1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
|
import random
import secrets
from functools import wraps, lru_cache
from abc import ABC, abstractmethod
from public import public
from .error import NonInvertibleError, NonResidueError
from .context import ResultAction
has_gmp = False
try:
import gmpy2
has_gmp = True
except ImportError:
pass
@public
def gcd(a, b):
"""Euclid's greatest common denominator algorithm."""
if abs(a) < abs(b):
return gcd(b, a)
while abs(b) > 0:
q, r = divmod(a, b)
a, b = b, r
return a
@public
def extgcd(a, b):
"""Extended Euclid's greatest common denominator algorithm."""
if abs(b) > abs(a):
(x, y, d) = extgcd(b, a)
return y, x, d
if abs(b) == 0:
return 1, 0, a
x1, x2, y1, y2 = 0, 1, 1, 0
while abs(b) > 0:
q, r = divmod(a, b)
x = x2 - q * x1
y = y2 - q * y1
a, b, x2, x1, y2, y1 = b, r, x1, x, y1, y
return x2, y2, a
@public
@lru_cache
def miller_rabin(n: int, rounds: int = 50) -> bool:
"""Miller-Rabin probabilistic primality test."""
if n == 2 or n == 3:
return True
if n % 2 == 0:
return False
r, s = 0, n - 1
while s % 2 == 0:
r += 1
s //= 2
for _ in range(rounds):
a = random.randrange(2, n - 1)
x = pow(a, s, n)
if x == 1 or x == n - 1:
continue
for _ in range(r - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def check(func):
@wraps(func)
def method(self, other):
if type(self) is not type(other):
other = self.__class__(other, self.n)
else:
if self.n != other.n:
raise ValueError
return func(self, other)
return method
@public
class RandomModAction(ResultAction):
"""A random sampling from Z_n."""
order: int
def __init__(self, order: int):
super().__init__()
self.order = order
def __repr__(self):
return f"{self.__class__.__name__}({self.order:x})"
class BaseMod(ABC):
def __init__(self, x, n):
self.x = x
self.n = n
@check
def __add__(self, other):
return self.__class__((self.x + other.x) % self.n, self.n)
@check
def __radd__(self, other):
return self + other
@check
def __sub__(self, other):
return self.__class__((self.x - other.x) % self.n, self.n)
@check
def __rsub__(self, other):
return -self + other
def __neg__(self):
return self.__class__(self.n - self.x, self.n)
@abstractmethod
def inverse(self):
...
def __invert__(self):
return self.inverse()
@check
def __mul__(self, other):
return self.__class__((self.x * other.x) % self.n, self.n)
@check
def __rmul__(self, other):
return self * other
@check
def __truediv__(self, other):
return self * ~other
@check
def __rtruediv__(self, other):
return ~self * other
@check
def __floordiv__(self, other):
return self * ~other
@check
def __rfloordiv__(self, other):
return ~self * other
@check
def __div__(self, other):
return self.__floordiv__(other)
@check
def __rdiv__(self, other):
return self.__rfloordiv__(other)
@check
def __divmod__(self, divisor):
q, r = divmod(self.x, divisor.x)
return self.__class__(q, self.n), self.__class__(r, self.n)
@classmethod
def random(cls, n: int):
with RandomModAction(n) as action:
return action.exit(cls(secrets.randbelow(n), n))
@public
class RawMod(BaseMod):
"""An element x of ℤₙ."""
x: int
n: int
def __init__(self, x: int, n: int):
super().__init__(x % n, n)
def inverse(self):
if self.x == 0:
raise NonInvertibleError("Inverting zero.")
x, y, d = extgcd(self.x, self.n)
if d != 1:
raise NonInvertibleError("Element not invertible.")
return RawMod(x, self.n)
def is_residue(self):
"""Whether this element is a quadratic residue (only implemented for prime modulus)."""
if not miller_rabin(self.n):
raise NotImplementedError
if self.x == 0:
return True
if self.n == 2:
return self.x in (0, 1)
legendre_symbol = self ** ((self.n - 1) // 2)
return legendre_symbol == 1
def sqrt(self):
"""
The modular square root of this element (only implemented for prime modulus).
Uses the `Tonelli-Shanks <https://en.wikipedia.org/wiki/Tonelli–Shanks_algorithm>`_ algorithm.
"""
if not miller_rabin(self.n):
raise NotImplementedError
if self.x == 0:
return RawMod(0, self.n)
if not self.is_residue():
raise NonResidueError("No square root exists.")
if self.n % 4 == 3:
return self ** int((self.n + 1) // 4)
q = self.n - 1
s = 0
while q % 2 == 0:
q //= 2
s += 1
z = 2
while RawMod(z, self.n).is_residue():
z += 1
m = s
c = RawMod(z, self.n) ** q
t = self ** q
r_exp = (q + 1) // 2
r = self ** r_exp
while t != 1:
i = 1
while not (t ** (2 ** i)) == 1:
i += 1
two_exp = m - (i + 1)
b = c ** int(RawMod(2, self.n) ** two_exp)
m = int(RawMod(i, self.n))
c = b ** 2
t *= c
r *= b
return r
def __bytes__(self):
return self.x.to_bytes((self.n.bit_length() + 7) // 8, byteorder="big")
def __int__(self):
return self.x
def __eq__(self, other):
if type(other) is int:
return self.x == (other % self.n)
if type(other) is not RawMod:
return False
return self.x == other.x and self.n == other.n
def __ne__(self, other):
return not self == other
def __repr__(self):
return str(self.x)
def __pow__(self, n):
if type(n) is not int:
raise TypeError
if n == 0:
return RawMod(1, self.n)
if n < 0:
return self.inverse() ** (-n)
if n == 1:
return RawMod(self.x, self.n)
return RawMod(pow(self.x, n, self.n), self.n)
@public
class Undefined(BaseMod):
def __init__(self):
super().__init__(None, None)
def __add__(self, other):
raise NotImplementedError
def __radd__(self, other):
raise NotImplementedError
def __sub__(self, other):
raise NotImplementedError
def __rsub__(self, other):
raise NotImplementedError
def __neg__(self):
raise NotImplementedError
def inverse(self):
raise NotImplementedError
def __invert__(self):
raise NotImplementedError
def __mul__(self, other):
raise NotImplementedError
def __rmul__(self, other):
raise NotImplementedError
def __truediv__(self, other):
raise NotImplementedError
def __rtruediv__(self, other):
raise NotImplementedError
def __floordiv__(self, other):
raise NotImplementedError
def __rfloordiv__(self, other):
raise NotImplementedError
def __div__(self, other):
raise NotImplementedError
def __rdiv__(self, other):
raise NotImplementedError
def __divmod__(self, divisor):
raise NotImplementedError
def __bytes__(self):
raise NotImplementedError
def __int__(self):
raise NotImplementedError
def __eq__(self, other):
return False
def __ne__(self, other):
return False
def __repr__(self):
return "Undefined"
def __pow__(self, n):
raise NotImplementedError
if has_gmp:
@public
class GMPMod(BaseMod):
"""An element x of ℤₙ. Implemented by GMP."""
x: gmpy2.mpz
n: gmpy2.mpz
def __init__(self, x: int, n: int):
super().__init__(gmpy2.mpz(x % n), gmpy2.mpz(n))
def inverse(self):
if self.x == 0:
raise NonInvertibleError("Inverting zero!")
if self.x == 1:
return GMPMod(1, self.n)
try:
res = gmpy2.invert(self.x, self.n)
except ZeroDivisionError:
raise NonInvertibleError("Element not invertible.")
return GMPMod(res, self.n)
def is_residue(self):
"""Whether this element is a quadratic residue (only implemented for prime modulus)."""
if not gmpy2.is_prime(self.n):
raise NotImplementedError
if self.x == 0:
return True
if self.n == 2:
return self.x in (0, 1)
return gmpy2.legendre(self.x, self.n) == 1
def sqrt(self):
"""
The modular square root of this element (only implemented for prime modulus).
Uses the `Tonelli-Shanks <https://en.wikipedia.org/wiki/Tonelli–Shanks_algorithm>`_ algorithm.
"""
if not gmpy2.is_prime(self.n):
raise NotImplementedError
if self.x == 0:
return GMPMod(0, self.n)
if not self.is_residue():
raise NonResidueError("No square root exists.")
if self.n % 4 == 3:
return self ** int((self.n + 1) // 4)
q = self.n - 1
s = 0
while q % 2 == 0:
q //= 2
s += 1
z = 2
while GMPMod(z, self.n).is_residue():
z += 1
m = s
c = GMPMod(z, self.n) ** int(q)
t = self ** int(q)
r_exp = (q + 1) // 2
r = self ** int(r_exp)
while t != 1:
i = 1
while not (t ** (2 ** i)) == 1:
i += 1
two_exp = m - (i + 1)
b = c ** int(GMPMod(2, self.n) ** two_exp)
m = int(GMPMod(i, self.n))
c = b ** 2
t *= c
r *= b
return r
@check
def __divmod__(self, divisor):
q, r = gmpy2.f_divmod(self.x, divisor.x)
return GMPMod(q, self.n), GMPMod(r, self.n)
def __bytes__(self):
return int(self.x).to_bytes((self.n.bit_length() + 7) // 8, byteorder="big")
def __int__(self):
return int(self.x)
def __eq__(self, other):
if type(other) is int:
return self.x == (gmpy2.mpz(other) % self.n)
if type(other) is not GMPMod:
return False
return self.x == other.x and self.n == other.n
def __ne__(self, other):
return not self == other
def __repr__(self):
return str(int(self.x))
def __pow__(self, n):
if type(n) not in (int, gmpy2.mpz):
raise TypeError
if n == 0:
return GMPMod(1, self.n)
if n < 0:
return self.inverse() ** (-n)
if n == 1:
return GMPMod(self.x, self.n)
return GMPMod(gmpy2.powmod(self.x, gmpy2.mpz(n), self.n), self.n)
Mod = GMPMod
else:
Mod = RawMod
public(Mod=Mod)
|