1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
# Copyright (C) 2007-2008 by the Free Software Foundation, Inc.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
# USA.
"""Password hashing and verification schemes.
Represents passwords using RFC 2307 syntax (as best we can tell).
"""
import os
import re
import sha
import hmac
from array import array
from base64 import urlsafe_b64decode as decode
from base64 import urlsafe_b64encode as encode
from munepy import Enum
from mailman import Errors
SALT_LENGTH = 20 # bytes
ITERATIONS = 2000
__all__ = [
'Schemes',
'make_secret',
'check_response',
]
class PasswordScheme(object):
TAG = ''
@staticmethod
def make_secret(password):
"""Return the hashed password"""
raise NotImplementedError
@staticmethod
def check_response(challenge, response):
"""Return True if response matches challenge.
It is expected that the scheme specifier prefix is already stripped
from the response string.
"""
raise NotImplementedError
class NoPasswordScheme(PasswordScheme):
TAG = 'NONE'
@staticmethod
def make_secret(password):
return ''
@staticmethod
def check_response(challenge, response):
return False
class ClearTextPasswordScheme(PasswordScheme):
TAG = 'CLEARTEXT'
@staticmethod
def make_secret(password):
return password
@staticmethod
def check_response(challenge, response):
return challenge == response
class SHAPasswordScheme(PasswordScheme):
TAG = 'SHA'
@staticmethod
def make_secret(password):
h = sha.new(password)
return encode(h.digest())
@staticmethod
def check_response(challenge, response):
h = sha.new(response)
return challenge == encode(h.digest())
class SSHAPasswordScheme(PasswordScheme):
TAG = 'SSHA'
@staticmethod
def make_secret(password):
salt = os.urandom(SALT_LENGTH)
h = sha.new(password)
h.update(salt)
return encode(h.digest() + salt)
@staticmethod
def check_response(challenge, response):
# Get the salt from the challenge
challenge_bytes = decode(challenge)
digest = challenge_bytes[:20]
salt = challenge_bytes[20:]
h = sha.new(response)
h.update(salt)
return digest == h.digest()
# Basic algorithm given by Bob Fleck
class PBKDF2PasswordScheme(PasswordScheme):
# This is a bit nasty if we wanted a different prf or iterations. OTOH,
# we really have no clue what the standard LDAP-ish specification for
# those options is.
TAG = 'PBKDF2 SHA %d' % ITERATIONS
@staticmethod
def _pbkdf2(password, salt, iterations):
"""From RFC2898 sec. 5.2. Simplified to handle only 20 byte output
case. Output of 20 bytes means always exactly one block to handle,
and a constant block counter appended to the salt in the initial hmac
update.
"""
h = hmac.new(password, None, sha)
prf = h.copy()
prf.update(salt + '\x00\x00\x00\x01')
T = U = array('l', prf.digest())
while iterations:
prf = h.copy()
prf.update(U.tostring())
U = array('l', prf.digest())
T = array('l', (t ^ u for t, u in zip(T, U)))
iterations -= 1
return T.tostring()
@staticmethod
def make_secret(password):
"""From RFC2898 sec. 5.2. Simplified to handle only 20 byte output
case. Output of 20 bytes means always exactly one block to handle,
and a constant block counter appended to the salt in the initial hmac
update.
"""
salt = os.urandom(SALT_LENGTH)
digest = PBKDF2PasswordScheme._pbkdf2(password, salt, ITERATIONS)
derived_key = encode(digest + salt)
return derived_key
@staticmethod
def check_response(challenge, response, prf, iterations):
# Decode the challenge to get the number of iterations and salt
# XXX we don't support anything but sha prf
if prf.lower() <> 'sha':
return False
try:
iterations = int(iterations)
except (ValueError, TypeError):
return False
challenge_bytes = decode(challenge)
digest = challenge_bytes[:20]
salt = challenge_bytes[20:]
key = PBKDF2PasswordScheme._pbkdf2(response, salt, iterations)
return digest == key
class Schemes(Enum):
# no_scheme is deliberately ugly because no one should be using it. Yes,
# this makes cleartext inconsistent, but that's a common enough
# terminology to justify the missing underscore.
no_scheme = 1
cleartext = 2
sha = 3
ssha = 4
pbkdf2 = 5
_SCHEMES_BY_ENUM = {
Schemes.no_scheme : NoPasswordScheme,
Schemes.cleartext : ClearTextPasswordScheme,
Schemes.sha : SHAPasswordScheme,
Schemes.ssha : SSHAPasswordScheme,
Schemes.pbkdf2 : PBKDF2PasswordScheme,
}
# Some scheme tags have arguments, but the key for this dictionary should just
# be the lowercased scheme name.
_SCHEMES_BY_TAG = dict((_SCHEMES_BY_ENUM[e].TAG.split(' ')[0].lower(), e)
for e in _SCHEMES_BY_ENUM)
_DEFAULT_SCHEME = NoPasswordScheme
def make_secret(password, scheme=None):
# The hash algorithms operate on bytes not strings. The password argument
# as provided here by the client will be a string (in Python 2 either
# unicode or 8-bit, in Python 3 always unicode). We need to encode this
# string into a byte array, and the way to spell that in Python 2 is to
# encode the string to utf-8. The returned secret is a string, so it must
# be a unicode.
if isinstance(password, unicode):
password = password.encode('utf-8')
scheme_class = _SCHEMES_BY_ENUM.get(scheme)
if not scheme_class:
raise Errors.BadPasswordSchemeError(scheme)
secret = scheme_class.make_secret(password)
return '{%s}%s' % (scheme_class.TAG, secret)
def check_response(challenge, response):
mo = re.match(r'{(?P<scheme>[^}]+?)}(?P<rest>.*)',
challenge, re.IGNORECASE)
if not mo:
return False
# See above for why we convert here. However because we should have
# generated the challenge, we assume that it is already a byte string.
if isinstance(response, unicode):
response = response.encode('utf-8')
scheme_group, rest_group = mo.group('scheme', 'rest')
scheme_parts = scheme_group.split()
scheme = scheme_parts[0].lower()
scheme_enum = _SCHEMES_BY_TAG.get(scheme, _DEFAULT_SCHEME)
scheme_class = _SCHEMES_BY_ENUM[scheme_enum]
if isinstance(rest_group, unicode):
rest_group = rest_group.encode('utf-8')
return scheme_class.check_response(rest_group, response, *scheme_parts[1:])
def lookup_scheme(scheme_name):
return _SCHEMES_BY_TAG.get(scheme_name.lower())
|