aboutsummaryrefslogtreecommitdiff
path: root/pyecsca/ec/formula/graph.py
blob: 3020ea90fab3ec8b2de0708d7d46f3a80fedc284 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
"""Provides tools for working with formulas as graphs."""

import matplotlib.pyplot as plt
import networkx as nx
from ast import parse, Expression
from typing import Dict, List, Tuple, Set, Optional, MutableMapping, Any
from copy import deepcopy
from public import public
from abc import ABC, abstractmethod

from pyecsca.ec.formula.base import Formula
from pyecsca.ec.formula.code import CodeFormula
from pyecsca.ec.op import CodeOp, OpType


@public
class Node(ABC):
    def __init__(self):
        self.incoming_nodes = []
        self.outgoing_nodes = []
        self.output_node = False
        self.input_node = False

    @property
    @abstractmethod
    def label(self) -> str:
        pass

    @property
    @abstractmethod
    def result(self) -> str:
        pass

    @property
    def is_sub(self) -> bool:
        return False

    @property
    def is_mul(self) -> bool:
        return False

    @property
    def is_add(self) -> bool:
        return False

    @property
    def is_id(self) -> bool:
        return False

    @property
    def is_sqr(self) -> bool:
        return False

    @property
    def is_pow(self) -> bool:
        return False

    @property
    def is_inv(self) -> bool:
        return False

    @property
    def is_div(self) -> bool:
        return False

    @property
    def is_neg(self) -> bool:
        return False

    @abstractmethod
    def __repr__(self) -> str:
        pass

    def reconnect_outgoing_nodes(self, destination):
        destination.output_node = self.output_node
        for out in self.outgoing_nodes:
            out.incoming_nodes = [
                n if n != self else destination for n in out.incoming_nodes
            ]
            destination.outgoing_nodes.append(out)


@public
class ConstantNode(Node):
    color = "#b41f44"

    def __init__(self, i: int):
        super().__init__()
        self.value = i

    @property
    def label(self) -> str:
        return str(self.value)

    @property
    def result(self) -> str:
        return str(self.value)

    def __repr__(self) -> str:
        return f"Node({self.value})"


class CodeOpNode(Node):
    color = "#1f78b4"

    def __init__(self, op: CodeOp):
        super().__init__()
        self.op = op
        if self.op.operator not in [
            OpType.Sub,
            OpType.Add,
            OpType.Id,
            OpType.Sqr,
            OpType.Mult,
            OpType.Div,
            OpType.Pow,
            OpType.Inv,
            OpType.Neg,
        ]:
            raise ValueError

    @classmethod
    def from_str(cls, result: str, left, operator, right):
        opstr = f"{result} = {left if left is not None else ''}{operator.op_str}{right if right is not None else ''}"
        return cls(CodeOp(parse(opstr.replace("^", "**"))))

    @property
    def label(self) -> str:
        return f"{self.op.result}:{self.op.operator.op_str}"  # noqa

    @property
    def result(self) -> str:
        return str(self.op.result)

    @property
    def optype(self) -> OpType:
        return self.op.operator

    @property
    def is_sub(self) -> bool:
        return self.optype == OpType.Sub

    @property
    def is_mul(self) -> bool:
        return self.optype == OpType.Mult

    @property
    def is_add(self) -> bool:
        return self.optype == OpType.Add

    @property
    def is_id(self) -> bool:
        return self.optype == OpType.Id

    @property
    def is_sqr(self) -> bool:
        return self.optype == OpType.Sqr

    @property
    def is_pow(self) -> bool:
        return self.optype == OpType.Pow

    @property
    def is_inv(self) -> bool:
        return self.optype == OpType.Inv

    @property
    def is_div(self) -> bool:
        return self.optype == OpType.Div

    @property
    def is_neg(self) -> bool:
        return self.optype == OpType.Neg

    def __repr__(self) -> str:
        return f"Node({self.op})"


@public
class InputNode(Node):
    color = "#b41f44"

    def __init__(self, input: str):
        super().__init__()
        self.input = input
        self.input_node = True

    @property
    def label(self) -> str:
        return self.input

    @property
    def result(self) -> str:
        return self.input

    def __repr__(self) -> str:
        return f"Node({self.input})"


def formula_input_variables(formula: Formula) -> List[str]:
    return (
        sorted(formula.inputs)
        + formula.parameters
        + formula.coordinate_model.curve_model.parameter_names
    )


@public
class FormulaGraph:
    coordinate_model: Any
    name: str
    shortname: str
    parameters: List[str]
    assumptions: List[Expression]
    nodes: List[Node]
    input_nodes: MutableMapping[str, InputNode]
    output_names: Set[str]
    roots: List[Node]

    def __init__(self, formula: Formula, rename=True):
        self.name = formula.name
        self.shortname = formula.shortname
        self.parameters = formula.parameters
        self.assumptions = formula.assumptions
        self.coordinate_model = formula.coordinate_model
        self.output_names = formula.outputs
        self.input_nodes = {v: InputNode(v) for v in formula_input_variables(formula)}
        self.roots = list(self.input_nodes.values())
        self.nodes = self.roots.copy()
        discovered_nodes: Dict[str, Node] = self.input_nodes.copy()  # type: ignore
        constants: Dict[int, Node] = {}
        for op in formula.code:
            code_node = CodeOpNode(op)
            for side in (op.left, op.right):
                if side is None:
                    continue
                if isinstance(side, int):
                    parent_node = constants.get(side, ConstantNode(side))
                    self.nodes.append(parent_node)
                    self.roots.append(parent_node)
                else:
                    parent_node = discovered_nodes[side]
                parent_node.outgoing_nodes.append(code_node)
                code_node.incoming_nodes.append(parent_node)
            self.nodes.append(code_node)
            discovered_nodes[op.result] = code_node
        # flag output nodes
        for output_name in self.output_names:
            discovered_nodes[output_name].output_node = True

        # go through the nodes and make sure that every node is root or has parents
        for node in self.nodes:
            if not node.incoming_nodes and node not in self.roots:
                self.roots.append(node)
        if rename:
            self.reindex()

    def node_index(self, node: Node) -> int:
        return self.nodes.index(node)

    def deepcopy(self):
        return deepcopy(self)

    def to_formula(self, name=None) -> CodeFormula:
        code = list(
            map(
                lambda x: deepcopy(x.op),  # type: ignore
                filter(lambda n: n not in self.roots, self.nodes),
            )
        )
        parameters = list(self.parameters)
        assumptions = [deepcopy(assumption) for assumption in self.assumptions]
        for klass in CodeFormula.__subclasses__():
            if klass.shortname == self.shortname:
                return klass(
                    self.name if name is None else self.name + "-" + name,
                    code,
                    self.coordinate_model,
                    parameters,
                    assumptions,
                )
        raise ValueError(f"Bad formula type: {self.shortname}")

    def networkx_graph(self) -> nx.DiGraph:
        graph = nx.DiGraph()
        for i, node in enumerate(self.nodes):
            graph.add_node(
                i, result=node.result, label=node.label, op=getattr(node, "op", None)
            )
        for node in self.nodes:
            for out in node.outgoing_nodes:
                graph.add_edge(self.node_index(node), self.node_index(out))
        return graph

    def levels(self) -> List[List[Node]]:
        stack = self.roots.copy()
        levels = [(n, 0) for n in stack]
        level_counter = 1
        while stack:
            tmp_stack = []
            while stack:
                node = stack.pop()
                levels.append((node, level_counter))
                for out in node.outgoing_nodes:
                    tmp_stack.append(out)
            stack = tmp_stack
            level_counter += 1
        # separate into lists

        level_lists: List[List[Node]] = [[] for _ in range(level_counter)]
        discovered = []
        for node, l in reversed(levels):
            if node not in discovered:
                level_lists[l].append(node)
                discovered.append(node)
        return level_lists

    def output_nodes(self) -> List[Node]:
        return list(filter(lambda x: x.output_node, self.nodes))

    def planar_positions(self) -> Dict[int, Tuple[float, float]]:
        positions = {}
        for i, level in enumerate(self.levels()):
            for j, node in enumerate(level):
                positions[self.node_index(node)] = (
                    0.1 * float(i**2) + 3 * float(j),
                    -6 * float(i),
                )
        return positions

    def draw(self, filename: Optional[str] = None, figsize: Tuple[int, int] = (12, 12)):
        gnx = self.networkx_graph()
        pos = nx.rescale_layout_dict(self.planar_positions())
        plt.figure(figsize=figsize)
        colors = [self.nodes[n].color for n in gnx.nodes]
        labels = {n: self.nodes[n].label for n in gnx.nodes}
        nx.draw(gnx, pos, node_color=colors, node_size=2000, labels=labels)
        if filename:
            plt.savefig(filename)
            plt.close()
        else:
            plt.show()

    def find_all_paths(self) -> List[List[Node]]:
        gnx = self.networkx_graph()
        index_paths = []
        for u in self.roots:
            iu = self.node_index(u)
            for v in self.output_nodes():
                iv = self.node_index(v)
                index_paths.extend(sorted(nx.all_simple_paths(gnx, iu, iv)))
        paths = []
        for p in index_paths:
            paths.append([self.nodes[v] for v in p])
        return paths

    def reorder(self):
        self.nodes = sum(self.levels(), [])

    def remove_node(self, node):
        self.nodes.remove(node)
        if node in self.roots:
            self.roots.remove(node)
        for in_node in node.incoming_nodes:
            in_node.outgoing_nodes = list(
                filter(lambda x: x != node, in_node.outgoing_nodes)
            )
        for out_node in node.outgoing_nodes:
            out_node.incoming_nodes = list(
                filter(lambda x: x != node, out_node.incoming_nodes)
            )

    def add_node(self, node):
        if isinstance(node, ConstantNode):
            self.roots.append(node)
        self.nodes.append(node)

    def reindex(self):
        results: Dict[str, str] = {}
        counter = 0
        for node in self.nodes:
            if not isinstance(node, CodeOpNode):
                continue
            op = node.op
            result, left, operator, right = (
                op.result,
                op.left,
                op.operator.op_str,
                op.right,
            )
            if left in results:
                left = results[left]
            if right in results:
                right = results[right]
            if not node.output_node:
                new_result = f"iv{counter}"
                counter += 1
            else:
                new_result = result
            opstr = f"{new_result} = {left if left is not None else ''}{operator}{right if right is not None else ''}"
            results[result] = new_result
            node.op = CodeOp(parse(opstr.replace("^", "**")))

    def update(self):
        self.reorder()
        self.reindex()

    def print(self):
        for node in self.nodes:
            print(node)


def rename_ivs(formula: Formula) -> CodeFormula:
    graph = FormulaGraph(formula)
    return graph.to_formula()