1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
"""
This module provides a way to work with and enumerate implementation configurations.
"""
from dataclasses import dataclass
from enum import Enum
from itertools import product
from typing import get_type_hints, Union, get_origin, get_args, Generator, FrozenSet
from public import public
from .coordinates import CoordinateModel
from .formula import Formula
from .model import CurveModel
from .mult import ScalarMultiplier
@public
class EnumDefine(Enum):
def __str__(self):
return self.value
def __repr__(self):
return self.value
@classmethod
def names(cls):
return list(e.name for e in cls)
@classmethod
def values(cls):
return list(e.value for e in cls)
@public
class Multiplication(EnumDefine):
"""Base multiplication algorithm to use."""
TOOM_COOK = "MUL_TOOM_COOK"
KARATSUBA = "MUL_KARATSUBA"
COMBA = "MUL_COMBA"
BASE = "MUL_BASE"
@public
class Squaring(EnumDefine):
"""Base squaring algorithm to use."""
TOOM_COOK = "SQR_TOOM_COOK"
KARATSUBA = "SQR_KARATSUBA"
COMBA = "SQR_COMBA"
BASE = "SQR_BASE"
@public
class Reduction(EnumDefine):
"""Modular reduction method used."""
BARRETT = "RED_BARRETT"
MONTGOMERY = "RED_MONTGOMERY"
BASE = "RED_BASE"
@public
class Inversion(EnumDefine):
"""Inversion algorithm used."""
GCD = "INV_GCD"
EULER = "INV_EULER"
@public
class HashType(EnumDefine):
"""Hash algorithm used in ECDH and ECDSA."""
NONE = "HASH_NONE"
SHA1 = "HASH_SHA1"
SHA224 = "HASH_SHA224"
SHA256 = "HASH_SHA256"
SHA384 = "HASH_SHA384"
SHA512 = "HASH_SHA512"
@public
class RandomMod(EnumDefine):
"""Method of sampling a uniform integer modulo order."""
SAMPLE = "MOD_RAND_SAMPLE"
REDUCE = "MOD_RAND_REDUCE"
@public
@dataclass(frozen=True)
class Configuration(object):
"""An ECC implementation configuration."""
model: CurveModel
coords: CoordinateModel
formulas: FrozenSet[Formula]
scalarmult: ScalarMultiplier
hash_type: HashType
mod_rand: RandomMod
mult: Multiplication
sqr: Squaring
red: Reduction
inv: Inversion
@public
def all_configurations(**kwargs) -> Generator[Configuration, Configuration, None]:
"""
Get all implementation configurations that match the given `kwargs`.
The keys in `kwargs` should be some of the attributes in the :py:class:`Configuration`,
and the values limit the returned configurations to configuration matching them.
.. note::
The `formulas` attribute is unsupported and formulas should be provided using the `scalarmult`
attribute, which is either a subclass of the :py:class:`ScalarMultiplier` class or an instance
of it or a dictionary giving arguments to a constructor of some :py:class:`ScalarMultiplier`
subclass.
.. warning::
The returned number of configurations might be quite large and take up significant
memory space.
:param kwargs: The configuration parameters to match.
:return: A generator of the configurations
"""
def is_optional(arg_type):
return get_origin(arg_type) == Union and len(get_args(arg_type)) == 2 and \
get_args(arg_type)[1] == type(None) # noqa
def leaf_subclasses(cls):
subs = cls.__subclasses__()
result = []
for subclass in subs:
if subclass.__subclasses__():
result.extend(leaf_subclasses(subclass))
else:
result.append(subclass)
return result
def independents(kwargs):
options = {
"hash_type": HashType,
"mod_rand": RandomMod,
"mult": Multiplication,
"sqr": Squaring,
"red": Reduction,
"inv": Inversion
}
keys = list(filter(lambda key: key not in kwargs, options.keys()))
values = [options[key] for key in keys]
fixed_args = {key: kwargs[key] for key in kwargs if key in options}
for value_choice in product(*values):
yield dict(zip(keys, value_choice), **fixed_args)
def multipliers(mult_classes, coords_formulas, fixed_args=None):
for mult_cls in mult_classes:
if fixed_args is not None and "cls" in fixed_args and mult_cls != fixed_args["cls"]:
continue
arg_options = {}
for name, required_type in get_type_hints(mult_cls.__init__).items():
if fixed_args is not None and name in fixed_args:
arg_options[name] = [fixed_args[name]]
continue
if is_optional(required_type):
opt_type = get_args(required_type)[0]
if issubclass(opt_type, Formula):
options = [formula for formula in coords_formulas if
isinstance(formula, opt_type)] + [None]
else:
options = [None] # TODO: anything here?
elif get_origin(required_type) is None and issubclass(required_type, Formula):
options = [formula for formula in coords_formulas if
isinstance(formula, required_type)]
elif get_origin(required_type) is None and issubclass(required_type, bool):
options = [True, False]
elif get_origin(required_type) is None and issubclass(required_type,
int) and name == "width":
options = [3, 5]
else:
options = []
arg_options[name] = options
keys = arg_options.keys()
values = arg_options.values()
for combination in product(*values):
try:
mult = mult_cls(**dict(zip(keys, combination)))
except Exception:
continue
yield mult
for model_cls in leaf_subclasses(CurveModel):
model = model_cls()
if "model" in kwargs:
if model != kwargs["model"]:
continue
for coords_name, coords in model.coordinates.items():
if "coords" in kwargs:
if coords != kwargs["coords"]:
continue
coords_formulas = coords.formulas.values()
mult_classes = leaf_subclasses(ScalarMultiplier)
if "scalarmult" in kwargs:
if isinstance(kwargs["scalarmult"], ScalarMultiplier):
mults = [kwargs["scalarmult"]]
if not set(kwargs["scalarmult"].formulas.values()).issubset(coords_formulas):
continue
elif isinstance(kwargs["scalarmult"], type) and issubclass(kwargs["scalarmult"],
ScalarMultiplier):
mult_classes = list(
filter(lambda mult: issubclass(mult, kwargs["scalarmult"]),
mult_classes))
mults = multipliers(mult_classes, coords_formulas)
else:
mults = multipliers(mult_classes, coords_formulas, kwargs["scalarmult"])
else:
mults = multipliers(mult_classes, coords_formulas)
for mult in mults:
formulas = frozenset(mult.formulas.values())
for independent_args in independents(kwargs):
yield Configuration(model, coords, formulas, mult, **independent_args)
|