1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
/*
* ecgen, tool for generating Elliptic curve domain parameters
* Copyright (C) 2017-2018 J08nY
*/
#include "point.h"
#include "exhaustive/arg.h"
#include "math/subgroup.h"
#include "obj/point.h"
#include "util/random.h"
GENERATOR(point_gen_random) {
long which_gen = itos(random_range(gen_0, stoi(curve->ngens)));
subgroup_t *subgroup = curve->generators[which_gen];
GEN mul = random_range(gen_0, subgroup->generator->order);
GEN p = ellmul(curve->curve, subgroup->generator->point, mul);
point_t *point = point_new();
point->point = p;
point->order = ellorder(curve->curve, p, NULL);
subgroup->npoints = 1;
subgroup->points = points_new(1);
subgroup->points[0] = point;
return 1;
}
GENERATOR(points_gen_random) {
HAS_ARG(args);
size_t npoints = *(size_t *)args->args;
size_t npoints_per_gen[curve->ngens];
for (size_t i = 0; i < curve->ngens; ++i) {
npoints_per_gen[i] = 0;
}
for (size_t i = 0; i < npoints; ++i) {
long which_gen = itos(random_range(gen_0, stoi(curve->ngens)));
npoints_per_gen[which_gen]++;
}
for (size_t i = 0; i < curve->ngens; ++i) {
subgroup_t *subgroup = curve->generators[i];
subgroup->npoints = npoints_per_gen[i];
subgroup->points = points_new(npoints_per_gen[i]);
for (size_t j = 0; j < npoints_per_gen[i]; ++j) {
point_t *point = point_new();
// Handle the special case of subgroup of order 2.
if (equalis(subgroup->generator->order, 2)) {
point->point = gcopy(subgroup->generator->point);
point->order = stoi(2);
} else {
GEN mul = random_range(gen_1, subgroup->generator->order);
GEN p = ellmul(curve->curve, subgroup->generator->point, mul);
point->point = p;
point->order = ellorder(curve->curve, p, NULL);
}
subgroup->points[j] = point;
}
}
return 1;
}
point_t **points_from_orders(GEN curve, point_t *generator, GEN orders) {
size_t norders = (size_t)glength(orders);
point_t **result = points_new(norders);
for (long i = 0; i < norders; ++i) {
pari_sp ftop = avma;
GEN num = gel(orders, i + 1);
GEN point = NULL;
if (equalii(generator->order, num)) {
point = gcopy(generator->point);
} else if (dvdii(generator->order, num)) {
GEN mul = divii(generator->order, num);
point = ellmul(curve, generator->point, mul);
}
if (point) {
debug_log("VERIFY %Ps %Ps", num, ellorder(curve, point, NULL));
result[i] = point_new();
gerepileall(ftop, 1, &point);
result[i]->point = point;
result[i]->order = gcopy(num);
}
}
return result;
}
GENERATOR(points_gen_trial) {
HAS_ARG(args);
pari_ulong *primes = (pari_ulong *)args->args;
size_t nprimes = args->nargs;
GEN orders = gtovec0(gen_0, nprimes);
for (size_t i = 1; i <= nprimes; ++i) {
gel(orders, i) = utoi(primes[i - 1]);
}
GEN orders_per_gen[curve->ngens];
for (size_t i = 0; i < curve->ngens; ++i) {
orders_per_gen[i] = gen_0;
}
for (size_t j = 0; j < nprimes; ++j) {
GEN num = gel(orders, j + 1);
for (size_t i = 0; i < curve->ngens; ++i) {
point_t *gen = curve->generators[i]->generator;
if (equalii(gen->order, num) || dvdii(gen->order, num)) {
if (orders_per_gen[i] == gen_0) {
orders_per_gen[i] = gtovec(num);
} else {
vec_append(orders_per_gen[i], num);
}
break;
}
}
debug_log("Should not happen.");
}
for (size_t i = 0; i < curve->ngens; ++i) {
subgroup_t *subgroup = curve->generators[i];
if (orders_per_gen[i] != gen_0) {
subgroup->npoints = (size_t)glength(orders_per_gen[i]);
subgroup->points = points_from_orders(
curve->curve, subgroup->generator, orders_per_gen[i]);
}
}
return 1;
}
GENERATOR(points_gen_prime) {
for (size_t i = 0; i < curve->ngens; ++i) {
GEN primes = subgroups_prime(curve->generators[i]->generator->order);
curve->generators[i]->npoints = (size_t)glength(primes);
curve->generators[i]->points = points_from_orders(
curve->curve, curve->generators[i]->generator, primes);
}
return 1;
}
GENERATOR(points_gen_allgroups) {
for (size_t i = 0; i < curve->ngens; ++i) {
GEN primes = subgroups_all(curve->generators[i]->generator->order);
curve->generators[i]->npoints = (size_t)glength(primes);
curve->generators[i]->points = points_from_orders(
curve->curve, curve->generators[i]->generator, primes);
}
return 1;
}
GENERATOR(points_gen_nonprime) {
for (size_t i = 0; i < curve->ngens; ++i) {
GEN primes = subgroups_nonprime(curve->generators[i]->generator->order);
if (primes) {
curve->generators[i]->npoints = (size_t)glength(primes);
curve->generators[i]->points = points_from_orders(
curve->curve, curve->generators[i]->generator, primes);
}
}
return 1;
}
UNROLL(points_unroll) {
if (curve->generators) {
for (size_t i = 0; i < curve->ngens; ++i) {
points_free_deep(&curve->generators[i]->points,
curve->generators[i]->npoints);
}
}
return -1;
}
|