aboutsummaryrefslogtreecommitdiff
path: root/editor/plugins/baked_light_baker.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'editor/plugins/baked_light_baker.cpp')
-rw-r--r--editor/plugins/baked_light_baker.cpp2724
1 files changed, 2724 insertions, 0 deletions
diff --git a/editor/plugins/baked_light_baker.cpp b/editor/plugins/baked_light_baker.cpp
new file mode 100644
index 000000000..e4847725c
--- /dev/null
+++ b/editor/plugins/baked_light_baker.cpp
@@ -0,0 +1,2724 @@
+/*************************************************************************/
+/* baked_light_baker.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* http://www.godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+#include "baked_light_baker.h"
+#include <stdlib.h>
+#include <cmath>
+#include "io/marshalls.h"
+#include "editor/editor_node.h"
+#include "editor/editor_settings.h"
+
+
+void baked_light_baker_add_64f(double *dst,double value);
+void baked_light_baker_add_64i(int64_t *dst,int64_t value);
+
+//-separar en 2 testuras?
+//*mejorar performance y threads
+//*modos lineales
+//*saturacion
+
+_FORCE_INLINE_ static uint64_t get_uv_normal_bit(const Vector3& p_vector) {
+
+ int lat = Math::fast_ftoi(Math::floor(Math::acos(p_vector.dot(Vector3(0,1,0)))*6.0/Math_PI+0.5));
+
+ if (lat==0) {
+ return 60;
+ } else if (lat==6) {
+ return 61;
+ }
+
+ int lon = Math::fast_ftoi(Math::floor( (Math_PI+Math::atan2(p_vector.x,p_vector.z))*12.0/(Math_PI*2.0) + 0.5))%12;
+
+ return lon+(lat-1)*12;
+}
+
+
+
+_FORCE_INLINE_ static Vector3 get_bit_normal(int p_bit) {
+
+ if (p_bit==61) {
+ return Vector3(0,1,0);
+ } else if (p_bit==62){
+ return Vector3(0,-1,0);
+ }
+
+ float latang = ((p_bit / 12)+1)*Math_PI/6.0;
+
+ Vector2 latv(Math::sin(latang),Math::cos(latang));
+
+ float lonang = ((p_bit%12)*Math_PI*2.0/12.0)-Math_PI;
+
+ Vector2 lonv(Math::sin(lonang),Math::cos(lonang));
+
+ return Vector3(lonv.x*latv.x,latv.y,lonv.y*latv.x).normalized();
+
+}
+
+
+BakedLightBaker::MeshTexture* BakedLightBaker::_get_mat_tex(const Ref<Texture>& p_tex) {
+
+ if (!tex_map.has(p_tex)) {
+
+ Ref<ImageTexture> imgtex=p_tex;
+ if (imgtex.is_null())
+ return NULL;
+ Image image=imgtex->get_data();
+ if (image.empty())
+ return NULL;
+
+ if (image.get_format()!=Image::FORMAT_RGBA) {
+ if (image.get_format()>Image::FORMAT_INDEXED_ALPHA) {
+ Error err = image.decompress();
+ if (err)
+ return NULL;
+ }
+
+ if (image.get_format()!=Image::FORMAT_RGBA)
+ image.convert(Image::FORMAT_RGBA);
+ }
+
+ if (imgtex->get_flags()&Texture::FLAG_CONVERT_TO_LINEAR) {
+ Image copy = image;
+ copy.srgb_to_linear();
+ image=copy;
+ }
+
+ DVector<uint8_t> dvt=image.get_data();
+ DVector<uint8_t>::Read r=dvt.read();
+ MeshTexture mt;
+ mt.tex_w=image.get_width();
+ mt.tex_h=image.get_height();
+ int len = image.get_width()*image.get_height()*4;
+ mt.tex.resize(len);
+ copymem(mt.tex.ptr(),r.ptr(),len);
+
+ textures.push_back(mt);
+ tex_map[p_tex]=&textures.back()->get();
+ }
+
+ return tex_map[p_tex];
+}
+
+
+void BakedLightBaker::_add_mesh(const Ref<Mesh>& p_mesh,const Ref<Material>& p_mat_override,const Transform& p_xform,int p_baked_texture) {
+
+
+ for(int i=0;i<p_mesh->get_surface_count();i++) {
+
+ if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES)
+ continue;
+ Ref<Material> mat = p_mat_override.is_valid()?p_mat_override:p_mesh->surface_get_material(i);
+
+ MeshMaterial *matptr=NULL;
+ int baked_tex=p_baked_texture;
+
+ if (mat.is_valid()) {
+
+ if (!mat_map.has(mat)) {
+
+ MeshMaterial mm;
+
+ Ref<FixedMaterial> fm = mat;
+ if (fm.is_valid()) {
+ //fixed route
+ mm.diffuse.color=fm->get_parameter(FixedMaterial::PARAM_DIFFUSE);
+ if (linear_color)
+ mm.diffuse.color=mm.diffuse.color.to_linear();
+ mm.diffuse.tex=_get_mat_tex(fm->get_texture(FixedMaterial::PARAM_DIFFUSE));
+ mm.specular.color=fm->get_parameter(FixedMaterial::PARAM_SPECULAR);
+ if (linear_color)
+ mm.specular.color=mm.specular.color.to_linear();
+
+ mm.specular.tex=_get_mat_tex(fm->get_texture(FixedMaterial::PARAM_SPECULAR));
+ } else {
+
+ mm.diffuse.color=Color(1,1,1,1);
+ mm.diffuse.tex=NULL;
+ mm.specular.color=Color(0,0,0,1);
+ mm.specular.tex=NULL;
+ }
+
+ materials.push_back(mm);
+ mat_map[mat]=&materials.back()->get();
+
+ }
+
+ matptr=mat_map[mat];
+
+ }
+
+
+ int facecount=0;
+
+
+ if (p_mesh->surface_get_format(i)&Mesh::ARRAY_FORMAT_INDEX) {
+
+ facecount=p_mesh->surface_get_array_index_len(i);
+ } else {
+
+ facecount=p_mesh->surface_get_array_len(i);
+ }
+
+ ERR_CONTINUE((facecount==0 || (facecount%3)!=0));
+
+ facecount/=3;
+
+ int tbase=triangles.size();
+ triangles.resize(facecount+tbase);
+
+
+ Array a = p_mesh->surface_get_arrays(i);
+
+ DVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
+ DVector<Vector3>::Read vr=vertices.read();
+ DVector<Vector2> uv;
+ DVector<Vector2>::Read uvr;
+ DVector<Vector2> uv2;
+ DVector<Vector2>::Read uv2r;
+ DVector<Vector3> normal;
+ DVector<Vector3>::Read normalr;
+ bool read_uv=false;
+ bool read_normal=false;
+
+ if (p_mesh->surface_get_format(i)&Mesh::ARRAY_FORMAT_TEX_UV) {
+
+ uv=a[Mesh::ARRAY_TEX_UV];
+ uvr=uv.read();
+ read_uv=true;
+
+ if (mat.is_valid() && mat->get_flag(Material::FLAG_LIGHTMAP_ON_UV2) && p_mesh->surface_get_format(i)&Mesh::ARRAY_FORMAT_TEX_UV2) {
+
+ uv2=a[Mesh::ARRAY_TEX_UV2];
+ uv2r=uv2.read();
+
+ } else {
+ uv2r=uv.read();
+ if (baked_light->get_transfer_lightmaps_only_to_uv2()) {
+ baked_tex=-1;
+ }
+ }
+ }
+
+ if (p_mesh->surface_get_format(i)&Mesh::ARRAY_FORMAT_NORMAL) {
+
+ normal=a[Mesh::ARRAY_NORMAL];
+ normalr=normal.read();
+ read_normal=true;
+ }
+
+ Matrix3 normal_xform = p_xform.basis.inverse().transposed();
+
+
+ if (p_mesh->surface_get_format(i)&Mesh::ARRAY_FORMAT_INDEX) {
+
+ DVector<int> indices = a[Mesh::ARRAY_INDEX];
+ DVector<int>::Read ir = indices.read();
+
+ for(int i=0;i<facecount;i++) {
+ Triangle &t=triangles[tbase+i];
+ t.vertices[0]=p_xform.xform(vr[ ir[i*3+0] ]);
+ t.vertices[1]=p_xform.xform(vr[ ir[i*3+1] ]);
+ t.vertices[2]=p_xform.xform(vr[ ir[i*3+2] ]);
+ t.material=matptr;
+ t.baked_texture=baked_tex;
+ if (read_uv) {
+
+ t.uvs[0]=uvr[ ir[i*3+0] ];
+ t.uvs[1]=uvr[ ir[i*3+1] ];
+ t.uvs[2]=uvr[ ir[i*3+2] ];
+
+ t.bake_uvs[0]=uv2r[ ir[i*3+0] ];
+ t.bake_uvs[1]=uv2r[ ir[i*3+1] ];
+ t.bake_uvs[2]=uv2r[ ir[i*3+2] ];
+ }
+ if (read_normal) {
+
+ t.normals[0]=normal_xform.xform(normalr[ ir[i*3+0] ]).normalized();
+ t.normals[1]=normal_xform.xform(normalr[ ir[i*3+1] ]).normalized();
+ t.normals[2]=normal_xform.xform(normalr[ ir[i*3+2] ]).normalized();
+ }
+ }
+
+ } else {
+
+ for(int i=0;i<facecount;i++) {
+ Triangle &t=triangles[tbase+i];
+ t.vertices[0]=p_xform.xform(vr[ i*3+0 ]);
+ t.vertices[1]=p_xform.xform(vr[ i*3+1 ]);
+ t.vertices[2]=p_xform.xform(vr[ i*3+2 ]);
+ t.material=matptr;
+ t.baked_texture=baked_tex;
+ if (read_uv) {
+
+ t.uvs[0]=uvr[ i*3+0 ];
+ t.uvs[1]=uvr[ i*3+1 ];
+ t.uvs[2]=uvr[ i*3+2 ];
+
+ t.bake_uvs[0]=uv2r[ i*3+0 ];
+ t.bake_uvs[1]=uv2r[ i*3+1 ];
+ t.bake_uvs[2]=uv2r[ i*3+2 ];
+
+ }
+ if (read_normal) {
+
+ t.normals[0]=normal_xform.xform(normalr[ i*3+0 ]).normalized();
+ t.normals[1]=normal_xform.xform(normalr[ i*3+1 ]).normalized();
+ t.normals[2]=normal_xform.xform(normalr[ i*3+2 ]).normalized();
+ }
+ }
+ }
+ }
+
+}
+
+
+void BakedLightBaker::_parse_geometry(Node* p_node) {
+
+ if (p_node->cast_to<MeshInstance>()) {
+
+ MeshInstance *meshi=p_node->cast_to<MeshInstance>();
+ Ref<Mesh> mesh=meshi->get_mesh();
+ if (mesh.is_valid()) {
+ _add_mesh(mesh,meshi->get_material_override(),base_inv * meshi->get_global_transform(),meshi->get_baked_light_texture_id());
+ }
+ } else if (p_node->cast_to<Light>()) {
+
+ Light *dl=p_node->cast_to<Light>();
+
+ if (dl->get_bake_mode()!=Light::BAKE_MODE_DISABLED) {
+
+
+ LightData dirl;
+ dirl.type=VS::LightType(dl->get_light_type());
+ dirl.diffuse=dl->get_color(DirectionalLight::COLOR_DIFFUSE);
+ dirl.specular=dl->get_color(DirectionalLight::COLOR_SPECULAR);
+ if (linear_color)
+ dirl.diffuse=dirl.diffuse.to_linear();
+ if (linear_color)
+ dirl.specular=dirl.specular.to_linear();
+
+ dirl.energy=dl->get_parameter(DirectionalLight::PARAM_ENERGY);
+ dirl.pos=dl->get_global_transform().origin;
+ dirl.up=dl->get_global_transform().basis.get_axis(1).normalized();
+ dirl.left=dl->get_global_transform().basis.get_axis(0).normalized();
+ dirl.dir=-dl->get_global_transform().basis.get_axis(2).normalized();
+ dirl.spot_angle=dl->get_parameter(DirectionalLight::PARAM_SPOT_ANGLE);
+ dirl.spot_attenuation=dl->get_parameter(DirectionalLight::PARAM_SPOT_ATTENUATION);
+ dirl.attenuation=dl->get_parameter(DirectionalLight::PARAM_ATTENUATION);
+ dirl.darkening=dl->get_parameter(DirectionalLight::PARAM_SHADOW_DARKENING);
+ dirl.radius=dl->get_parameter(DirectionalLight::PARAM_RADIUS);
+ dirl.bake_direct=dl->get_bake_mode()==Light::BAKE_MODE_FULL;
+ dirl.rays_thrown=0;
+ dirl.bake_shadow=dl->get_bake_mode()==Light::BAKE_MODE_INDIRECT_AND_SHADOWS;
+ lights.push_back(dirl);
+ }
+
+ } else if (p_node->cast_to<Spatial>()){
+
+ Spatial *sp = p_node->cast_to<Spatial>();
+
+ Array arr = p_node->call("_get_baked_light_meshes");
+ for(int i=0;i<arr.size();i+=2) {
+
+ Transform xform=arr[i];
+ Ref<Mesh> mesh=arr[i+1];
+ _add_mesh(mesh,Ref<Material>(),base_inv * (sp->get_global_transform() * xform));
+ }
+ }
+
+ for(int i=0;i<p_node->get_child_count();i++) {
+
+ _parse_geometry(p_node->get_child(i));
+ }
+}
+
+
+void BakedLightBaker::_fix_lights() {
+
+
+ total_light_area=0;
+ for(int i=0;i<lights.size();i++) {
+
+ LightData &dl=lights[i];
+
+ switch(dl.type) {
+ case VS::LIGHT_DIRECTIONAL: {
+
+ float up_max=-1e10;
+ float dir_max=-1e10;
+ float left_max=-1e10;
+ float up_min=1e10;
+ float dir_min=1e10;
+ float left_min=1e10;
+
+ for(int j=0;j<triangles.size();j++) {
+
+ for(int k=0;k<3;k++) {
+
+ Vector3 v = triangles[j].vertices[k];
+
+ float up_d = dl.up.dot(v);
+ float dir_d = dl.dir.dot(v);
+ float left_d = dl.left.dot(v);
+
+ if (up_d>up_max)
+ up_max=up_d;
+ if (up_d<up_min)
+ up_min=up_d;
+
+ if (left_d>left_max)
+ left_max=left_d;
+ if (left_d<left_min)
+ left_min=left_d;
+
+ if (dir_d>dir_max)
+ dir_max=dir_d;
+ if (dir_d<dir_min)
+ dir_min=dir_d;
+
+ }
+ }
+
+ //make a center point, then the upvector and leftvector
+ dl.pos = dl.left*( left_max+left_min )*0.5 + dl.up*( up_max+up_min )*0.5 + dl.dir*(dir_min-(dir_max-dir_min));
+ dl.left*=(left_max-left_min)*0.5;
+ dl.up*=(up_max-up_min)*0.5;
+ dl.length = (dir_max - dir_min)*10; //arbitrary number to keep it in scale
+ dl.area=dl.left.length()*2*dl.up.length()*2;
+ dl.constant=1.0/dl.area;
+ } break;
+ case VS::LIGHT_OMNI:
+ case VS::LIGHT_SPOT: {
+
+ dl.attenuation_table.resize(ATTENUATION_CURVE_LEN);
+ for(int j=0;j<ATTENUATION_CURVE_LEN;j++) {
+ dl.attenuation_table[j]=1.0-Math::pow(j/float(ATTENUATION_CURVE_LEN),dl.attenuation);
+ float falloff=j*dl.radius/float(ATTENUATION_CURVE_LEN);
+ if (falloff==0)
+ falloff=0.000001;
+ float intensity=4*Math_PI*(falloff*falloff);
+ //dl.attenuation_table[j]*=falloff*falloff;
+ dl.attenuation_table[j]*=1.0/(3.0/intensity);
+
+ }
+ if (dl.type==VS::LIGHT_OMNI) {
+
+ dl.area=4.0*Math_PI*pow(dl.radius,2.0f);
+ dl.constant=1.0/3.5;
+ } else {
+
+
+ float r = Math::tan(Math::deg2rad(dl.spot_angle))*dl.radius;
+ float c = 1.0-(Math::deg2rad(dl.spot_angle)*0.5+0.5);
+ dl.constant=1.0/3.5;
+ dl.constant*=1.0/c;
+
+ dl.area=Math_PI*r*r*c;
+ }
+
+ } break;
+
+
+ }
+
+ total_light_area+=dl.area;
+ }
+}
+
+BakedLightBaker::BVH* BakedLightBaker::_parse_bvh(BVH** p_children, int p_size, int p_depth, int &max_depth) {
+
+ if (p_depth>max_depth) {
+ max_depth=p_depth;
+ }
+
+ if (p_size==1) {
+
+ return p_children[0];
+ } else if (p_size==0) {
+
+ return NULL;
+ }
+
+
+ AABB aabb;
+ aabb=p_children[0]->aabb;
+ for(int i=1;i<p_size;i++) {
+
+ aabb.merge_with(p_children[i]->aabb);
+ }
+
+ int li=aabb.get_longest_axis_index();
+
+ switch(li) {
+
+ case Vector3::AXIS_X: {
+ SortArray<BVH*,BVHCmpX> sort_x;
+ sort_x.nth_element(0,p_size,p_size/2,p_children);
+ //sort_x.sort(&p_bb[p_from],p_size);
+ } break;
+ case Vector3::AXIS_Y: {
+ SortArray<BVH*,BVHCmpY> sort_y;
+ sort_y.nth_element(0,p_size,p_size/2,p_children);
+ //sort_y.sort(&p_bb[p_from],p_size);
+ } break;
+ case Vector3::AXIS_Z: {
+ SortArray<BVH*,BVHCmpZ> sort_z;
+ sort_z.nth_element(0,p_size,p_size/2,p_children);
+ //sort_z.sort(&p_bb[p_from],p_size);
+
+ } break;
+ }
+
+
+ BVH* left = _parse_bvh(p_children,p_size/2,p_depth+1,max_depth);
+ BVH* right = _parse_bvh(&p_children[p_size/2],p_size-p_size/2,p_depth+1,max_depth);
+
+ BVH *_new = memnew(BVH);
+ _new->aabb=aabb;
+ _new->center=aabb.pos+aabb.size*0.5;
+ _new->children[0]=left;
+ _new->children[1]=right;
+ _new->leaf=NULL;
+
+ return _new;
+}
+
+void BakedLightBaker::_make_bvh() {
+
+ Vector<BVH*> bases;
+ bases.resize(triangles.size());
+ int max_depth=0;
+ for(int i=0;i<triangles.size();i++) {
+ bases[i]=memnew( BVH );
+ bases[i]->leaf=&triangles[i];
+ bases[i]->aabb.pos=triangles[i].vertices[0];
+ bases[i]->aabb.expand_to(triangles[i].vertices[1]);
+ bases[i]->aabb.expand_to(triangles[i].vertices[2]);
+ triangles[i].aabb=bases[i]->aabb;
+ bases[i]->center=bases[i]->aabb.pos+bases[i]->aabb.size*0.5;
+ }
+
+ bvh=_parse_bvh(bases.ptr(),bases.size(),1,max_depth);
+
+ ray_stack = memnew_arr(uint32_t,max_depth);
+ bvh_stack = memnew_arr(BVH*,max_depth);
+
+ bvh_depth = max_depth;
+}
+
+void BakedLightBaker::_octree_insert(int p_octant,Triangle* p_triangle, int p_depth) {
+
+
+
+
+ uint32_t *stack=octant_stack;
+ uint32_t *ptr_stack=octantptr_stack;
+ Octant *octants=octant_pool.ptr();
+
+ stack[0]=0;
+ ptr_stack[0]=0;
+
+ int stack_pos=0;
+
+
+ while(true) {
+
+ Octant *octant=&octants[ptr_stack[stack_pos]];
+ if (stack[stack_pos]<8) {
+
+ int i = stack[stack_pos];
+ stack[stack_pos]++;
+
+
+
+ //fit_aabb=fit_aabb.grow(bvh->aabb.size.x*0.0001);
+
+ int child_idx =octant->children[i];
+ bool encloses;
+ if (!child_idx) {
+
+ AABB aabb=octant->aabb;
+ aabb.size*=0.5;
+ if (i&1)
+ aabb.pos.x+=aabb.size.x;
+ if (i&2)
+ aabb.pos.y+=aabb.size.y;
+ if (i&4)
+ aabb.pos.z+=aabb.size.z;
+
+ aabb.grow_by(cell_size*octree_extra_margin);
+ if (!aabb.intersects(p_triangle->aabb))
+ continue;
+ encloses=aabb.grow(cell_size*-octree_extra_margin*2.0).encloses(p_triangle->aabb);
+ if (!encloses && !Face3(p_triangle->vertices[0],p_triangle->vertices[1],p_triangle->vertices[2]).intersects_aabb2(aabb))
+ continue;
+ } else {
+
+ Octant *child=&octants[child_idx];
+ AABB aabb=child->aabb;
+ aabb.grow_by(cell_size*octree_extra_margin);
+ if (!aabb.intersects(p_triangle->aabb))
+ continue;
+ encloses=aabb.grow(cell_size*-octree_extra_margin*2.0).encloses(p_triangle->aabb);
+ if (!encloses && !Face3(p_triangle->vertices[0],p_triangle->vertices[1],p_triangle->vertices[2]).intersects_aabb2(aabb))
+ continue;
+
+ }
+
+ if (encloses)
+ stack[stack_pos]=8; // quick and dirty opt
+
+ if (!child_idx) {
+
+
+ if (octant_pool_size==octant_pool.size()) {
+ octant_pool.resize(octant_pool_size+OCTANT_POOL_CHUNK);
+ octants=octant_pool.ptr();
+ octant=&octants[ptr_stack[stack_pos]];
+ }
+ child_idx=octant_pool_size++;
+ octant->children[i]=child_idx;
+ Octant *child=&octants[child_idx];
+
+ child->aabb=octant->aabb;
+ child->texture_x=0;
+ child->texture_y=0;
+
+ child->aabb.size*=0.5;
+ if (i&1)
+ child->aabb.pos.x+=child->aabb.size.x;
+ if (i&2)
+ child->aabb.pos.y+=child->aabb.size.y;
+ if (i&4)
+ child->aabb.pos.z+=child->aabb.size.z;
+
+
+ child->full_accum[0]=0;
+ child->full_accum[1]=0;
+ child->full_accum[2]=0;
+ child->sampler_ofs=0;
+
+
+
+ if (stack_pos==octree_depth-1) {
+ child->leaf=true;
+ child->offset[0]=child->aabb.pos.x+child->aabb.size.x*0.5;
+ child->offset[1]=child->aabb.pos.y+child->aabb.size.y*0.5;
+ child->offset[2]=child->aabb.pos.z+child->aabb.size.z*0.5;
+ child->next_leaf=leaf_list;
+
+
+ for(int ci=0;ci<8;ci++) {
+ child->normal_accum[ci][0]=0;
+ child->normal_accum[ci][1]=0;
+ child->normal_accum[ci][2]=0;
+
+ }
+
+ child->bake_neighbour=0;
+ child->first_neighbour=true;
+ leaf_list=child_idx;
+ cell_count++;
+
+ for(int ci=0;ci<8;ci++) {
+ child->light_accum[ci][0]=0;
+ child->light_accum[ci][1]=0;
+ child->light_accum[ci][2]=0;
+ }
+
+ child->parent=ptr_stack[stack_pos];
+
+ } else {
+
+ child->leaf=false;
+ for(int j=0;j<8;j++) {
+ child->children[j]=0;
+ }
+ }
+ }
+
+ if (!octants[child_idx].leaf) {
+ stack_pos++;
+ stack[stack_pos]=0;
+ ptr_stack[stack_pos]=child_idx;
+ } else {
+
+ Octant *child=&octants[child_idx];
+
+ Vector3 n = Plane(p_triangle->vertices[0],p_triangle->vertices[1],p_triangle->vertices[2]).normal;
+
+
+ for(int ci=0;ci<8;ci++) {
+
+ Vector3 pos = child->aabb.pos;
+
+ if (ci&1)
+ pos.x+=child->aabb.size.x;
+ if (ci&2)
+ pos.y+=child->aabb.size.y;
+ if (ci&4)
+ pos.z+=child->aabb.size.z;
+
+
+ pos.x=floor((pos.x+cell_size*0.5)/cell_size);
+ pos.y=floor((pos.y+cell_size*0.5)/cell_size);
+ pos.z=floor((pos.z+cell_size*0.5)/cell_size);
+
+ {
+ Map<Vector3,Vector3>::Element *E=endpoint_normal.find(pos);
+ if (!E) {
+ endpoint_normal[pos]=n;
+ } else {
+ E->get()+=n;
+ }
+ }
+
+ {
+
+ uint64_t bit = get_uv_normal_bit(n);
+
+ Map<Vector3,uint64_t>::Element *E=endpoint_normal_bits.find(pos);
+ if (!E) {
+ endpoint_normal_bits[pos]=(1<<bit);
+ } else {
+ E->get()|=(1<<bit);
+ }
+
+ }
+
+ }
+
+ }
+
+
+ } else {
+ stack_pos--;
+ if (stack_pos<0)
+ break;
+ }
+ }
+
+
+}
+
+
+void BakedLightBaker::_make_octree() {
+
+
+ AABB base = bvh->aabb;
+ float lal=base.get_longest_axis_size();
+ //must be square because we want square blocks
+ base.size.x=lal;
+ base.size.y=lal;
+ base.size.z=lal;
+ base.grow_by(lal*0.001); //for precision
+ octree_aabb=base;
+
+ cell_size=base.size.x;
+ for(int i=0;i<octree_depth;i++)
+ cell_size/=2.0;
+ octant_stack = memnew_arr(uint32_t,octree_depth*2 );
+ octantptr_stack = memnew_arr(uint32_t,octree_depth*2 );
+
+ octant_pool.resize(OCTANT_POOL_CHUNK);
+ octant_pool_size=1;
+ Octant *root=octant_pool.ptr();
+ root->leaf=false;
+ root->aabb=octree_aabb;
+ root->parent=-1;
+ for(int i=0;i<8;i++)
+ root->children[i]=0;
+
+ EditorProgress ep("bake_octree",vformat(TTR("Parsing %d Triangles:"), triangles.size()),triangles.size());
+
+ for(int i=0;i<triangles.size();i++) {
+
+ _octree_insert(0,&triangles[i],octree_depth-1);
+ if ((i%1000)==0) {
+
+ ep.step(TTR("Triangle #")+itos(i),i);
+ }
+ }
+
+ {
+ uint32_t oct_idx=leaf_list;
+ Octant *octants=octant_pool.ptr();
+ while(oct_idx) {
+
+ BakedLightBaker::Octant *oct = &octants[oct_idx];
+ for(int ci=0;ci<8;ci++) {
+
+
+ Vector3 pos = oct->aabb.pos;
+
+ if (ci&1)
+ pos.x+=oct->aabb.size.x;
+ if (ci&2)
+ pos.y+=oct->aabb.size.y;
+ if (ci&4)
+ pos.z+=oct->aabb.size.z;
+
+
+ pos.x=floor((pos.x+cell_size*0.5)/cell_size);
+ pos.y=floor((pos.y+cell_size*0.5)/cell_size);
+ pos.z=floor((pos.z+cell_size*0.5)/cell_size);
+
+ {
+ Map<Vector3,Vector3>::Element *E=endpoint_normal.find(pos);
+ if (!E) {
+ //?
+ print_line("lolwut?");
+ } else {
+ Vector3 n = E->get().normalized();
+ oct->normal_accum[ci][0]=n.x;
+ oct->normal_accum[ci][1]=n.y;
+ oct->normal_accum[ci][2]=n.z;
+
+ }
+
+ }
+
+ {
+
+ Map<Vector3,uint64_t>::Element *E=endpoint_normal_bits.find(pos);
+ if (!E) {
+ //?
+ print_line("lolwut?");
+ } else {
+
+ float max_aper=0;
+ for(uint64_t i=0;i<62;i++) {
+
+ if (!(E->get()&(1<<i)))
+ continue;
+ Vector3 ang_i = get_bit_normal(i);
+
+ for(uint64_t j=0;j<62;j++) {
+
+ if (i==j)
+ continue;
+ if (!(E->get()&(1<<j)))
+ continue;
+ Vector3 ang_j = get_bit_normal(j);
+ float ang = Math::acos(ang_i.dot(ang_j));
+ if (ang>max_aper)
+ max_aper=ang;
+ }
+ }
+ if (max_aper>0.75*Math_PI) {
+ //angle too wide prevent problems and forget
+ oct->normal_accum[ci][0]=0;
+ oct->normal_accum[ci][1]=0;
+ oct->normal_accum[ci][2]=0;
+ }
+ }
+ }
+
+
+ }
+
+ oct_idx=oct->next_leaf;
+ }
+ }
+
+
+}
+
+
+
+
+
+void BakedLightBaker::_plot_light(ThreadStack& thread_stack,const Vector3& p_plot_pos, const AABB& p_plot_aabb, const Color& p_light,const Color& p_tint_light,bool p_only_full, const Plane& p_plane) {
+
+ //stackless version
+
+ uint32_t *stack=thread_stack.octant_stack;
+ uint32_t *ptr_stack=thread_stack.octantptr_stack;
+ Octant *octants=octant_pool.ptr();
+
+ stack[0]=0;
+ ptr_stack[0]=0;
+
+ int stack_pos=0;
+
+
+ while(true) {
+
+ Octant &octant=octants[ptr_stack[stack_pos]];
+
+ if (stack[stack_pos]==0) {
+
+
+ Vector3 pos = octant.aabb.pos + octant.aabb.size*0.5;
+ float md = 1<<(octree_depth - stack_pos );
+ float r=cell_size*plot_size*md;
+ float div = 1.0/(md*md*md);
+ //div=1.0;
+
+
+ float d = p_plot_pos.distance_to(pos);
+
+ if ((p_plane.distance_to(pos)>-cell_size*1.75*md) && d<=r) {
+
+
+ float intensity = 1.0 - (d/r)*(d/r); //not gauss but..
+
+ baked_light_baker_add_64f(&octant.full_accum[0],p_tint_light.r*intensity*div);
+ baked_light_baker_add_64f(&octant.full_accum[1],p_tint_light.g*intensity*div);
+ baked_light_baker_add_64f(&octant.full_accum[2],p_tint_light.b*intensity*div);
+ }
+ }
+
+ if (octant.leaf) {
+
+
+
+ //if (p_plane.normal.dot(octant.aabb.get_support(p_plane.normal)) < p_plane.d-CMP_EPSILON) { //octants behind are no go
+
+
+ if (!p_only_full) {
+ float r=cell_size*plot_size;
+ for(int i=0;i<8;i++) {
+ Vector3 pos=octant.aabb.pos;
+ if (i&1)
+ pos.x+=octant.aabb.size.x;
+ if (i&2)
+ pos.y+=octant.aabb.size.y;
+ if (i&4)
+ pos.z+=octant.aabb.size.z;
+
+
+
+ float d = p_plot_pos.distance_to(pos);
+
+ if ((p_plane.distance_to(pos)>-cell_size*1.75) && d<=r) {
+
+
+ float intensity = 1.0 - (d/r)*(d/r); //not gauss but..
+ if (edge_damp>0) {
+ Vector3 normal = Vector3(octant.normal_accum[i][0],octant.normal_accum[i][1],octant.normal_accum[i][2]);
+ if (normal.x>0 || normal.y>0 || normal.z>0) {
+
+ float damp = Math::abs(p_plane.normal.dot(normal));
+ intensity*=pow(damp,edge_damp);
+
+ }
+ }
+
+ //intensity*=1.0-Math::abs(p_plane.distance_to(pos))/(plot_size*cell_size);
+ //intensity = Math::cos(d*Math_PI*0.5/r);
+
+ baked_light_baker_add_64f(&octant.light_accum[i][0],p_light.r*intensity);
+ baked_light_baker_add_64f(&octant.light_accum[i][1],p_light.g*intensity);
+ baked_light_baker_add_64f(&octant.light_accum[i][2],p_light.b*intensity);
+
+
+ }
+ }
+ }
+
+ stack_pos--;
+ } else if (stack[stack_pos]<8) {
+
+ int i = stack[stack_pos];
+ stack[stack_pos]++;
+
+ if (!octant.children[i]) {
+ continue;
+ }
+
+ Octant &child=octants[octant.children[i]];
+
+ if (!child.aabb.intersects(p_plot_aabb))
+ continue;
+
+ if (child.aabb.encloses(p_plot_aabb)) {
+ stack[stack_pos]=8; //don't test the rest
+ }
+
+ stack_pos++;
+ stack[stack_pos]=0;
+ ptr_stack[stack_pos]=octant.children[i];
+ } else {
+ stack_pos--;
+ if (stack_pos<0)
+ break;
+ }
+ }
+
+
+}
+
+
+float BakedLightBaker::_throw_ray(ThreadStack& thread_stack,bool p_bake_direct,const Vector3& p_begin, const Vector3& p_end,float p_rest,const Color& p_light,float *p_att_curve,float p_att_pos,int p_att_curve_len,int p_bounces,bool p_first_bounce,bool p_only_dist) {
+
+
+ uint32_t* stack = thread_stack.ray_stack;
+ BVH **bstack = thread_stack.bvh_stack;
+
+ enum {
+ TEST_AABB_BIT=0,
+ VISIT_LEFT_BIT=1,
+ VISIT_RIGHT_BIT=2,
+ VISIT_DONE_BIT=3,
+
+
+ };
+
+ Vector3 n = (p_end-p_begin);
+ float len=n.length();
+ if (len==0)
+ return 0;
+ n/=len;
+
+
+
+ real_t d=1e10;
+ bool inters=false;
+ Vector3 r_normal;
+ Vector3 r_point;
+ Vector3 end=p_end;
+
+ Triangle *triangle=NULL;
+
+ //for(int i=0;i<max_depth;i++)
+ // stack[i]=0;
+
+ int level=0;
+ //AABB ray_aabb;
+ //ray_aabb.pos=p_begin;
+ //ray_aabb.expand_to(p_end);
+
+
+ bstack[0]=bvh;
+ stack[0]=TEST_AABB_BIT;
+
+
+ while(true) {
+
+ uint32_t mode = stack[level];
+ const BVH &b = *bstack[level];
+ bool done=false;
+
+ switch(mode) {
+ case TEST_AABB_BIT: {
+
+ if (b.leaf) {
+
+
+ Face3 f3(b.leaf->vertices[0],b.leaf->vertices[1],b.leaf->vertices[2]);
+
+
+ Vector3 res;
+
+ if (f3.intersects_segment(p_begin,end,&res)) {
+
+
+ float nd = n.dot(res);
+ if (nd<d) {
+
+ d=nd;
+ r_point=res;
+ end=res;
+ len=(p_begin-end).length();
+ r_normal=f3.get_plane().get_normal();
+ triangle=b.leaf;
+ inters=true;
+ }
+
+ }
+
+ stack[level]=VISIT_DONE_BIT;
+ } else {
+
+
+ bool valid = b.aabb.smits_intersect_ray(p_begin,n,0,len);
+ //bool valid = b.aabb.intersects_segment(p_begin,p_end);
+ // bool valid = b.aabb.intersects(ray_aabb);
+
+ if (!valid) {
+
+ stack[level]=VISIT_DONE_BIT;
+
+ } else {
+
+ stack[level]=VISIT_LEFT_BIT;
+ }
+ }
+
+ } continue;
+ case VISIT_LEFT_BIT: {
+
+ stack[level]=VISIT_RIGHT_BIT;
+ bstack[level+1]=b.children[0];
+ stack[level+1]=TEST_AABB_BIT;
+ level++;
+
+ } continue;
+ case VISIT_RIGHT_BIT: {
+
+ stack[level]=VISIT_DONE_BIT;
+ bstack[level+1]=b.children[1];
+ stack[level+1]=TEST_AABB_BIT;
+ level++;
+ } continue;
+ case VISIT_DONE_BIT: {
+
+ if (level==0) {
+ done=true;
+ break;
+ } else
+ level--;
+
+ } continue;
+ }
+
+
+ if (done)
+ break;
+ }
+
+
+
+ if (inters) {
+
+ if (p_only_dist) {
+
+ return p_begin.distance_to(r_point);
+ }
+
+
+ //should check if there is normals first
+ Vector2 uv;
+ if (true) {
+
+ triangle->get_uv_and_normal(r_point,uv,r_normal);
+
+ } else {
+
+ }
+
+ if (n.dot(r_normal)>0)
+ return -1;
+
+ if (n.dot(r_normal)>0)
+ r_normal=-r_normal;
+
+
+ //ok...
+ Color diffuse_at_point(0.8,0.8,0.8);
+ Color specular_at_point(0.0,0.0,0.0);
+
+
+ float dist = p_begin.distance_to(r_point);
+
+ AABB aabb;
+ aabb.pos=r_point;
+ aabb.pos-=Vector3(1,1,1)*cell_size*plot_size;
+ aabb.size=Vector3(2,2,2)*cell_size*plot_size;
+
+ Color res_light=p_light;
+ float att=1.0;
+ float dp=(1.0-normal_damp)*n.dot(-r_normal)+normal_damp;
+
+ if (p_att_curve) {
+
+ p_att_pos+=dist;
+ int cpos = Math::fast_ftoi((p_att_pos/p_att_curve_len)*ATTENUATION_CURVE_LEN);
+ cpos=CLAMP(cpos,0,ATTENUATION_CURVE_LEN-1);
+ att=p_att_curve[cpos];
+ }
+
+
+ res_light.r*=dp;
+ res_light.g*=dp;
+ res_light.b*=dp;
+
+ //light is plotted before multiplication with diffuse, this way
+ //the multiplication can happen with more detail in the shader
+
+
+
+ if (triangle->material) {
+
+ //triangle->get_uv(r_point);
+
+ diffuse_at_point=triangle->material->diffuse.get_color(uv);
+ specular_at_point=triangle->material->specular.get_color(uv);
+ }
+
+
+ diffuse_at_point.r=res_light.r*diffuse_at_point.r;
+ diffuse_at_point.g=res_light.g*diffuse_at_point.g;
+ diffuse_at_point.b=res_light.b*diffuse_at_point.b;
+
+ float ret=1e6;
+
+ if (p_bounces>0) {
+
+
+ p_rest-=dist;
+ if (p_rest<CMP_EPSILON)
+ return 0;
+
+ if (r_normal==-n)
+ return 0; //todo change a little
+
+ r_point+=r_normal*0.01;
+
+
+
+
+ specular_at_point.r=res_light.r*specular_at_point.r;
+ specular_at_point.g=res_light.g*specular_at_point.g;
+ specular_at_point.b=res_light.b*specular_at_point.b;
+
+
+
+ if (use_diffuse && (diffuse_at_point.r>CMP_EPSILON || diffuse_at_point.g>CMP_EPSILON || diffuse_at_point.b>CMP_EPSILON)) {
+ //diffuse bounce
+
+ Vector3 c1=r_normal.cross(n).normalized();
+ Vector3 c2=r_normal.cross(c1).normalized();
+ double r1 = double(rand())/RAND_MAX;
+ double r2 = double(rand())/RAND_MAX;
+ double r3 = double(rand())/RAND_MAX;
+#if 0
+ Vector3 next = - ((c1*(r1-0.5)) + (c2*(r2-0.5)) + (r_normal*(r3-0.5))).normalized()*0.5 + r_normal*0.5;
+
+ if (next==Vector3())
+ next=r_normal;
+ Vector3 rn=next.normalized();
+
+#else
+ Vector3 rn = ((c1*(r1-0.5)) + (c2*(r2-0.5)) + (r_normal*r3*0.5)).normalized();
+#endif
+
+
+ ret=_throw_ray(thread_stack,p_bake_direct,r_point,r_point+rn*p_rest,p_rest,diffuse_at_point,p_att_curve,p_att_pos,p_att_curve_len,p_bounces-1);
+ }
+
+ if (use_specular && (specular_at_point.r>CMP_EPSILON || specular_at_point.g>CMP_EPSILON || specular_at_point.b>CMP_EPSILON)) {
+ //specular bounce
+
+ //Vector3 c1=r_normal.cross(n).normalized();
+ //Vector3 c2=r_normal.cross(c1).normalized();
+
+ Vector3 rn = n - r_normal *r_normal.dot(n) * 2.0;
+
+ _throw_ray(thread_stack,p_bake_direct,r_point,r_point+rn*p_rest,p_rest,specular_at_point,p_att_curve,p_att_pos,p_att_curve_len,p_bounces-1);
+ }
+ }
+
+ //specular later
+// _plot_light_point(r_point,octree,octree_aabb,p_light);
+
+
+ Color plot_light=res_light.linear_interpolate(diffuse_at_point,tint);
+ plot_light.r*=att;
+ plot_light.g*=att;
+ plot_light.b*=att;
+ Color tint_light=diffuse_at_point;
+ tint_light.r*=att;
+ tint_light.g*=att;
+ tint_light.b*=att;
+
+ bool skip=false;
+
+ if (!p_first_bounce || p_bake_direct) {
+
+
+ float r = plot_size * cell_size*2;
+ if (dist<r) {
+ //avoid accumulaiton of light on corners
+ //plot_light=plot_light.linear_interpolate(Color(0,0,0,0),1.0-sd/plot_size*plot_size);
+ skip=true;
+
+ } else {
+
+
+ Vector3 c1=r_normal.cross(n).normalized();
+ Vector3 c2=r_normal.cross(c1).normalized();
+ double r1 = double(rand())/RAND_MAX;
+ double r2 = double(rand())/RAND_MAX;
+ double r3 = double(rand())/RAND_MAX;
+ Vector3 rn = ((c1*(r1-0.5)) + (c2*(r2-0.5)) + (r_normal*r3*0.25)).normalized();
+ float d =_throw_ray(thread_stack,p_bake_direct,r_point,r_point+rn*p_rest,p_rest,diffuse_at_point,p_att_curve,p_att_pos,p_att_curve_len,p_bounces-1,false,true);
+ r = plot_size*cell_size*ao_radius;
+ if (d>0 && d<r) {
+ //avoid accumulaiton of light on corners
+ //plot_light=plot_light.linear_interpolate(Color(0,0,0,0),1.0-sd/plot_size*plot_size);
+ skip=true;
+
+ } else {
+ //plot_light=Color(0,0,0,0);
+ }
+ }
+ }
+
+
+ Plane plane(r_point,r_normal);
+ if (!skip)
+ _plot_light(thread_stack,r_point,aabb,plot_light,tint_light,!(!p_first_bounce || p_bake_direct),plane);
+
+
+ return dist;
+ }
+
+ return -1;
+
+}
+
+
+
+
+void BakedLightBaker::_make_octree_texture() {
+
+
+ BakedLightBaker::Octant *octants=octant_pool.ptr();
+
+ //find neighbours first, to have a better idea of what amount of space is needed
+ {
+
+ Vector<OctantHash> octant_hashing;
+ octant_hashing.resize(octant_pool_size);
+ Vector<uint32_t> hash_table;
+ int hash_table_size=Math::larger_prime(16384);
+ hash_table.resize(hash_table_size);
+ uint32_t*hashptr = hash_table.ptr();
+ OctantHash*octhashptr = octant_hashing.ptr();
+
+ for(int i=0;i<hash_table_size;i++)
+ hashptr[i]=0;
+
+
+ //step 1 add to hash table
+
+ uint32_t oct_idx=leaf_list;
+
+
+ while(oct_idx) {
+
+ BakedLightBaker::Octant *oct = &octants[oct_idx];
+ uint64_t base=0;
+ Vector3 pos = oct->aabb.pos - octree_aabb.pos; //make sure is always positive
+ base=int((pos.x+cell_size*0.5)/cell_size);
+ base<<=16;
+ base|=int((pos.y+cell_size*0.5)/cell_size);
+ base<<=16;
+ base|=int((pos.z+cell_size*0.5)/cell_size);
+
+ uint32_t hash = HashMapHahserDefault::hash(base);
+ uint32_t idx = hash % hash_table_size;
+ octhashptr[oct_idx].next=hashptr[idx];
+ octhashptr[oct_idx].hash=hash;
+ octhashptr[oct_idx].value=base;
+ hashptr[idx]=oct_idx;
+
+ oct_idx=oct->next_leaf;
+
+ }
+
+ //step 2 find neighbours
+ oct_idx=leaf_list;
+ int neighbours=0;
+
+
+ while(oct_idx) {
+
+ BakedLightBaker::Octant *oct = &octants[oct_idx];
+ Vector3 pos = oct->aabb.pos - octree_aabb.pos; //make sure is always positive
+ pos.x+=cell_size;
+ uint64_t base=0;
+ base=int((pos.x+cell_size*0.5)/cell_size);
+ base<<=16;
+ base|=int((pos.y+cell_size*0.5)/cell_size);
+ base<<=16;
+ base|=int((pos.z+cell_size*0.5)/cell_size);
+
+ uint32_t hash = HashMapHahserDefault::hash(base);
+ uint32_t idx = hash % hash_table_size;
+
+ uint32_t bucket = hashptr[idx];
+
+ while(bucket) {
+
+ if (octhashptr[bucket].value==base) {
+
+ oct->bake_neighbour=bucket;
+ octants[bucket].first_neighbour=false;
+ neighbours++;
+ break;
+ }
+
+ bucket = octhashptr[bucket].next;
+ }
+
+ oct_idx=oct->next_leaf;
+
+ }
+
+ print_line("octant with neighbour: "+itos(neighbours));
+
+ }
+
+
+ //ok let's try to just create a texture
+
+ int otex_w=256;
+
+ while (true) {
+
+
+
+ uint32_t oct_idx=leaf_list;
+
+ int row=0;
+
+
+ print_line("begin at row "+itos(row));
+ int longest_line_reused=0;
+ int col=0;
+ int processed=0;
+
+ //reset
+ while(oct_idx) {
+
+ BakedLightBaker::Octant *oct = &octants[oct_idx];
+ oct->texture_x=0;
+ oct->texture_y=0;
+ oct_idx=oct->next_leaf;
+
+ }
+
+ oct_idx=leaf_list;
+ //assign
+ while(oct_idx) {
+
+ BakedLightBaker::Octant *oct = &octants[oct_idx];
+ if (oct->first_neighbour && oct->texture_x==0 && oct->texture_y==0) {
+ //was not processed
+ uint32_t current_idx=oct_idx;
+ int reused=0;
+
+ while(current_idx) {
+ BakedLightBaker::Octant *o = &octants[current_idx];
+ if (col+1 >= otex_w) {
+ col=0;
+ row+=4;
+ }
+ o->texture_x=col;
+ o->texture_y=row;
+ processed++;
+
+ if (o->bake_neighbour) {
+ reused++;
+ }
+ col+=o->bake_neighbour ? 1 : 2; //reuse neighbour
+ current_idx=o->bake_neighbour;
+ }
+
+ if (reused>longest_line_reused) {
+ longest_line_reused=reused;
+ }
+ }
+ oct_idx=oct->next_leaf;
+ }
+
+ row+=4;
+
+ if (otex_w < row) {
+
+ otex_w*=2;
+ } else {
+
+ baked_light_texture_w=otex_w;
+ baked_light_texture_h=nearest_power_of_2(row);
+ print_line("w: "+itos(otex_w));
+ print_line("h: "+itos(row));
+ break;
+ }
+
+
+ }
+
+
+ {
+
+ otex_w=(1<<lattice_size)*(1<<lattice_size)*2; //make sure lattice fits horizontally
+ Vector3 lattice_cell_size=octree_aabb.size;
+ for(int i=0;i<lattice_size;i++) {
+
+ lattice_cell_size*=0.5;
+ }
+
+
+
+ while(true) {
+
+ //let's plot the leafs first, given the octree is not so obvious which size it will have
+ int row=4+4*(1<<lattice_size);
+ int col=0;
+
+ col=0;
+ row+=4;
+ print_line("end at row "+itos(row));
+
+ //put octree, no need for recursion, just loop backwards.
+ int regular_octants=0;
+ for(int i=octant_pool_size-1;i>=0;i--) {
+
+ BakedLightBaker::Octant *oct = &octants[i];
+ if (oct->leaf) //ignore leaf
+ continue;
+ if (oct->aabb.size.x>lattice_cell_size.x*1.1) { //bigger than latice, skip
+ oct->texture_x=0;
+ oct->texture_y=0;
+ } else if (oct->aabb.size.x>lattice_cell_size.x*0.8) {
+ //this is the initial lattice
+ Vector3 pos = oct->aabb.pos - octree_aabb.pos; //make sure is always positive
+ int x = int((pos.x+lattice_cell_size.x*0.5)/lattice_cell_size.x);
+ int y = int((pos.y+lattice_cell_size.y*0.5)/lattice_cell_size.y);
+ int z = int((pos.z+lattice_cell_size.z*0.5)/lattice_cell_size.z);
+ //bug net
+ ERR_FAIL_INDEX(x,(1<<lattice_size));
+ ERR_FAIL_INDEX(y,(1<<lattice_size));
+ ERR_FAIL_INDEX(z,(1<<lattice_size));
+
+ /*int ofs = z*(1<<lattice_size)*(1<<lattice_size)+y*(1<<lattice_size)+x;
+ ofs*=4;
+ oct->texture_x=ofs%otex_w;
+ oct->texture_y=(ofs/otex_w)*4+4;
+ */
+
+ oct->texture_x=(x+(1<<lattice_size)*z)*2;
+ oct->texture_y=4+y*4;
+ //print_line("pos: "+itos(x)+","+itos(y)+","+itos(z)+" - ofs"+itos(oct->texture_x)+","+itos(oct->texture_y));
+
+
+ } else {
+ //an everyday regular octant
+
+ if (col+2 > otex_w) {
+ col=0;
+ row+=4;
+ }
+
+ oct->texture_x=col;
+ oct->texture_y=row;
+ col+=2;
+ regular_octants++;
+
+
+ }
+ }
+ print_line("octants end at row "+itos(row)+" totalling"+itos(regular_octants));
+
+ //ok evaluation.
+
+ if (otex_w<=2048 && row>2048) { //too big upwards, try bigger texture
+ otex_w*=2;
+ continue;
+ } else {
+ baked_octree_texture_w=otex_w;
+ baked_octree_texture_h=row+4;
+ break;
+ }
+
+ }
+
+
+ }
+
+
+ baked_octree_texture_h=nearest_power_of_2(baked_octree_texture_h);
+ print_line("RESULT! "+itos(baked_octree_texture_w)+","+itos(baked_octree_texture_h));
+
+}
+
+
+
+
+
+
+
+
+double BakedLightBaker::get_normalization(int p_light_idx) const {
+
+ double nrg=0;
+
+ const LightData &dl=lights[p_light_idx];
+ double cell_area = cell_size*cell_size;
+ //nrg+= /*dl.energy */ (dl.rays_thrown * cell_area / dl.area);
+ nrg=dl.rays_thrown * cell_area;
+ nrg*=(Math_PI*plot_size*plot_size)*0.5; // damping of radial linear gradient kernel
+ nrg*=dl.constant;
+ //nrg*=5;
+
+
+ return nrg;
+}
+
+
+
+double BakedLightBaker::get_modifier(int p_light_idx) const {
+
+ double nrg=0;
+
+ const LightData &dl=lights[p_light_idx];
+ double cell_area = cell_size*cell_size;
+ //nrg+= /*dl.energy */ (dl.rays_thrown * cell_area / dl.area);
+ nrg=cell_area;
+ nrg*=(Math_PI*plot_size*plot_size)*0.5; // damping of radial linear gradient kernel
+ nrg*=dl.constant;
+ //nrg*=5;
+
+
+ return nrg;
+}
+
+void BakedLightBaker::throw_rays(ThreadStack& thread_stack,int p_amount) {
+
+
+
+ for(int i=0;i<lights.size();i++) {
+
+ LightData &dl=lights[i];
+
+
+ int amount = p_amount * total_light_area / dl.area;
+ double mod = 1.0/double(get_modifier(i));
+ mod*=p_amount/float(amount);
+
+ switch(dl.type) {
+
+ case VS::LIGHT_DIRECTIONAL: {
+
+
+ for(int j=0;j<amount;j++) {
+ Vector3 from = dl.pos;
+ double r1 = double(rand())/RAND_MAX;
+ double r2 = double(rand())/RAND_MAX;
+ from+=dl.up*(r1*2.0-1.0);
+ from+=dl.left*(r2*2.0-1.0);
+ Vector3 to = from+dl.dir*dl.length;
+ Color col=dl.diffuse;
+ float m = mod*dl.energy;
+ col.r*=m;
+ col.g*=m;
+ col.b*=m;
+
+ dl.rays_thrown++;
+ baked_light_baker_add_64i(&total_rays,1);
+
+ _throw_ray(thread_stack,dl.bake_direct,from,to,dl.length,col,NULL,0,0,max_bounces,true);
+ }
+ } break;
+ case VS::LIGHT_OMNI: {
+
+
+ for(int j=0;j<amount;j++) {
+ Vector3 from = dl.pos;
+
+ double r1 = double(rand())/RAND_MAX;
+ double r2 = double(rand())/RAND_MAX;
+ double r3 = double(rand())/RAND_MAX;
+
+#if 0
+ //crap is not uniform..
+ Vector3 dir = Vector3(r1*2.0-1.0,r2*2.0-1.0,r3*2.0-1.0).normalized();
+
+#else
+
+ double phi = r1*Math_PI*2.0;
+ double costheta = r2*2.0-1.0;
+ double u = r3;
+
+ double theta = acos( costheta );
+ double r = 1.0 * pow( u,1/3.0 );
+
+ Vector3 dir(
+ r * sin( theta) * cos( phi ),
+ r * sin( theta) * sin( phi ),
+ r * cos( theta )
+ );
+ dir.normalize();
+
+#endif
+ Vector3 to = dl.pos+dir*dl.radius;
+ Color col=dl.diffuse;
+ float m = mod*dl.energy;
+ col.r*=m;
+ col.g*=m;
+ col.b*=m;
+
+ dl.rays_thrown++;
+ baked_light_baker_add_64i(&total_rays,1);
+ _throw_ray(thread_stack,dl.bake_direct,from,to,dl.radius,col,dl.attenuation_table.ptr(),0,dl.radius,max_bounces,true);
+// _throw_ray(i,from,to,dl.radius,col,NULL,0,dl.radius,max_bounces,true);
+ }
+
+ } break;
+ case VS::LIGHT_SPOT: {
+
+ for(int j=0;j<amount;j++) {
+ Vector3 from = dl.pos;
+
+ double r1 = double(rand())/RAND_MAX;
+ //double r2 = double(rand())/RAND_MAX;
+ double r3 = double(rand())/RAND_MAX;
+
+ float d=Math::tan(Math::deg2rad(dl.spot_angle));
+
+ float x = sin(r1*Math_PI*2.0)*d;
+ float y = cos(r1*Math_PI*2.0)*d;
+
+ Vector3 dir = r3*(dl.dir + dl.up*y + dl.left*x) + (1.0-r3)*dl.dir;
+ dir.normalize();
+
+
+ Vector3 to = dl.pos+dir*dl.radius;
+ Color col=dl.diffuse;
+ float m = mod*dl.energy;
+ col.r*=m;
+ col.g*=m;
+ col.b*=m;
+
+ dl.rays_thrown++;
+ baked_light_baker_add_64i(&total_rays,1);
+ _throw_ray(thread_stack,dl.bake_direct,from,to,dl.radius,col,dl.attenuation_table.ptr(),0,dl.radius,max_bounces,true);
+ // _throw_ray(i,from,to,dl.radius,col,NULL,0,dl.radius,max_bounces,true);
+ }
+
+ } break;
+
+ }
+ }
+}
+
+
+
+
+
+
+
+
+
+
+
+
+
+void BakedLightBaker::bake(const Ref<BakedLight> &p_light, Node* p_node) {
+
+ if (baking)
+ return;
+ cell_count=0;
+
+ base_inv=p_node->cast_to<Spatial>()->get_global_transform().affine_inverse();
+ EditorProgress ep("bake",TTR("Light Baker Setup:"),5);
+ baked_light=p_light;
+ lattice_size=baked_light->get_initial_lattice_subdiv();
+ octree_depth=baked_light->get_cell_subdivision();
+ plot_size=baked_light->get_plot_size();
+ max_bounces=baked_light->get_bounces();
+ use_diffuse=baked_light->get_bake_flag(BakedLight::BAKE_DIFFUSE);
+ use_specular=baked_light->get_bake_flag(BakedLight::BAKE_SPECULAR);
+ use_translucency=baked_light->get_bake_flag(BakedLight::BAKE_TRANSLUCENT);
+
+ edge_damp=baked_light->get_edge_damp();
+ normal_damp=baked_light->get_normal_damp();
+ octree_extra_margin=baked_light->get_cell_extra_margin();
+ tint=baked_light->get_tint();
+ ao_radius=baked_light->get_ao_radius();
+ ao_strength=baked_light->get_ao_strength();
+ linear_color=baked_light->get_bake_flag(BakedLight::BAKE_LINEAR_COLOR);
+
+ baked_textures.clear();
+ for(int i=0;i<baked_light->get_lightmaps_count();i++) {
+ BakeTexture bt;
+ bt.width=baked_light->get_lightmap_gen_size(i).x;
+ bt.height=baked_light->get_lightmap_gen_size(i).y;
+ baked_textures.push_back(bt);
+ }
+
+
+ ep.step(TTR("Parsing Geometry"),0);
+ _parse_geometry(p_node);
+ mat_map.clear();
+ tex_map.clear();
+ print_line("\ttotal triangles: "+itos(triangles.size()));
+ // no geometry
+ if (triangles.size() == 0) {
+ return;
+ }
+ ep.step(TTR("Fixing Lights"),1);
+ _fix_lights();
+ ep.step(TTR("Making BVH"),2);
+ _make_bvh();
+ ep.step(TTR("Creating Light Octree"),3);
+ _make_octree();
+ ep.step(TTR("Creating Octree Texture"),4);
+ _make_octree_texture();
+ baking=true;
+ _start_thread();
+
+}
+
+
+void BakedLightBaker::update_octree_sampler(DVector<int> &p_sampler) {
+
+ BakedLightBaker::Octant *octants=octant_pool.ptr();
+ double norm = 1.0/double(total_rays);
+
+
+
+ if (p_sampler.size()==0 || first_bake_to_map) {
+
+ Vector<int> tmp_smp;
+ tmp_smp.resize(32); //32 for header
+
+ for(int i=0;i<32;i++) {
+ tmp_smp[i]=0;
+ }
+
+ for(int i=octant_pool_size-1;i>=0;i--) {
+
+ if (i==0)
+ tmp_smp[1]=tmp_smp.size();
+
+ Octant &octant=octants[i];
+ octant.sampler_ofs = tmp_smp.size();
+ int idxcol[2]={0,0};
+
+ int r = CLAMP((octant.full_accum[0]*norm)*2048,0,32767);
+ int g = CLAMP((octant.full_accum[1]*norm)*2048,0,32767);
+ int b = CLAMP((octant.full_accum[2]*norm)*2048,0,32767);
+
+ idxcol[0]|=r;
+ idxcol[1]|=(g<<16)|b;
+
+ if (octant.leaf) {
+ tmp_smp.push_back(idxcol[0]);
+ tmp_smp.push_back(idxcol[1]);
+ } else {
+
+ for(int j=0;j<8;j++) {
+ if (octant.children[j]) {
+ idxcol[0]|=(1<<(j+16));
+ }
+ }
+ tmp_smp.push_back(idxcol[0]);
+ tmp_smp.push_back(idxcol[1]);
+ for(int j=0;j<8;j++) {
+ if (octant.children[j]) {
+ tmp_smp.push_back(octants[octant.children[j]].sampler_ofs);
+ if (octants[octant.children[j]].sampler_ofs==0) {
+ print_line("FUUUUUUUUCK");
+ }
+ }
+ }
+ }
+
+ }
+
+ p_sampler.resize(tmp_smp.size());
+ DVector<int>::Write w = p_sampler.write();
+ int ss = tmp_smp.size();
+ for(int i=0;i<ss;i++) {
+ w[i]=tmp_smp[i];
+ }
+
+ first_bake_to_map=false;
+
+ }
+
+ double gamma = baked_light->get_gamma_adjust();
+ double mult = baked_light->get_energy_multiplier();
+ float saturation = baked_light->get_saturation();
+
+ DVector<int>::Write w = p_sampler.write();
+
+ encode_uint32(octree_depth,(uint8_t*)&w[2]);
+ encode_uint32(linear_color,(uint8_t*)&w[3]);
+
+ encode_float(octree_aabb.pos.x,(uint8_t*)&w[4]);
+ encode_float(octree_aabb.pos.y,(uint8_t*)&w[5]);
+ encode_float(octree_aabb.pos.z,(uint8_t*)&w[6]);
+ encode_float(octree_aabb.size.x,(uint8_t*)&w[7]);
+ encode_float(octree_aabb.size.y,(uint8_t*)&w[8]);
+ encode_float(octree_aabb.size.z,(uint8_t*)&w[9]);
+
+ //norm*=multiplier;
+
+ for(int i=octant_pool_size-1;i>=0;i--) {
+
+ Octant &octant=octants[i];
+ int idxcol[2]={w[octant.sampler_ofs],w[octant.sampler_ofs+1]};
+
+ double rf=pow(octant.full_accum[0]*norm*mult,gamma);
+ double gf=pow(octant.full_accum[1]*norm*mult,gamma);
+ double bf=pow(octant.full_accum[2]*norm*mult,gamma);
+
+ double gray = (rf+gf+bf)/3.0;
+ rf = gray + (rf-gray)*saturation;
+ gf = gray + (gf-gray)*saturation;
+ bf = gray + (bf-gray)*saturation;
+
+
+ int r = CLAMP((rf)*2048,0,32767);
+ int g = CLAMP((gf)*2048,0,32767);
+ int b = CLAMP((bf)*2048,0,32767);
+
+ idxcol[0]=((idxcol[0]>>16)<<16)|r;
+ idxcol[1]=(g<<16)|b;
+ w[octant.sampler_ofs]=idxcol[0];
+ w[octant.sampler_ofs+1]=idxcol[1];
+ }
+
+}
+
+void BakedLightBaker::update_octree_images(DVector<uint8_t> &p_octree,DVector<uint8_t> &p_light) {
+
+
+ int len = baked_octree_texture_w*baked_octree_texture_h*4;
+ p_octree.resize(len);
+
+ int ilen = baked_light_texture_w*baked_light_texture_h*4;
+ p_light.resize(ilen);
+
+
+ DVector<uint8_t>::Write w = p_octree.write();
+ zeromem(w.ptr(),len);
+
+ DVector<uint8_t>::Write iw = p_light.write();
+ zeromem(iw.ptr(),ilen);
+
+ float gamma = baked_light->get_gamma_adjust();
+ float mult = baked_light->get_energy_multiplier();
+
+ for(int i=0;i<len;i+=4) {
+ w[i+0]=0xFF;
+ w[i+1]=0;
+ w[i+2]=0xFF;
+ w[i+3]=0xFF;
+ }
+
+ for(int i=0;i<ilen;i+=4) {
+ iw[i+0]=0xFF;
+ iw[i+1]=0;
+ iw[i+2]=0xFF;
+ iw[i+3]=0xFF;
+ }
+
+ float multiplier=1.0;
+
+ if (baked_light->get_format()==BakedLight::FORMAT_HDR8)
+ multiplier=8;
+ encode_uint32(baked_octree_texture_w,&w[0]);
+ encode_uint32(baked_octree_texture_h,&w[4]);
+ encode_uint32(0,&w[8]);
+ encode_float(1<<lattice_size,&w[12]);
+ encode_uint32(octree_depth-lattice_size,&w[16]);
+ encode_uint32(multiplier,&w[20]);
+ encode_uint16(baked_light_texture_w,&w[24]); //if present, use the baked light texture
+ encode_uint16(baked_light_texture_h,&w[26]);
+ encode_uint32(0,&w[28]); //baked light texture format
+
+ encode_float(octree_aabb.pos.x,&w[32]);
+ encode_float(octree_aabb.pos.y,&w[36]);
+ encode_float(octree_aabb.pos.z,&w[40]);
+ encode_float(octree_aabb.size.x,&w[44]);
+ encode_float(octree_aabb.size.y,&w[48]);
+ encode_float(octree_aabb.size.z,&w[52]);
+
+
+ BakedLightBaker::Octant *octants=octant_pool.ptr();
+ int octant_count=octant_pool_size;
+ uint8_t *ptr = w.ptr();
+ uint8_t *lptr = iw.ptr();
+
+
+ int child_offsets[8]={
+ 0,
+ 4,
+ baked_octree_texture_w*4,
+ baked_octree_texture_w*4+4,
+ baked_octree_texture_w*8+0,
+ baked_octree_texture_w*8+4,
+ baked_octree_texture_w*8+baked_octree_texture_w*4,
+ baked_octree_texture_w*8+baked_octree_texture_w*4+4,
+ };
+
+ int lchild_offsets[8]={
+ 0,
+ 4,
+ baked_light_texture_w*4,
+ baked_light_texture_w*4+4,
+ baked_light_texture_w*8+0,
+ baked_light_texture_w*8+4,
+ baked_light_texture_w*8+baked_light_texture_w*4,
+ baked_light_texture_w*8+baked_light_texture_w*4+4,
+ };
+
+ /*Vector<double> norm_arr;
+ norm_arr.resize(lights.size());
+
+ for(int i=0;i<lights.size();i++) {
+ norm_arr[i] = 1.0/get_normalization(i);
+ }
+
+ const double *normptr=norm_arr.ptr();
+*/
+ double norm = 1.0/double(total_rays);
+ mult/=multiplier;
+ double saturation = baked_light->get_saturation();
+
+ for(int i=0;i<octant_count;i++) {
+
+ Octant &oct=octants[i];
+ if (oct.texture_x==0 && oct.texture_y==0)
+ continue;
+
+
+ if (oct.leaf) {
+
+ int ofs = (oct.texture_y * baked_light_texture_w + oct.texture_x)<<2;
+ ERR_CONTINUE(ofs<0 || ofs >ilen);
+ //write colors
+ for(int j=0;j<8;j++) {
+
+ //if (!oct.children[j])
+ // continue;
+ uint8_t *iptr=&lptr[ofs+lchild_offsets[j]];
+
+ float r=oct.light_accum[j][0]*norm;
+ float g=oct.light_accum[j][1]*norm;
+ float b=oct.light_accum[j][2]*norm;
+
+ r=pow(r*mult,gamma);
+ g=pow(g*mult,gamma);
+ b=pow(b*mult,gamma);
+
+ double gray = (r+g+b)/3.0;
+ r = gray + (r-gray)*saturation;
+ g = gray + (g-gray)*saturation;
+ b = gray + (b-gray)*saturation;
+
+ float ic[3]={
+ r,
+ g,
+ b,
+ };
+ iptr[0]=CLAMP(ic[0]*255.0,0,255);
+ iptr[1]=CLAMP(ic[1]*255.0,0,255);
+ iptr[2]=CLAMP(ic[2]*255.0,0,255);
+ iptr[3]=255;
+ }
+
+ } else {
+
+ int ofs = (oct.texture_y * baked_octree_texture_w + oct.texture_x)<<2;
+ ERR_CONTINUE(ofs<0 || ofs >len);
+
+ //write indices
+ for(int j=0;j<8;j++) {
+
+ if (!oct.children[j])
+ continue;
+ Octant&choct=octants[oct.children[j]];
+ uint8_t *iptr=&ptr[ofs+child_offsets[j]];
+
+ iptr[0]=choct.texture_x>>8;
+ iptr[1]=choct.texture_x&0xFF;
+ iptr[2]=choct.texture_y>>8;
+ iptr[3]=choct.texture_y&0xFF;
+
+ }
+ }
+
+ }
+
+
+}
+
+
+void BakedLightBaker::_free_bvh(BVH* p_bvh) {
+
+ if (!p_bvh->leaf) {
+ if (p_bvh->children[0])
+ _free_bvh(p_bvh->children[0]);
+ if (p_bvh->children[1])
+ _free_bvh(p_bvh->children[1]);
+ }
+
+ memdelete(p_bvh);
+
+}
+
+
+bool BakedLightBaker::is_baking() {
+
+ return baking;
+}
+
+void BakedLightBaker::set_pause(bool p_pause){
+
+ if (paused==p_pause)
+ return;
+
+ paused=p_pause;
+
+ if (paused) {
+ _stop_thread();
+ } else {
+ _start_thread();
+ }
+}
+bool BakedLightBaker::is_paused() {
+
+ return paused;
+
+}
+
+void BakedLightBaker::_bake_thread_func(void *arg) {
+
+ BakedLightBaker *ble = (BakedLightBaker*)arg;
+
+
+
+ ThreadStack thread_stack;
+
+ thread_stack.ray_stack = memnew_arr(uint32_t,ble->bvh_depth);
+ thread_stack.bvh_stack = memnew_arr(BVH*,ble->bvh_depth);
+ thread_stack.octant_stack = memnew_arr(uint32_t,ble->octree_depth*2 );
+ thread_stack.octantptr_stack = memnew_arr(uint32_t,ble->octree_depth*2 );
+
+ while(!ble->bake_thread_exit) {
+
+ ble->throw_rays(thread_stack,1000);
+ }
+
+ memdelete_arr(thread_stack.ray_stack );
+ memdelete_arr(thread_stack.bvh_stack );
+ memdelete_arr(thread_stack.octant_stack );
+ memdelete_arr(thread_stack.octantptr_stack );
+
+}
+
+void BakedLightBaker::_start_thread() {
+
+ if (threads.size()!=0)
+ return;
+ bake_thread_exit=false;
+
+ int thread_count = EDITOR_DEF("light_baker/custom_bake_threads",0);
+ if (thread_count<=0 || thread_count>64)
+ thread_count=OS::get_singleton()->get_processor_count();
+
+ //thread_count=1;
+ threads.resize(thread_count);
+ for(int i=0;i<threads.size();i++) {
+ threads[i]=Thread::create(_bake_thread_func,this);
+ }
+}
+
+void BakedLightBaker::_stop_thread() {
+
+ if (threads.size()==0)
+ return;
+ bake_thread_exit=true;
+ for(int i=0;i<threads.size();i++) {
+ Thread::wait_to_finish(threads[i]);
+ memdelete(threads[i]);
+ }
+ threads.clear();
+}
+
+void BakedLightBaker::_plot_pixel_to_lightmap(int x, int y, int width, int height, uint8_t *image, const Vector3& p_pos,const Vector3& p_normal,double *p_norm_ptr,float mult,float gamma) {
+
+
+ uint8_t *ptr = &image[(y*width+x)*4];
+ //int lc = lights.size();
+ double norm = 1.0/double(total_rays);
+
+
+ Color color;
+
+ Octant *octants=octant_pool.ptr();
+
+
+ int octant_idx=0;
+
+
+ while(true) {
+
+ Octant &octant=octants[octant_idx];
+
+ if (octant.leaf) {
+
+ Vector3 lpos = p_pos-octant.aabb.pos;
+ lpos/=octant.aabb.size;
+
+ Vector3 cols[8];
+
+ for(int i=0;i<8;i++) {
+
+ cols[i].x+=octant.light_accum[i][0]*norm;
+ cols[i].y+=octant.light_accum[i][1]*norm;
+ cols[i].z+=octant.light_accum[i][2]*norm;
+ }
+
+
+ /*Vector3 final = (cols[0] + (cols[1] - cols[0]) * lpos.y);
+ final = final + ((cols[2] + (cols[3] - cols[2]) * lpos.y) - final)*lpos.x;
+
+ Vector3 final2 = (cols[4+0] + (cols[4+1] - cols[4+0]) * lpos.y);
+ final2 = final2 + ((cols[4+2] + (cols[4+3] - cols[4+2]) * lpos.y) - final2)*lpos.x;*/
+
+ Vector3 finala = cols[0].linear_interpolate(cols[1],lpos.x);
+ Vector3 finalb = cols[2].linear_interpolate(cols[3],lpos.x);
+ Vector3 final = finala.linear_interpolate(finalb,lpos.y);
+
+ Vector3 final2a = cols[4+0].linear_interpolate(cols[4+1],lpos.x);
+ Vector3 final2b = cols[4+2].linear_interpolate(cols[4+3],lpos.x);
+ Vector3 final2 = final2a.linear_interpolate(final2b,lpos.y);
+
+ final = final.linear_interpolate(final2,lpos.z);
+ if (baked_light->get_format()==BakedLight::FORMAT_HDR8)
+ final*=8.0;
+
+
+ color.r=pow(final.x*mult,gamma);
+ color.g=pow(final.y*mult,gamma);
+ color.b=pow(final.z*mult,gamma);
+ color.a=1.0;
+
+ int lc = lights.size();
+ LightData *lv = lights.ptr();
+ for(int i=0;i<lc;i++) {
+ //shadow baking
+ if (!lv[i].bake_shadow)
+ continue;
+ Vector3 from = p_pos+p_normal*0.01;
+ Vector3 to;
+ float att=0;
+ switch(lv[i].type) {
+ case VS::LIGHT_DIRECTIONAL: {
+ to=from-lv[i].dir*lv[i].length;
+ } break;
+ case VS::LIGHT_OMNI: {
+ to=lv[i].pos;
+ float d = MIN(lv[i].radius,to.distance_to(from))/lv[i].radius;
+ att=d;//1.0-d;
+ } break;
+ default: continue;
+ }
+
+ uint32_t* stack = ray_stack;
+ BVH **bstack = bvh_stack;
+
+ enum {
+ TEST_RAY_BIT=0,
+ VISIT_LEFT_BIT=1,
+ VISIT_RIGHT_BIT=2,
+ VISIT_DONE_BIT=3,
+
+
+ };
+
+ bool intersected=false;
+
+ int level=0;
+
+ Vector3 n = (to-from);
+ float len=n.length();
+ if (len==0)
+ continue;
+ n/=len;
+
+ bstack[0]=bvh;
+ stack[0]=TEST_RAY_BIT;
+
+
+ while(!intersected) {
+
+ uint32_t mode = stack[level];
+ const BVH &b = *bstack[level];
+ bool done=false;
+
+ switch(mode) {
+ case TEST_RAY_BIT: {
+
+ if (b.leaf) {
+
+
+ Face3 f3(b.leaf->vertices[0],b.leaf->vertices[1],b.leaf->vertices[2]);
+
+
+ Vector3 res;
+
+ if (f3.intersects_segment(from,to)) {
+ intersected=true;
+ done=true;
+ }
+
+ stack[level]=VISIT_DONE_BIT;
+ } else {
+
+
+ bool valid = b.aabb.smits_intersect_ray(from,n,0,len);
+ //bool valid = b.aabb.intersects_segment(p_begin,p_end);
+ // bool valid = b.aabb.intersects(ray_aabb);
+
+ if (!valid) {
+
+ stack[level]=VISIT_DONE_BIT;
+
+ } else {
+
+ stack[level]=VISIT_LEFT_BIT;
+ }
+ }
+
+ } continue;
+ case VISIT_LEFT_BIT: {
+
+ stack[level]=VISIT_RIGHT_BIT;
+ bstack[level+1]=b.children[0];
+ stack[level+1]=TEST_RAY_BIT;
+ level++;
+
+ } continue;
+ case VISIT_RIGHT_BIT: {
+
+ stack[level]=VISIT_DONE_BIT;
+ bstack[level+1]=b.children[1];
+ stack[level+1]=TEST_RAY_BIT;
+ level++;
+ } continue;
+ case VISIT_DONE_BIT: {
+
+ if (level==0) {
+ done=true;
+ break;
+ } else
+ level--;
+
+ } continue;
+ }
+
+
+ if (done)
+ break;
+ }
+
+
+
+ if (intersected) {
+
+ color.a=Math::lerp(MAX(0.01,lv[i].darkening),1.0,att);
+ }
+
+ }
+
+ break;
+ } else {
+
+ Vector3 lpos = p_pos - octant.aabb.pos;
+ Vector3 half = octant.aabb.size * 0.5;
+
+ int ofs=0;
+
+ if (lpos.x >= half.x)
+ ofs|=1;
+ if (lpos.y >= half.y)
+ ofs|=2;
+ if (lpos.z >= half.z)
+ ofs|=4;
+
+ octant_idx = octant.children[ofs];
+
+ if (octant_idx==0)
+ return;
+
+ }
+ }
+
+ ptr[0]=CLAMP(color.r*255.0,0,255);
+ ptr[1]=CLAMP(color.g*255.0,0,255);
+ ptr[2]=CLAMP(color.b*255.0,0,255);
+ ptr[3]=CLAMP(color.a*255.0,0,255);
+
+}
+
+
+Error BakedLightBaker::transfer_to_lightmaps() {
+
+ if (!triangles.size() || baked_textures.size()==0)
+ return ERR_UNCONFIGURED;
+
+ EditorProgress ep("transfer_to_lightmaps",TTR("Transfer to Lightmaps:"),baked_textures.size()*2+triangles.size());
+
+ for(int i=0;i<baked_textures.size();i++) {
+
+ ERR_FAIL_COND_V( baked_textures[i].width<=0 || baked_textures[i].height<=0,ERR_UNCONFIGURED );
+
+ baked_textures[i].data.resize( baked_textures[i].width*baked_textures[i].height*4 );
+ zeromem(baked_textures[i].data.ptr(),baked_textures[i].data.size());
+ ep.step(TTR("Allocating Texture #")+itos(i+1),i);
+ }
+
+ Vector<double> norm_arr;
+ norm_arr.resize(lights.size());
+
+ for(int i=0;i<lights.size();i++) {
+ norm_arr[i] = 1.0/get_normalization(i);
+ }
+ float gamma = baked_light->get_gamma_adjust();
+ float mult = baked_light->get_energy_multiplier();
+
+ for(int i=0;i<triangles.size();i++) {
+
+ if (i%200==0) {
+ ep.step(TTR("Baking Triangle #")+itos(i),i+baked_textures.size());
+ }
+ Triangle &t=triangles[i];
+ if (t.baked_texture<0 || t.baked_texture>=baked_textures.size())
+ continue;
+
+ BakeTexture &bt=baked_textures[t.baked_texture];
+ Vector3 normal = Plane(t.vertices[0],t.vertices[1],t.vertices[2]).normal;
+
+
+ int x[3];
+ int y[3];
+
+ Vector3 vertices[3]={
+ t.vertices[0],
+ t.vertices[1],
+ t.vertices[2]
+ };
+
+ for(int j=0;j<3;j++) {
+
+ x[j]=t.bake_uvs[j].x*bt.width;
+ y[j]=t.bake_uvs[j].y*bt.height;
+ x[j]=CLAMP(x[j],0,bt.width-1);
+ y[j]=CLAMP(y[j],0,bt.height-1);
+ }
+
+
+ {
+
+ // sort the points vertically
+ if (y[1] > y[2]) {
+ SWAP(x[1], x[2]);
+ SWAP(y[1], y[2]);
+ SWAP(vertices[1],vertices[2]);
+ }
+ if (y[0] > y[1]) {
+ SWAP(x[0], x[1]);
+ SWAP(y[0], y[1]);
+ SWAP(vertices[0],vertices[1]);
+ }
+ if (y[1] > y[2]) {
+ SWAP(x[1], x[2]);
+ SWAP(y[1], y[2]);
+ SWAP(vertices[1],vertices[2]);
+ }
+
+ double dx_far = double(x[2] - x[0]) / (y[2] - y[0] + 1);
+ double dx_upper = double(x[1] - x[0]) / (y[1] - y[0] + 1);
+ double dx_low = double(x[2] - x[1]) / (y[2] - y[1] + 1);
+ double xf = x[0];
+ double xt = x[0] + dx_upper; // if y[0] == y[1], special case
+ for (int yi = y[0]; yi <= (y[2] > bt.height-1 ? bt.height-1 : y[2]); yi++)
+ {
+ if (yi >= 0) {
+ for (int xi = (xf > 0 ? int(xf) : 0); xi <= (xt < bt.width ? xt : bt.width-1) ; xi++) {
+ //pixels[int(x + y * width)] = color;
+
+ Vector2 v0 = Vector2(x[1]-x[0],y[1]-y[0]);
+ Vector2 v1 = Vector2(x[2]-x[0],y[2]-y[0]);
+ //vertices[2] - vertices[0];
+ Vector2 v2 = Vector2(xi-x[0],yi-y[0]);
+ float d00 = v0.dot( v0);
+ float d01 = v0.dot( v1);
+ float d11 = v1.dot( v1);
+ float d20 = v2.dot( v0);
+ float d21 = v2.dot( v1);
+ float denom = (d00 * d11 - d01 * d01);
+ Vector3 pos;
+ if (denom==0) {
+ pos=t.vertices[0];
+ } else {
+ float v = (d11 * d20 - d01 * d21) / denom;
+ float w = (d00 * d21 - d01 * d20) / denom;
+ float u = 1.0f - v - w;
+ pos = vertices[0]*u + vertices[1]*v + vertices[2]*w;
+ }
+ _plot_pixel_to_lightmap(xi,yi,bt.width,bt.height,bt.data.ptr(),pos,normal,norm_arr.ptr(),mult,gamma);
+
+ }
+
+ for (int xi = (xf < bt.width ? int(xf) : bt.width-1); xi >= (xt > 0 ? xt : 0); xi--) {
+ //pixels[int(x + y * width)] = color;
+ Vector2 v0 = Vector2(x[1]-x[0],y[1]-y[0]);
+ Vector2 v1 = Vector2(x[2]-x[0],y[2]-y[0]);
+ //vertices[2] - vertices[0];
+ Vector2 v2 = Vector2(xi-x[0],yi-y[0]);
+ float d00 = v0.dot( v0);
+ float d01 = v0.dot( v1);
+ float d11 = v1.dot( v1);
+ float d20 = v2.dot( v0);
+ float d21 = v2.dot( v1);
+ float denom = (d00 * d11 - d01 * d01);
+ Vector3 pos;
+ if (denom==0) {
+ pos=t.vertices[0];
+ } else {
+ float v = (d11 * d20 - d01 * d21) / denom;
+ float w = (d00 * d21 - d01 * d20) / denom;
+ float u = 1.0f - v - w;
+ pos = vertices[0]*u + vertices[1]*v + vertices[2]*w;
+ }
+
+ _plot_pixel_to_lightmap(xi,yi,bt.width,bt.height,bt.data.ptr(),pos,normal,norm_arr.ptr(),mult,gamma);
+
+ }
+ }
+ xf += dx_far;
+ if (yi < y[1])
+ xt += dx_upper;
+ else
+ xt += dx_low;
+ }
+ }
+
+ }
+
+
+ for(int i=0;i<baked_textures.size();i++) {
+
+
+ {
+
+ ep.step(TTR("Post-Processing Texture #")+itos(i),i+baked_textures.size()+triangles.size());
+
+ BakeTexture &bt=baked_textures[i];
+
+ Vector<uint8_t> copy_data=bt.data;
+ uint8_t *data=bt.data.ptr();
+ const int max_radius=8;
+ const int shadow_radius=2;
+ const int max_dist=0x7FFFFFFF;
+
+ for(int x=0;x<bt.width;x++) {
+
+ for(int y=0;y<bt.height;y++) {
+
+
+ uint8_t a = copy_data[(y*bt.width+x)*4+3];
+
+ if (a>0) {
+ //blur shadow
+
+ int from_x = MAX(0,x-shadow_radius);
+ int to_x = MIN(bt.width-1,x+shadow_radius);
+ int from_y = MAX(0,y-shadow_radius);
+ int to_y = MIN(bt.height-1,y+shadow_radius);
+
+ int sum=0;
+ int sumc=0;
+
+ for(int k=from_y;k<=to_y;k++) {
+ for(int l=from_x;l<=to_x;l++) {
+
+ const uint8_t * rp = &copy_data[(k*bt.width+l)<<2];
+
+ sum+=rp[3];
+ sumc++;
+ }
+ }
+
+ sum/=sumc;
+ data[(y*bt.width+x)*4+3]=sum;
+
+ } else {
+
+ int closest_dist=max_dist;
+ uint8_t closest_color[4];
+
+ int from_x = MAX(0,x-max_radius);
+ int to_x = MIN(bt.width-1,x+max_radius);
+ int from_y = MAX(0,y-max_radius);
+ int to_y = MIN(bt.height-1,y+max_radius);
+
+ for(int k=from_y;k<=to_y;k++) {
+ for(int l=from_x;l<=to_x;l++) {
+
+ int dy = y-k;
+ int dx = x-l;
+ int dist = dy*dy+dx*dx;
+ if (dist>=closest_dist)
+ continue;
+
+ const uint8_t * rp = &copy_data[(k*bt.width+l)<<2];
+
+ if (rp[3]==0)
+ continue;
+
+ closest_dist=dist;
+ closest_color[0]=rp[0];
+ closest_color[1]=rp[1];
+ closest_color[2]=rp[2];
+ closest_color[3]=rp[3];
+ }
+ }
+
+
+ if (closest_dist!=max_dist) {
+
+ data[(y*bt.width+x)*4+0]=closest_color[0];
+ data[(y*bt.width+x)*4+1]=closest_color[1];
+ data[(y*bt.width+x)*4+2]=closest_color[2];
+ data[(y*bt.width+x)*4+3]=closest_color[3];
+ }
+ }
+ }
+ }
+ }
+
+ DVector<uint8_t> dv;
+ dv.resize(baked_textures[i].data.size());
+ {
+ DVector<uint8_t>::Write w = dv.write();
+ copymem(w.ptr(),baked_textures[i].data.ptr(),baked_textures[i].data.size());
+ }
+
+ Image img(baked_textures[i].width,baked_textures[i].height,0,Image::FORMAT_RGBA,dv);
+ Ref<ImageTexture> tex = memnew( ImageTexture );
+ tex->create_from_image(img);
+ baked_light->set_lightmap_texture(i,tex);
+ }
+
+
+ return OK;
+}
+
+void BakedLightBaker::clear() {
+
+
+
+ _stop_thread();
+
+ if (bvh)
+ _free_bvh(bvh);
+
+ if (ray_stack)
+ memdelete_arr(ray_stack);
+ if (octant_stack)
+ memdelete_arr(octant_stack);
+ if (octantptr_stack)
+ memdelete_arr(octantptr_stack);
+ if (bvh_stack)
+ memdelete_arr(bvh_stack);
+/*
+ * ???
+ for(int i=0;i<octant_pool.size();i++) {
+ //if (octant_pool[i].leaf) {
+ // memdelete_arr( octant_pool[i].light );
+ //} Vector<double> norm_arr;
+ //norm_arr.resize(lights.size());
+
+ for(int i=0;i<lights.size();i++) {
+ norm_arr[i] = 1.0/get_normalization(i);
+ }
+
+ const double *normptr=norm_arr.ptr();
+ }
+*/
+ octant_pool.clear();
+ octant_pool_size=0;
+ bvh=NULL;
+ leaf_list=0;
+ cell_count=0;
+ ray_stack=NULL;
+ octant_stack=NULL;
+ octantptr_stack=NULL;
+ bvh_stack=NULL;
+ materials.clear();
+ materials.clear();
+ textures.clear();
+ lights.clear();
+ triangles.clear();
+ endpoint_normal.clear();
+ endpoint_normal_bits.clear();
+ baked_octree_texture_w=0;
+ baked_octree_texture_h=0;
+ paused=false;
+ baking=false;
+
+ bake_thread_exit=false;
+ first_bake_to_map=true;
+ baked_light=Ref<BakedLight>();
+ total_rays=0;
+
+}
+
+BakedLightBaker::BakedLightBaker() {
+ octree_depth=9;
+ lattice_size=4;
+ octant_pool.clear();
+ octant_pool_size=0;
+ bvh=NULL;
+ leaf_list=0;
+ cell_count=0;
+ ray_stack=NULL;
+ bvh_stack=NULL;
+ octant_stack=NULL;
+ octantptr_stack=NULL;
+ plot_size=2.5;
+ max_bounces=2;
+ materials.clear();
+ baked_octree_texture_w=0;
+ baked_octree_texture_h=0;
+ paused=false;
+ baking=false;
+
+ bake_thread_exit=false;
+ total_rays=0;
+ first_bake_to_map=true;
+ linear_color=false;
+
+}
+
+BakedLightBaker::~BakedLightBaker() {
+
+ clear();
+}