aboutsummaryrefslogtreecommitdiff
path: root/src/math/subgroup.c
blob: fdf45a5464e87f2c4075cd87d4992fdac38fc398 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*
 * ecgen, tool for generating Elliptic curve domain parameters
 * Copyright (C) 2017-2018 J08nY
 */
#include "subgroup.h"

/**
 * @brief All prime divisors of a given integer with multiplicity.
 *
 * subgroups_divisors(27) = [3, 3, 3]
 * @param order
 * @return a t_VEC of prime divisors.
 */
static GEN subgroups_divisors(GEN order) {
	GEN factors = Z_factor(order);
	GEN primes = gel(factors, 1);
	GEN multiples = gel(factors, 2);
	long uniqs = glength(primes);

	long size = 0;
	for (long i = 1; i <= uniqs; ++i) {
		size += itos(gel(multiples, i));
	}
	GEN result = gtovec0(gen_0, size);

	long count = 0;
	for (long i = 1; i <= uniqs; ++i) {
		long multiple = itos(gel(multiples, i));
		for (long j = 1; j <= multiple; ++j) {
			gel(result, ++count) = gel(primes, i);
		}
	}
	return result;
}

/**
 * @brief All factors consisting of at least <code>min_bits</code> prime
 * <code>factors</code>.
 *
 * @param factors
 * @param min_bits
 * @return a t_VEC of factors
 */
static GEN subgroups_2n_factors(GEN factors, size_t min_bits) {
	pari_sp ltop = avma;
	long nprimes = glength(factors);
	if (nprimes == min_bits) return NULL;
	GEN amount = int2n(nprimes);
	GEN groups = gtovec0(gen_0, itos(amount) - (min_bits * nprimes) - 1);

	size_t i = 0;
	for (size_t count = 1; count < (size_t)(1) << nprimes; ++count) {
		pari_sp btop = avma;
		GEN result = gen_1;
		size_t bits = 0;
		for (long bit = 0; bit < nprimes; ++bit) {
			size_t mask = (size_t)(1) << bit;
			if (count & mask) {
				result = mulii(result, gel(factors, bit + 1));
				bits++;
			}
		}
		if (bits > min_bits) {
			gel(groups, ++i) = result;
		} else {
			avma = btop;
		}
	}
	GEN ret = gtoset(groups);
	return gerepilecopy(ltop, ret);
}

GEN subgroups_prime(GEN order) {
	if (isprime(order)) {
		return gtovec(order);
	}
	GEN factors = Z_factor(order);
	return gtovec(gel(factors, 1));
}

GEN subgroups_nonprime(GEN order) {
	if (isprime(order)) {
		return NULL;
	}
	GEN factors = subgroups_divisors(order);
	return subgroups_2n_factors(factors, 1);
}

GEN subgroups_all(GEN order) {
	if (isprime(order)) {
		return gtovec(order);
	}
	GEN factors = subgroups_divisors(order);
	return subgroups_2n_factors(factors, 0);
}

/**
 * @brief
 * @param curve
 * @param min_bits
 * @return
 */
/*
static GEN subgroups_2n_gens(const curve_t *curve, size_t min_bits) {
    GEN one_factors = subgroups_divisors(curve->generators[0]->order);
    GEN one = subgroups_2n_factors(one_factors, min_bits);
    GEN other_factors = subgroups_divisors(curve->generators[1]->order);
    GEN other = subgroups_2n_factors(other_factors, min_bits);
    if (!one) {
        return other;
    }
    if (!other) {
        return one;
    }
    GEN result = gtovec0(gen_0, glength(one) + glength(other));
    for (long i = 1; i <= glength(result); ++i) {
        if (i <= glength(one)) {
            gel(result, i) = gel(one, i);
        } else {
            gel(result, i) = gel(other, i - glength(one));
        }
    }
    return result;
}
 */

/**
 * @brief
 * @param curve
 * @param min_bits
 * @return
 */
/*
static GEN subgroups_2n(const curve_t *curve, size_t min_bits) {
   if (curve->ngens == 1) {
       GEN factors = subgroups_divisors(curve->order);
       return subgroups_2n_factors(factors, min_bits);
   }

   return subgroups_2n_gens(curve, min_bits);
}

*/