algorithm.
"""
raise NotImplementedError
def is_cubic_residue(self: M) -> bool:
"""
Whether this element is a cubic residue (only implemented for prime modulus).
"""
raise NotImplementedError
def cube_root(self: M) -> M:
"""
Compute the cube root of this element (only implemented for prime modulus).
Uses the Adleman-Manders-Miller algorithm (which is adapted Tonelli-Shanks).
"""
raise NotImplementedError
@_check
def __mul__(self: M, other) -> M:
return self.__class__((self.x * other.x) % self.n, self.n)
@_check
def __rmul__(self: M, other) -> M:
return self * other
@_check
def __truediv__(self: M, other) -> M:
return self * ~other
@_check
def __rtruediv__(self: M, other) -> M:
return ~self * other
@_check
def __floordiv__(self: M, other) -> M:
return self * ~other
@_check
def __rfloordiv__(self: M, other) -> M:
return ~self * other
def __bytes__(self: M) -> bytes:
raise NotImplementedError
def __int__(self: M) -> int:
raise NotImplementedError
@classmethod
def random(cls, n: int) -> "Mod":
"""
Generate a random :py:class:`Mod` in ℤₙ.
:param n: The order.
:return: The random :py:class:`Mod`.
"""
with RandomModAction(n) as action:
return action.exit(mod(secrets.randbelow(n), n))
def __pow__(self: M, n, _=None) -> M:
return NotImplemented
def __str__(self: M):
return str(self.x)
def __format__(self: M, format_spec):
return format(int(self), format_spec)
@public
class Undefined(Mod["Undefined"]):
"""A special undefined element."""
__slots__ = ("x", "n")
def __init__(self):
self.x = None
self.n = None
def __add__(self, other):
return NotImplemented
def __radd__(self, other):
return NotImplemented
def __sub__(self, other):
return NotImplemented
def __rsub__(self, other):
return NotImplemented
def __neg__(self):
raise NotImplementedError
def bit_length(self):
raise NotImplementedError
def inverse(self):
raise NotImplementedError
def sqrt(self):
raise NotImplementedError
def is_residue(self):
raise NotImplementedError
def cube_root(self):
raise NotImplementedError
def is_cubic_residue(self):
raise NotImplementedError
def __invert__(self):
raise NotImplementedError
def __mul__(self, other):
return NotImplemented
def __rmul__(self, other):
return NotImplemented
def __truediv__(self, other):
return NotImplemented
def __rtruediv__(self, other):
return NotImplemented
def __floordiv__(self, other):
return NotImplemented
def __rfloordiv__(self, other):
return NotImplemented
def __bytes__(self):
raise NotImplementedError
def __int__(self):
raise NotImplementedError
def __eq__(self, other):
return False
def __ne__(self, other):
return False
def __repr__(self):
return "Undefined"
def __hash__(self):
return hash("Undefined") + 1
def __pow__(self, n, _=None):
return NotImplemented
@public
def mod(x: int, n: int) -> Mod:
"""
Construct a :py:class:`Mod`.
.. note::
This function dispatches to one of :py:class:`RawMod`, :py:class:`GMPMod` or :py:class:`FlintMod`
based on what packages are installed and what implementation is configured (see
:py:mod:`pyecsca.misc.cfg`).
:param x: The value.
:param n: The modulus.
:return: A selected Mod implementation object.
:raises: ValueError in case a working Mod implementation cannot be found.
"""
if not _mod_classes:
raise ValueError("Cannot find any working Mod class.")
selected_class = getconfig().ec.mod_implementation
if selected_class not in _mod_classes:
# Fallback to something
for fallback in _mod_order:
if fallback in _mod_classes:
selected_class = fallback
break
return _mod_classes[selected_class](x, n)
|