1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
# Libraries with ECC support
Popular libraries with at least some ECC support, that ECTester does not yet support:
- [NSS](https://hg.mozilla.org/projects/nss)
- [LibreSSL](https://www.libressl.org/)
- [Nettle](http://www.lysator.liu.se/~nisse/nettle/)
- [OpenSSL (FIPS mode)](https://www.openssl.org/docs/fipsnotes.html)
- [Microsoft .NET crypto](https://docs.microsoft.com/en-us/dotnet/standard/security/cryptography-model)
- [Linux kernel](https://kernel.org), test via [libkcapi](http://chronox.de/libkcapi.html)
# Supported libraries
Libraries that ECTester can test.
- [BouncyCastle](https://bouncycastle.org/java.html)
- Java
- Works with the short Weierstrass curve model.
- Works with coordinates:
- Affine
- Projective(Homogenous)
- Jacobian
- Jacobian-Chudnovsky
- Jacobian-Modified
- Lambda-Affine?
- Lambda-Projective?
- Skewed?
- Multiple scalar multiplication algorithms implemented and used:
- Double-and-add always (DoubleAddMultiplier)
- Fixed point comb (FixedPointCombMultiplier)
- GLV (Gallant-Lambert-Vanstone) using endomorphisms (GLVMultiplier): Faster point multiplication on elliptic curves with efficient endomorphisms. <-- default, if available
- Binary NAF right-to-left multiplication(mixed coordinates) (MixedNafR2LMultiplier)
- Montgomery ladder (MontgomeryLadderMultiplier)
- Binary NAF right-to-left multiplication (NafR2LMultiplier)
- Binary NAF left-to-right multiplication (NafL2RMultiplier)
- Double-and-add reference implementation (ReferenceMultiplier)
- Window NAF left-to-right multiplication (WNafL2RMultiplier) <-- default
- Window Tau-NAF multiplication (WTauNafMultiplier): Improved Algorithms for Arithmetic on Anomalous Binary Curves
- Zeroless signed digit binary right-to-left multiplication (ZSignedDigitR2LMultiplier)
- Zeroless signed digit binary left-to-right multiplication (ZSignedDigitL2RMultiplier)
- Has custom field and point arithmetic for:
- Curve25519 (transformed into short Weierstrass model)
- SMP2 curves
- SECG curves
- [Sun EC](https://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#SunEC)
- Java + C
- Uses the short Weierstrass curve model.
- For prime field curves:
- Uses 5-bit window NAF, Uses mixed Modified-Jacobian coordinates
for doubling and Chudnovsky Jacobian coordinates for additions (ecp_jm.c). From:
Brown, Hankerson, Lopez, Menezes: Software Implementation of the NIST Elliptic Curves Over Prime Fields.
- Contains an implementation of scalar multiplication with 4-bit sliding window, using Jacobian coordinates (ecp_jac.c)
- Contains an implementation of IEEE P1363 algorithm A.10.3 using affine coordinates (ecp_aff.c)
- For binary field curves:
- Uses Lopez-Dahab (Montgomery) ladder, XZ coordinates (ec2_mont.c): Fast multiplication on elliptic curves over GF(2^m) without precomputation (Algorithm 2P)
- Contains an implementation of IEEE P1363 algorithm A.10.3 using affine coordinates (ec2_aff.c)
- Has some custom arithmetic for some of the NIST primes.
- [WolfCrypt(WolfSSL)](https://www.wolfssl.com)
- C + Java
- Prime field curves only.
- Jacobian coordinates:
- Uses sliding window scalar multiplication, (discards `b` parameter of curve), but validates points.
- [OpenSSL](https://www.openssl.org/)
- C
- For prime field curves:
- Uses Jacobian coordinates, and Montgomery ladder, also uses wNAF-based interleaving multi-exponentiation method(ec_mult.c): http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
- Also uses multiplication with precomputation by wNAF splitting(ec_mult.c)
- For binary field curves:
- Uses Jacobian coordinates, and Lopez-Dahab ladder, also uses wNAF-based interleaving multi-exponentiation method(ec2_smpl.c)
- [BoringSSL](https://boringssl.googlesource.com/boringssl)
- C
- Supports prime field curves only:
- Use Jacobian coordinates, and Montgomery ladder, also uses optimized arithmetic on NIST P-224, P-256.
- Bundled as a git submodule in `ext/boringssl`. To build and use run:
```bash
cd ext/boringssl
mkdir build && cd build
cmake -DBUILD_SHARED_LIBS=1 -GNinja ..
ninja
```
- [Crypto++](https://cryptopp.com/)
- C++
- For prime field curves:
- Uses projective coordinates and sliding window scalar multiplication algorithm.
- For binary field curves:
- Uses affine coordinates and sliding window scalar multiplication algorithm.
- [libtomcrypt](http://www.libtom.net/LibTomCrypt/)
- C
- Uses Jacobian coordinates.
- Sliding window scalar multiplication algorithm.
- [libgcrypt](https://www.gnupg.org/related_software/libgcrypt/)
- C
- Only supports prime field curves.
- Uses short Weierstrass, Montgomery and Twisted Edwards models.
- Uses left-to-right double-and-add always scalar multiplication and Jacobian coordinates in short Weierstrass form.
- Uses Montgomery ladder and X-only in Montgomery form.
- Uses left-to-right double-and-add always scalar multiplication in Twisted Edwards form.
- [Botan](https://botan.randombit.net/)
- C++
- Uses blinded(randomized) Montgomery ladder.
- <https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2>
- <https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-1986-cc>
- <https://eprint.iacr.org/2015/657>
- ECTester supports v2.4.0 and up.
- [Microsoft CNG](https://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx)
- C API.
- <del>Closed source.</del> Not any more: <https://github.com/Microsoft/SymCrypt>.
- For prime field curves(only supports):
- Uses Short Weierstrass model.
- Uses Twisted Edwards model.
- Uses Montgomery model.
- Uses fixed window scalar multiplication.
- Uses Wnaf multi-scalar multiplication with interleaving.
- Uses Montgomery ladder.
- [mbedTLS](https://tls.mbed.org/)
- C
- Only supports prime field curves.
- Uses short Weierstrass and Montgomery models.
- Uses comb method for short Weierstrass curves, using (randomized) Jacobian coordinates.
- <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2>
- Uses Montgomery ladder with xz coordinates for Montgomery curves.
- [Intel Performance Primitives](https://software.intel.com/en-us/ipp-crypto-reference-2019)
- C
- Only supports prime field curves.
- Uses 5-bit window NAF.
- Uses Jacobian coordinates.
- <https://github.com/intel/ipp-crypto>
|