aboutsummaryrefslogtreecommitdiff
path: root/pyecsca/ec/countermeasures.py
blob: e7c1a5a7c58447f96af1752593f6cbc5e0327393 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
"""Provides several countermeasures against side-channel attacks."""

from abc import ABC, abstractmethod
from typing import Optional, Callable, get_type_hints, ClassVar

from public import public

from pyecsca.ec.formula import AdditionFormula, NegationFormula
from pyecsca.ec.mod import Mod, mod
from pyecsca.ec.mult import ScalarMultiplier, ScalarMultiplicationAction
from pyecsca.ec.params import DomainParameters
from pyecsca.ec.point import Point


@public
class ScalarMultiplierCountermeasure(ABC):
    """
    A scalar multiplier-based countermeasure.

    This class behaves like a scalar multiplier, in fact it wraps one
    and provides some scalar-splitting countermeasure.
    """

    mults: list["ScalarMultiplier | ScalarMultiplierCountermeasure"]
    """The underlying scalar multipliers (or another countermeasure)."""
    nmults: ClassVar[int]
    """The number of scalar multipliers required."""
    params: Optional[DomainParameters]
    """The domain parameters, if any."""
    point: Optional[Point]
    """The point to multiply, if any."""
    bits: Optional[int]
    """The bit-length to use, if any."""

    def __init__(
        self,
        *mults: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        rng: Callable[[int], Mod] = Mod.random,
    ):
        self.mults = list(mults)
        if len(self.mults) != self.nmults:
            raise ValueError(
                f"Expected {self.nmults} multipliers, got {len(self.mults)}."
            )
        self.rng = rng

    def init(self, params: DomainParameters, point: Point, bits: Optional[int] = None):
        """Initialize the countermeasure with the parameters and the point."""
        self.params = params
        self.point = point
        if bits is None:
            bits = params.full_order.bit_length()
        self.bits = bits

    @abstractmethod
    def multiply(self, scalar: int) -> Point:
        """
        Multiply the point with the scalar using the countermeasure.

        .. note::
            The countermeasure may compute multiple scalar multiplications internally.
            Thus, it may call the init method of the scalar multiplier multiple times.

        :param scalar: The scalar to multiply with.
        :return: The result of the multiplication.
        """
        raise NotImplementedError

    @classmethod
    def from_single(
        cls, mult: "ScalarMultiplier | ScalarMultiplierCountermeasure", **kwargs
    ):
        """
        Create an instance of the countermeasure from a single scalar multiplier.

        :param mult: The scalar multiplier to use.
        :return: An instance of the countermeasure.
        """
        mults = [mult] * cls.nmults
        return cls(*mults, **kwargs)

    def _apply_formula(self, shortname: str, *points: Point) -> Point:
        if formula := getattr(self, shortname, None):
            return formula(
                self.params.curve.prime,
                *points,
                **self.params.curve.parameters,  # type: ignore
            )[0]
        else:
            for mult in self.mults:
                if mult_formula := getattr(mult, f"_{shortname}", None):
                    return mult_formula(*points)  # type: ignore
            else:
                raise ValueError(f"No formula '{shortname}' available.")

    def _add(self, R: Point, S: Point) -> Point:  # noqa
        return self._apply_formula("add", R, S)

    def _neg(self, P: Point) -> Point:
        return self._apply_formula("neg", P)


@public
class GroupScalarRandomization(ScalarMultiplierCountermeasure):
    r"""
    Group scalar randomization countermeasure.

    Samples a random multiple, multiplies the order with it and adds it to the scalar.

    .. math::
        :class: frame

        &r \xleftarrow{\$} \{0, 1, \ldots, 2^{\text{rand_bits}}\} \\
        &\textbf{return}\ [k + r n]G

    """

    nmults = 1
    rand_bits: int

    def __init__(
        self,
        mult: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        rng: Callable[[int], Mod] = Mod.random,
        rand_bits: int = 32,
    ):
        """
        :param mult: The multiplier to use.
        :param rng: The random number generator to use.
        :param rand_bits: How many random bits to sample.
        """
        super().__init__(mult, rng=rng)
        self.rand_bits = rand_bits

    def multiply(self, scalar: int) -> Point:
        if self.params is None or self.point is None or self.bits is None:
            raise ValueError("Not initialized.")
        with ScalarMultiplicationAction(self.point, self.params, scalar) as action:
            order = self.params.order
            mask = int(self.rng(1 << self.rand_bits))
            masked_scalar = scalar + mask * order
            bits = max(self.bits, self.rand_bits + order.bit_length()) + 1
            self.mults[0].init(
                self.params,
                self.point,
                bits=bits,
            )
            return action.exit(self.mults[0].multiply(masked_scalar))


@public
class AdditiveSplitting(ScalarMultiplierCountermeasure):
    r"""
    Additive splitting countermeasure.

    Splits the scalar into two parts additively, multiplies the point with them and adds the results.

    .. math::
        :class: frame

        &r \xleftarrow{\$} \{0, 1, \ldots, n\} \\
        &\textbf{return}\ [k - r]G + [r]G

    """

    nmults = 2
    add: Optional[AdditionFormula]

    def __init__(
        self,
        mult1: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        mult2: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        rng: Callable[[int], Mod] = Mod.random,
        add: Optional[AdditionFormula] = None,
    ):
        """
        :param mult1: The multiplier to use.
        :param mult2: The multiplier to use.
        :param rng: The random number generator to use.
        :param add: Addition formula to use, if None, the formula from the multiplier is used.
        """
        super().__init__(mult1, mult2, rng=rng)
        self.add = add

    def multiply(self, scalar: int) -> Point:
        if self.params is None or self.point is None or self.bits is None:
            raise ValueError("Not initialized.")
        with ScalarMultiplicationAction(self.point, self.params, scalar) as action:
            order = self.params.order
            r = self.rng(order)
            s = scalar - r
            bits = max(self.bits, order.bit_length())

            self.mults[0].init(self.params, self.point, bits)
            R = self.mults[0].multiply(int(r))

            if self.mults[0] != self.mults[1]:
                self.mults[1].init(self.params, self.point, bits)
            S = self.mults[1].multiply(int(s))

            res = self._add(R, S)
            return action.exit(res)


@public
class MultiplicativeSplitting(ScalarMultiplierCountermeasure):
    r"""
    Multiplicative splitting countermeasure.

    Splits the scalar into two parts multiplicatively, multiplies the point with them and adds the results.

    .. math::
        :class: frame

        &r \xleftarrow{\$} \{0, 1, \ldots, 2^{\text{rand_bits}}\} \\
        &S = [r]G \\
        &\textbf{return}\ [k r^{-1} \mod n]S

    """

    nmults = 2
    rand_bits: int

    def __init__(
        self,
        mult1: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        mult2: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        rng: Callable[[int], Mod] = Mod.random,
        rand_bits: int = 32,
    ):
        """
        :param mult1: The multiplier to use.
        :param mult2: The multiplier to use.
        :param rng: The random number generator to use.
        :param rand_bits: How many random bits to sample.
        """
        super().__init__(mult1, mult2, rng=rng)
        self.rand_bits = rand_bits

    def multiply(self, scalar: int) -> Point:
        if self.params is None or self.point is None or self.bits is None:
            raise ValueError("Not initialized.")
        with ScalarMultiplicationAction(self.point, self.params, scalar) as action:
            r = self.rng(1 << self.rand_bits)
            self.mults[0].init(self.params, self.point, self.rand_bits)
            R = self.mults[0].multiply(int(r))

            self.mults[1].init(
                self.params, R, max(self.bits, self.params.order.bit_length())
            )
            kr_inv = scalar * mod(int(r), self.params.order).inverse()
            return action.exit(self.mults[1].multiply(int(kr_inv)))


@public
class EuclideanSplitting(ScalarMultiplierCountermeasure):
    r"""
    Euclidean splitting countermeasure.

    Picks a random value half the size of the curve, then splits the scalar
    into the remainder and the quotient of the division by the random value.

    .. math::
        :class: frame

        &r \xleftarrow{\$} \{0, 1, \ldots, 2^{\log_2{(n)}/2}\} \\
        &S = [r]G \\
        &k_1 = k \mod r \\
        &k_2 = \lfloor \frac{k}{r} \rfloor \\
        &\textbf{return}\ [k_1]G + [k_2]S

    """

    nmults = 3
    add: Optional[AdditionFormula]

    def __init__(
        self,
        mult1: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        mult2: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        mult3: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        rng: Callable[[int], Mod] = Mod.random,
        add: Optional[AdditionFormula] = None,
    ):
        """
        :param mult1: The multiplier to use.
        :param mult2: The multiplier to use.
        :param mult3: The multiplier to use.
        :param rng: The random number generator to use.
        :param add: Addition formula to use, if None, the formula from the multiplier is used.
        """
        super().__init__(mult1, mult2, mult3, rng=rng)
        self.add = add

    def _add(self, R: Point, S: Point) -> Point:  # noqa
        if self.add is None:
            for mult in self.mults:
                try:
                    return mult._add(R, S)  # type: ignore
                except AttributeError:
                    pass
            else:
                raise ValueError("No addition formula available.")
        else:
            return self.add(
                self.params.curve.prime, R, S, **self.params.curve.parameters  # type: ignore
            )[0]

    def multiply(self, scalar: int) -> Point:
        if self.params is None or self.point is None or self.bits is None:
            raise ValueError("Not initialized.")
        with ScalarMultiplicationAction(self.point, self.params, scalar) as action:
            half_bits = self.bits // 2
            r = self.rng(1 << half_bits)
            self.mults[0].init(self.params, self.point, half_bits)
            R = self.mults[0].multiply(int(r))  # r bounded by half_bits

            if self.mults[0] != self.mults[1]:
                self.mults[1].init(self.params, self.point, half_bits)
            k1 = scalar % int(r)
            k2 = scalar // int(r)
            T = self.mults[1].multiply(k1)  # k1 bounded by half_bits

            self.mults[2].init(self.params, R, self.bits)
            S = self.mults[2].multiply(
                k2
            )  # k2 (in worst case) bounded by bits, but in practice closer to half_bits

            res = self._add(S, T)
            return action.exit(res)


@public
class BrumleyTuveri(ScalarMultiplierCountermeasure):
    r"""
    A countermeasure that fixes the bit-length of the scalar by adding some multiple
    of the order to it.

    Originally proposed in [BT11]_.

    .. math::
        :class: frame

        &\hat{k}= \begin{cases}
            k + 2n \quad \text{if } \lceil \log_2(k+n) \rceil = \lceil \log_2 n \rceil\\
            k + n \quad \text{otherwise}.
        \end{cases}\\
        &\textbf{return}\ [\hat{k}]G

    """

    nmults = 1

    def __init__(
        self,
        mult: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        rng: Callable[[int], Mod] = Mod.random,
    ):
        """
        :param mult: The multiplier to use.
        :param rng: The random number generator to use.
        """
        super().__init__(mult, rng=rng)

    def multiply(self, scalar: int) -> Point:
        if self.params is None or self.point is None or self.bits is None:
            raise ValueError("Not initialized.")
        with ScalarMultiplicationAction(self.point, self.params, scalar) as action:
            n = self.params.order
            self.mults[0].init(
                self.params,
                self.point,
                bits=max(self.bits, n.bit_length()) + 1,
            )
            scalar += n
            if scalar.bit_length() <= n.bit_length():
                scalar += n
            return action.exit(self.mults[0].multiply(scalar))


class PointBlinding(ScalarMultiplierCountermeasure):
    """Point blinding countermeasure."""

    nmults = 2
    add: Optional[AdditionFormula]
    neg: Optional[NegationFormula]

    def __init__(
        self,
        mult1: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        mult2: "ScalarMultiplier | ScalarMultiplierCountermeasure",
        rng: Callable[[int], Mod] = Mod.random,
        add: Optional[AdditionFormula] = None,
        neg: Optional[NegationFormula] = None,
    ):
        """

        :param mult1: The multiplier to use.
        :param mult2: The multiplier to use.
        :param rng: The random number generator to use.
        :param add: Addition formula to use, if None, the formula from the multiplier is used.
        :param neg: Negation formula to use, if None, the formula from the multiplier is used.
        """
        super().__init__(mult1, mult2, rng=rng)
        self.add = add
        self.neg = neg

    def multiply(self, scalar: int) -> Point:
        if self.params is None or self.point is None or self.bits is None:
            raise ValueError("Not initialized.")
        with ScalarMultiplicationAction(self.point, self.params, scalar) as action:
            R = self.params.curve.affine_random().to_model(
                self.params.curve.coordinate_model, self.params.curve
            )
            self.mults[0].init(self.params, R, self.bits)
            S = self.mults[0].multiply(int(scalar))

            T = self._add(self.point, R)
            self.mults[1].init(self.params, T, self.bits)
            Q = self.mults[1].multiply(int(scalar))

            return action.exit(self._add(Q, self._neg(S)))