aboutsummaryrefslogtreecommitdiff
path: root/pyecsca/process.py
diff options
context:
space:
mode:
Diffstat (limited to 'pyecsca/process.py')
-rw-r--r--pyecsca/process.py59
1 files changed, 59 insertions, 0 deletions
diff --git a/pyecsca/process.py b/pyecsca/process.py
new file mode 100644
index 0000000..3ca43f2
--- /dev/null
+++ b/pyecsca/process.py
@@ -0,0 +1,59 @@
+from copy import copy
+import numpy as np
+from public import public
+
+from .trace import Trace
+
+
+@public
+def absolute(trace: Trace) -> Trace:
+ return Trace(copy(trace.title), copy(trace.data), np.absolute(trace.samples))
+
+
+@public
+def invert(trace: Trace) -> Trace:
+ return Trace(copy(trace.title), copy(trace.data), np.negative(trace.samples))
+
+
+@public
+def threshold(trace: Trace, value) -> Trace:
+ result_samples = trace.samples.copy()
+ result_samples[result_samples <= value] = 0
+ result_samples[np.nonzero(result_samples)] = 1
+ return Trace(copy(trace.title), copy(trace.data), result_samples)
+
+
+def rolling_window(samples: np.ndarray, window: int) -> np.ndarray:
+ shape = samples.shape[:-1] + (samples.shape[-1] - window + 1, window)
+ strides = samples.strides + (samples.strides[-1],)
+ return np.lib.stride_tricks.as_strided(samples, shape=shape, strides=strides)
+
+
+@public
+def rolling_mean(trace: Trace, window: int) -> Trace:
+ return Trace(copy(trace.title), copy(trace.data), np.mean(rolling_window(trace.samples, window), -1).astype(dtype=trace.samples.dtype))
+
+
+@public
+def offset(trace: Trace, offset) -> Trace:
+ return Trace(copy(trace.title), copy(trace.data), trace.samples + offset)
+
+
+def root_mean_square(trace: Trace):
+ return np.sqrt(np.mean(np.square(trace.samples)))
+
+
+@public
+def recenter(trace: Trace) -> Trace:
+ around = root_mean_square(trace)
+ return offset(trace, -around)
+
+
+@public
+def normalize(trace: Trace) -> Trace:
+ return Trace(copy(trace.title), copy(trace.data), (trace.samples - np.mean(trace.samples)) / np.std(trace.samples))
+
+
+@public
+def normalize_wl(trace: Trace) -> Trace:
+ return Trace(copy(trace.title), copy(trace.data), (trace.samples - np.mean(trace.samples)) / (np.std(trace.samples) * len(trace.samples)))