aboutsummaryrefslogtreecommitdiff
path: root/pyecsca/ec/divpoly.py
blob: 0809f94e888e04d096a3180c67612f9407c2540d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""
Provides functions for computing division polynomials and the multiplication-by-n map on an elliptic curve.
"""

from typing import Tuple, Dict, Set, Mapping, Optional
from public import public
import warnings

from sympy import symbols, FF, Poly
import networkx as nx

from pyecsca.ec.curve import EllipticCurve
from pyecsca.ec.mod import Mod, mod
from pyecsca.ec.model import ShortWeierstrassModel

has_pari = False
try:
    import cypari2

    has_pari = True
except ImportError:
    cypari2 = None


def values(*ns: int) -> Mapping[int, Tuple[int, ...]]:
    done: Set[int] = set()
    vals = {}
    todo: Set[int] = set()
    todo.update(ns)
    while todo:
        val = todo.pop()
        if val in done:
            continue
        new: Tuple[int, ...] = ()
        if val == -2:
            new = (-1,)
        elif val == -1:
            pass
        elif val < 0:
            raise ValueError(f"bad {val}")
        elif val in (0, 1, 2, 3):
            pass
        elif val == 4:
            new = (-2, 3)
        elif val % 2 == 0:
            m = (val - 2) // 2
            new = (m + 1, m + 3, m, m - 1, m + 2)
        else:
            m = (val - 1) // 2
            if m % 2 == 0:
                new = (-2, m + 2, m, m - 1, m + 1)
            else:
                new = (m + 2, m, -2, m - 1, m + 1)
        if new:
            todo.update(new)
        vals[val] = new
        done.add(val)
    return vals


def dep_graph(*ns: int):
    g = nx.DiGraph()
    vals = values(*ns)
    for k, v in vals.items():
        if v:
            for e in v:
                g.add_edge(k, e)
        else:
            g.add_node(k)
    return g, vals


def dep_map(*ns: int):
    g, vals = dep_graph(*ns)
    current: Set[int] = set()
    ls = []
    for vert in nx.lexicographical_topological_sort(g, key=lambda v: -sum(g[v].keys())):
        if vert in current:
            current.remove(vert)
        ls.append((vert, set(current)))
        current.update(vals[vert])
    ls.reverse()
    return ls, vals


@public
def a_invariants(curve: EllipticCurve) -> Tuple[Mod, ...]:
    """
    Compute the a-invariants of the curve.

    :param curve: The elliptic curve (only ShortWeierstrass model).
    :return: A tuple of 5 a-invariants (a1, a2, a3, a4, a6).
    """
    if isinstance(curve.model, ShortWeierstrassModel):
        a1 = mod(0, curve.prime)
        a2 = mod(0, curve.prime)
        a3 = mod(0, curve.prime)
        a4 = curve.parameters["a"]
        a6 = curve.parameters["b"]
        return a1, a2, a3, a4, a6
    else:
        raise NotImplementedError


@public
def b_invariants(curve: EllipticCurve) -> Tuple[Mod, ...]:
    """
    Compute the b-invariants of the curve.

    :param curve: The elliptic curve (only ShortWeierstrass model).
    :return: A tuple of 4 b-invariants (b2, b4, b6, b8).
    """
    if isinstance(curve.model, ShortWeierstrassModel):
        a1, a2, a3, a4, a6 = a_invariants(curve)
        return (
            a1 * a1 + 4 * a2,
            a1 * a3 + 2 * a4,
            a3**2 + 4 * a6,
            a1**2 * a6 + 4 * a2 * a6 - a1 * a3 * a4 + a2 * a3**2 - a4**2,
        )
    else:
        raise NotImplementedError


def divpoly0(curve: EllipticCurve, *ns: int) -> Mapping[int, Poly]:
    """
    Basically sagemath's division_polynomial_0 but more clever memory management.

    As sagemath says:

        Return the `n^{th}` torsion (division) polynomial, without
        the 2-torsion factor if `n` is even, as a polynomial in `x`.

        These are the polynomials `g_n` defined in [MT1991]_, but with
        the sign flipped for even `n`, so that the leading coefficient is
        always positive.

    :param curve: The elliptic curve.
    :param ns: The values to compute the polynomial for.
    :return:
    """
    xs = symbols("x")

    K = FF(curve.prime)
    Kx = lambda r: Poly(r, xs, domain=K)  # noqa

    x = Kx(xs)

    b2, b4, b6, b8 = map(lambda b: Kx(int(b)), b_invariants(curve))
    ls, _ = dep_map(*ns)

    mem: Dict[int, Poly] = {}
    for i, keep in ls:
        if i == -2:
            val = mem[-1] ** 2
        elif i == -1:
            val = Kx(4) * x**3 + b2 * x**2 + Kx(2) * b4 * x + b6
        elif i == 0:
            val = Kx(0)
        elif i < 0:
            raise ValueError("n must be a positive integer (or -1 or -2)")
        elif i in (1, 2):
            val = Kx(1)
        elif i == 3:
            val = Kx(3) * x**4 + b2 * x**3 + Kx(3) * b4 * x**2 + Kx(3) * b6 * x + b8
        elif i == 4:
            val = -mem[-2] + (Kx(6) * x**2 + b2 * x + b4) * mem[3]
        elif i % 2 == 0:
            m = (i - 2) // 2
            val = mem[m + 1] * (mem[m + 3] * mem[m] ** 2 - mem[m - 1] * mem[m + 2] ** 2)
        else:
            m = (i - 1) // 2
            if m % 2 == 0:
                val = mem[-2] * mem[m + 2] * mem[m] ** 3 - mem[m - 1] * mem[m + 1] ** 3
            else:
                val = mem[m + 2] * mem[m] ** 3 - mem[-2] * mem[m - 1] * mem[m + 1] ** 3
        for dl in set(mem.keys()).difference(keep).difference(ns):
            del mem[dl]
        mem[i] = val

    return mem


@public
def divpoly(curve: EllipticCurve, n: int, two_torsion_multiplicity: int = 2) -> Poly:
    """
    Compute the n-th division polynomial.

    :param curve: Curve to compute on.
    :param n: Scalar.
    :param two_torsion_multiplicity: Same as sagemath.
    :return: The division polynomial.
    """
    f: Poly = divpoly0(curve, n)[n]
    a1, a2, a3, a4, a6 = a_invariants(curve)
    xs, ys = symbols("x y")
    x = Poly(xs, xs, domain=f.domain)
    y = Poly(ys, ys, domain=f.domain)

    if two_torsion_multiplicity == 0:
        return f
    elif two_torsion_multiplicity == 1:
        if n % 2 == 0:
            Kxy = lambda r: Poly(r, xs, ys, domain=f.domain)  # noqa
            return Kxy(f) * (Kxy(2) * y + Kxy(a1) * x + Kxy(a3))
        else:
            return f
    elif two_torsion_multiplicity == 2:
        if n % 2 == 0:
            return f * divpoly0(curve, -1)[-1]
        else:
            return f
    else:
        raise ValueError


def mult_by_n_own(curve: EllipticCurve, n: int) -> Tuple[Poly, Poly]:
    xs, ys = symbols("x y")
    K = FF(curve.prime)
    x = Poly(xs, xs, domain=K)
    Kxy = lambda r: Poly(r, xs, ys, domain=K)  # noqa

    if n == 1:
        return x, Kxy(1)

    polys = divpoly0(curve, -2, -1, n - 1, n, n + 1, n + 2)
    # TODO: All of these fractions may benefit from using
    #       sympy.cancel to get rid of common factors in the numerator and denominator.
    #       Though for large polynomials that might be too much.
    mx_denom = polys[n] ** 2
    if n % 2 == 0:
        mx_num = x * polys[-1] * polys[n] ** 2 - polys[n - 1] * polys[n + 1]
        mx_denom *= polys[-1]
    else:
        mx_num = x * polys[n] ** 2 - polys[-1] * polys[n - 1] * polys[n + 1]

    # Alternative that makes the denominator monic by dividing the
    # numerator by the leading coefficient. Sage does this
    # simplification when asking for multiplication_by_m with the
    # x-only=True, as then the poly is an univariate object.
    # >
    # > lc = K(mx_denom.LC())
    # > mx = (mx_num.quo(lc), mx_denom.monic())
    mx = (mx_num, mx_denom)
    return mx


if has_pari:

    def mult_by_n_pari(curve: EllipticCurve, n: int):
        pari = cypari2.Pari()
        # Magic heuristic, plus some constant term for very small polys
        stacksize = 2 * (n**2 * (40 * curve.prime.bit_length())) + 1000000
        stacksizemax = 15 * stacksize

        pari.default("debugmem", 0)  # silence stack warnings
        pari.allocatemem(stacksize, stacksizemax, silent=True)
        p = pari(curve.prime)
        a = pari.Mod(curve.parameters["a"], p)
        b = pari.Mod(curve.parameters["b"], p)
        E = pari.ellinit([a, b])
        while True:
            try:
                mx = pari.ellxn(E, n)
                break
            except cypari2.PariError as e:
                if e.errnum() == 17:  # out of stack memory
                    pari.allocatemem(0)
                else:
                    raise e
        x = symbols("x")
        K = FF(curve.prime)
        mx_num = Poly([int(coeff) for coeff in reversed(mx[0])], x, domain=K)
        mx_denom = Poly([int(coeff) for coeff in reversed(mx[1])], x, domain=K)
        return mx_num, mx_denom


@public
def mult_by_n(
    curve: EllipticCurve, n: int, x_only: bool = False, use_pari: bool = True
) -> Tuple[Tuple[Poly, Poly], Optional[Tuple[Poly, Poly]]]:
    """
    Compute the multiplication-by-n map on an elliptic curve.

    :param curve: Curve to compute on.
    :param n: Scalar.
    :param x_only: Whether to skip the my computation.
    :param use_pari: Whether to use the Pari version.
    :return: A tuple (mx, my) where each is a tuple (numerator, denominator).
    """
    if use_pari and has_pari:
        mx = mult_by_n_pari(curve, n)
    else:
        if use_pari:
            warnings.warn(
                "Falling-back to slow mult-by-n map computation due to missing [pari] (cypari2 and libpari) dependency."
            )
        mx = mult_by_n_own(curve, n)

    if x_only:
        return mx, None

    xs, ys = symbols("x y")
    K = FF(curve.prime)
    x = Poly(xs, xs, domain=K)
    y = Poly(ys, ys, domain=K)
    Kxy = lambda r: Poly(r, xs, ys, domain=K)  # noqa

    a1, a2, a3, a4, a6 = a_invariants(curve)

    # The following lines compute
    # my = ((2*y+a1*x+a3)*mx.derivative(x)/m - a1*mx-a3)/2
    # just as sage does, but using sympy and step-by-step
    # tracking the numerator and denominator of the fraction.

    # > mx.derivative()
    mxd_num = mx[1] * mx[0].diff() - mx[0] * mx[1].diff()
    mxd_denom = mx[1] ** 2

    # > mx.derivative()/m
    mxd_dn_num = mxd_num
    mxd_dn_denom = mxd_denom * Kxy(n)

    # > (2*y+a1*x+a3)*mx.derivative(x)/m
    mxd_full_num = mxd_dn_num * (Kxy(2) * y + Kxy(a1) * x + Kxy(a3))
    mxd_full_denom = mxd_dn_denom

    # > a1*mx
    a1mx_num = Kxy(a1) * mx[0]
    a1mx_denom = mx[1]  # noqa

    # > a3
    a3_num = Kxy(a3) * mx[1]
    a3_denom = mx[1]  # noqa

    # The mx.derivative part has a different denominator, basically mx[1]^2 * m
    # so the rest needs to be multiplied by this factor when subtracting.
    mxd_fact = mx[1] * n

    my_num = mxd_full_num - a1mx_num * mxd_fact - a3_num * mxd_fact
    my_denom = mxd_full_denom * Kxy(2)
    my = (my_num, my_denom)
    return mx, my