diff options
| author | J08nY | 2024-07-15 18:15:45 +0200 |
|---|---|---|
| committer | J08nY | 2024-07-15 18:15:45 +0200 |
| commit | 06e005a48af4a704b38f933f500f03a0af2630d3 (patch) | |
| tree | 1712620fc37c5d5798913af491a7e2b851251fd5 /test/ec/test_regress.py | |
| parent | ba894fe889d003f2766b7bb90503960fd0429cd5 (diff) | |
| download | pyecsca-06e005a48af4a704b38f933f500f03a0af2630d3.tar.gz pyecsca-06e005a48af4a704b38f933f500f03a0af2630d3.tar.zst pyecsca-06e005a48af4a704b38f933f500f03a0af2630d3.zip | |
Diffstat (limited to 'test/ec/test_regress.py')
| -rw-r--r-- | test/ec/test_regress.py | 36 |
1 files changed, 18 insertions, 18 deletions
diff --git a/test/ec/test_regress.py b/test/ec/test_regress.py index 8d54e98..cbfb08b 100644 --- a/test/ec/test_regress.py +++ b/test/ec/test_regress.py @@ -7,7 +7,7 @@ from pyecsca.ec.coordinates import AffineCoordinateModel from pyecsca.ec.curve import EllipticCurve from pyecsca.ec.error import UnsatisfiedAssumptionError from pyecsca.ec.formula import AdditionFormula, DoublingFormula, ScalingFormula -from pyecsca.ec.mod import Mod, SymbolicMod +from pyecsca.ec.mod import Mod, SymbolicMod, mod from pyecsca.ec.model import MontgomeryModel, EdwardsModel from pyecsca.ec.params import get_params from pyecsca.ec.mult import LTRMultiplier @@ -48,13 +48,13 @@ def test_issue_9(): model = MontgomeryModel() coords = model.coordinates["xz"] p = 19 - neutral = Point(coords, X=Mod(1, p), Z=Mod(0, p)) - curve = EllipticCurve(model, coords, p, neutral, {"a": Mod(8, p), "b": Mod(1, p)}) - base = Point(coords, X=Mod(12, p), Z=Mod(1, p)) + neutral = Point(coords, X=mod(1, p), Z=mod(0, p)) + curve = EllipticCurve(model, coords, p, neutral, {"a": mod(8, p), "b": mod(1, p)}) + base = Point(coords, X=mod(12, p), Z=mod(1, p)) formula = coords.formulas["dbl-1987-m-2"] res = formula(p, base, **curve.parameters)[0] assert res is not None - affine_base = Point(AffineCoordinateModel(model), x=Mod(12, p), y=Mod(2, p)) + affine_base = Point(AffineCoordinateModel(model), x=mod(12, p), y=mod(2, p)) dbase = curve.affine_double(affine_base).to_model(coords, curve) ladder = coords.formulas["ladd-1987-m-3"] one, other = ladder(p, base, dbase, base, **curve.parameters) @@ -67,14 +67,14 @@ def test_issue_10(): coords = model.coordinates["yz"] coords_sqr = model.coordinates["yzsquared"] p = 0x1D - c = Mod(1, p) - d = Mod(0x1C, p) + c = mod(1, p) + d = mod(0x1C, p) r = d.sqrt() - neutral = Point(coords, Y=c * r, Z=Mod(1, p)) + neutral = Point(coords, Y=c * r, Z=mod(1, p)) curve = EllipticCurve(model, coords, p, neutral, {"c": c, "d": d, "r": r}) - neutral_affine = Point(AffineCoordinateModel(model), x=Mod(0, p), y=c) + neutral_affine = Point(AffineCoordinateModel(model), x=mod(0, p), y=c) assert neutral == neutral_affine.to_model(coords, curve) - neutral_sqr = Point(coords_sqr, Y=c ** 2 * r, Z=Mod(1, p)) + neutral_sqr = Point(coords_sqr, Y=c ** 2 * r, Z=mod(1, p)) assert neutral_sqr == neutral_affine.to_model(coords_sqr, curve) @@ -103,23 +103,23 @@ def test_issue_14(): with pytest.raises(UnsatisfiedAssumptionError): # p is 3 mod 4, so there is no square root of -1 p = 19 - c = Mod(2, p) - d = Mod(10, p) + c = mod(2, p) + d = mod(10, p) curve = EllipticCurve(model, coords, p, InfinityPoint(coords), {"c": c, "d": d}) - Paff = Point(affine, x=Mod(0xD, p), y=Mod(0x9, p)) + Paff = Point(affine, x=mod(0xD, p), y=mod(0x9, p)) P = Paff.to_model(coords, curve) - Qaff = Point(affine, x=Mod(0x4, p), y=Mod(0x12, p)) + Qaff = Point(affine, x=mod(0x4, p), y=mod(0x12, p)) Q = Qaff.to_model(coords, curve) formula(p, P, Q, **curve.parameters)[0] # p is 1 mod 4, so there is a square root of -1 p = 29 - c = Mod(2, p) - d = Mod(10, p) + c = mod(2, p) + d = mod(10, p) curve = EllipticCurve(model, coords, p, InfinityPoint(coords), {"c": c, "d": d}) - Paff = Point(affine, x=Mod(0xD, p), y=Mod(0x9, p)) + Paff = Point(affine, x=mod(0xD, p), y=mod(0x9, p)) P = Paff.to_model(coords, curve) - Qaff = Point(affine, x=Mod(0x4, p), y=Mod(0x12, p)) + Qaff = Point(affine, x=mod(0x4, p), y=mod(0x12, p)) Q = Qaff.to_model(coords, curve) PQaff = curve.affine_add(Paff, Qaff) R = formula(p, P, Q, **curve.parameters)[0] |
