1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
# Implementations
This document contains information about possible implementation choices and algorithms when implementing elliptic curve cryptography. It is mainly concerned with curve models, coordinate systems, addition formulas and scalar multiplication algorithms. Also, only curves over \( \mathbb{F}_p \) are analyzed.
---
## Curve models
### Weierstrass (full)
#### Affine
$$ y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6 $$
#### Projective
$$ Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3 $$
### Weierstrass (short)
[EFD entry](https://www.hyperelliptic.org/EFD/g1p/auto-shortw.html)
#### Affine
$$ y^2 = x^3 + a x + b $$
#### Projective
$$ Y^2Z = X^3 + aXZ^2 + bZ^3 $$
#### Jacobian
$$ Y^2 = X^3 + aXZ^4 + bZ^6 $$
toweierstrass weierx = x
toweierstrass weiery = y
a0 = 1
a1 = 0
a2 = 0
a3 = 0
a4 = a
a6 = b
fromweierstrass x = weierx
fromweierstrass y = weiery
### Montgomery
[EFD entry](https://www.hyperelliptic.org/EFD/g1p/auto-montgom.html)
#### Affine
$$ By^2 = x^3 + Ax^2 + x $$
toweierstrass weierx = x
toweierstrass weiery = y
a0 = b
a1 = 0
a2 = a
a3 = 0
a4 = 1
a6 = 0
fromweierstrass x = weierx
fromweierstrass y = weiery
### Edwards
[EFD entry](https://www.hyperelliptic.org/EFD/g1p/auto-edwards.html)
#### Affine
$$ x^2 + y^2 = c^2 (1 + dx^2y^2) $$
toweierstrass u = (c+y)/(c-y)
toweierstrass v = 2 c (c+y)/(x(c-y))
a0 = 1/(1-d c^4)
a1 = 0
a2 = 4/(1-d c^4)-2
a3 = 0
a4 = 1
a6 = 0
fromweierstrass x = 2 c u/v
fromweierstrass y = c(u-1)/(u+1)
### Twisted Edwards
[EFD entry](https://www.hyperelliptic.org/EFD/g1p/auto-twisted.html)
#### Affine
$$ ax^2 + y^2=1 + dx^2y^2 $$
toweierstrass u = (1+y)/(1-y)
toweierstrass v = 2 (1+y)/(x(1-y))
a0 = 1/(a-d)
a1 = 0
a2 = 4 a/(a-d)-2
a3 = 0
a4 = 1
a6 = 0
fromweierstrass x = 2 u/v
fromweierstrass y = (u-1)/(u+1)
### Hessian
#### Affine
$$ x^3+y^3+1=3dxy $$
toweierstrass u = 12(d^3-1)/(d+x+y)-9 d^2
toweierstrass v = 36(y-x)(d^3-1)/(d+x+y)
a0 = 1
a1 = 0
a2 = 0
a3 = 0
a4 = -27 d(d^3+8)
a6 = 54(d^6-20 d^3-8)
fromweierstrass x = (36(d^3-1)-v)/(6(u+9 d^2))-d/2
fromweierstrass y = (v+36(d^3-1))/(6(u+9 d^2))-d/2
---
## Coordinates
### Affine
$$ [x, y] \in \mathbb{K}^2 $$
infinity is special cased, sometimes represented as \( [0] \).
negation: \(-[x, y] = [x, -y] \)
- To Projective: \( [x, y] \rightarrow (x : y : 1) \)
- To Jacobian: \( [x, y] \rightarrow (x : y : 1) \)
- To Chudnovsky: ?
### Projective
\begin{align*}
[X, Y, Z] &\in \mathbb{K}^3 \\
[X_1, Y_1, Z_1] &\sim [X_2, Y_2, Z_2] \\
\text{if}\ X_1 &= λ X_2, \\
Y_1 &= λ Y_2, \\
Z_1 &= λ Z_2 \\
\text{for some}\ λ &\in \mathbb{K}^* \\
(X : Y : Z) &= \{(λ X, λ Y, λ Z) | λ \in \mathbb{K}^* \}
\end{align*}
infinity is \((0 : 1 : 0)\).
- To Affine: \( (X : Y : Z) \rightarrow [X/Z, Y/Z] \)
- To Jacobian: ?
- To Chudnovsky: ?
### Jacobian
\begin{align*}
[X, Y, Z] &\in \mathbb{K}^3 \\
[X_1, Y_1, Z_1] &\sim [X_2, Y_2, Z_2] \\
\text{if}\ X_1 &= λ^2 X_2, \\
Y_1 &= λ^3 Y_2, \\
Z_1 &= λ Z_2 \\
\text{for some}\ λ &\in \mathbb{K}^* \\
(X : Y : Z) &= \{(λ^2 X, λ^3 Y, λ Z) | λ \in \mathbb{K}^* \}
\end{align*}
infinity is \( (1 : 1 : 0) \).
- To Affine: \( (X : Y : Z) \rightarrow [X/Z^2, Y/Z^3] \)
- To Projective: ?
- To Chudnovsky: \( (X : Y : Z) \rightarrow (X : Y : Z : Z^2 : Z^3) \)
### Chudnovsky
\begin{align*}
[X, Y, Z, Z^2, Z^3] &\in \mathbb{K}^5 \\
(X : Y : Z : Z^2 : Z^3 ) &= \{(λ^2 X, λ^3 Y, λ Z, λ^2 Z^2, λ^3 Z^3) | λ \in \mathbb{K}^* \}
\end{align*}
infinity is \( (1 : 1 : 0 : 0 : 0) \). ?
- To Affine: \( (X : Y : Z : Z^2 : Z^3) \rightarrow [X/Z^2, Y/Z^3] \)
- To Projective: ?
- To Jacobian: \( (X : Y : Z : Z^2 : Z^3) \rightarrow (X : Y : Z) \)
---
## Addition formulas
See EFD[^3].
---
## Scalar multiplication
See TAOCP volume 2, section 4.6.3 for introduction to multiplication/exponentiation and addition/multiplication chains.[^5]
Scalar multiplication on elliptic curves is very similar to usual multiplication/exponentiation in general additive/multiplicative groups, respectively, with some additional structure:
- \(A + B\) when \(A \ne B\) might be a different operation from \(A + A = [2]A\), and also sometimes takes different time.
- negation \(-A\) is easy/fast.
- \(0\) sometimes has a special representation and thus requires special casing.
- sometimes, there exists a fast operation of \(\phi: E(\mathbb{F}_p) \rightarrow E(\mathbb{F}_p) \) with \( \phi(P) = [k]P \) for some \(k \in \mathbb{K}\) computable using some endomorphism on the curve.
Some links:
- [wiki/Addition_chain](https://en.wikipedia.org/wiki/Addition_chain)
- [wiki/Addition-subtraction_chain](https://en.wikipedia.org/wiki/Addition-subtraction_chain)
- [wiki/Exponentiation_by_squaring](https://en.wikipedia.org/wiki/Exponentiation_by_squaring)
- [wiki/Addition-chain_exponentiation](https://en.wikipedia.org/wiki/Addition-chain_exponentiation)
We define:
- \( \lambda(k) = \lfloor \log_2 k \rfloor \) , the size of k
- \( k_i \) , the *i*-th bit of *k*
- \( \nu(k) = \vert \{ i \vert 0 \le i \le \lambda(k), k_i = 1\} \vert \) , the number of nonzero bits in *k*
- \( l(k) \) , the length of NAF of *k*
- \( \sigma(k) = \vert \{ i \vert 0 \le i \le l(k), NAF(k)_i \ne 0 \} \vert \) , the number of nonzero values in the NAF of *k*
- \( C_2 \) , the cost of doubling a point
- \( C_+ \) , the cost of point addition
- \( C_{algo}(k) \) , the cost of scalar multiplication by *k* of the algorithm *algo*
- *Addition chain* of *n*, is a sequence of integers:
\( 1 = a_0, a_1, \ldots, a_r = n\),
where \(a_i = a_j + a_k\) for some \( k \le j < i, \forall i \in \{ 1, 2, \ldots, r \} \)
- *Addition-subtraction chain* of *n*, is a sequence of integers:
\( 1 = a_0, a_1, \ldots, a_r = n\),
where \(a_i = \pm a_j \pm a_k\) for some \( k \le j < i, \forall i \in \{ 1, 2, \ldots, r \} \)
### Double and Add (binary exponentiation)
Uses binary addition chain.
<u>Algorithm 3.26</u> (right-to-left) in GECC[^1]
INPUT: k = (k_{t-1}, ..., k_1, k_0)_2, P ∈ E(F_q).
OUTPUT: [k]P.
1. Q ← ∞.
2. For i from t - 1 downto 0 do
2.1 If k_i = 1 then Q ← Q + P.
2.2 P ← 2P.
3. Return(Q).
<u>Algorithm 3.27</u> (left-to-right) in GECC[^1]
INPUT: k = (k_{t-1}, ..., k_1, k_0)_2, P ∈ E(F_q).
OUTPUT: [k]P.
1. Q ← ∞.
2. For i from t - 1 downto 0 do
2.1 Q ← 2Q.
2.2 If k_i = 1 then Q ← Q + P.
3. Return(Q).
Cost: \( C_{binexp}(k) = \lambda(k)C_2 + (\nu(k) - k_0)C_+\)[^7]
### Double and Add Always (binary exponentiation - constant time)
Uses binary addition chain, but does all the additions/multiplications.
Cost: \( C_{const\_binexp}(k) = \lambda(k) (C_2 + C_+) \) ?
### Binary NAF multiplication (signed binary exponentiation)
**Definition 3.28**[^1] A *non-adjacent form (NAF)* of a positive integer *k* is an expression \( k = \Sigma_{i=0}^{l - 1} k_i 2^i \) where \(k_i \in \{0, ±1\}, k_{l−1} \ne 0\), and no two consecutive digits \( k_i \) are nonzero. The length of the NAF is *l*.
<u>Algorithm 3.30</u> Computing the NAF of a positive integer[^1]
INPUT: A positive integer k.
OUTPUT: NAF(k).
1. i ← 0.
2. While k ≥ 1 do
2.1 If k is odd then:
k_i ← 2 − (k mod 4), k ← k − k_i ;
2.2 Else:
k_i ← 0.
2.3 k ← k/2, i ← i + 1.
3. Return(k_{i−1}, k_{i−2}, . . ., k_1, k_0).
<u>Algorithm 3.31</u> Binary NAF multiplication[^1]
INPUT: Positive integer k, P ∈ E(F_q).
OUTPUT: [k]P.
1. Use Algorithm 3.30 to compute NAF(k).
2. Q ← ∞.
3. For i from l - 1 downto 0 do
3.1 Q ← 2Q.
3.2 If k_i = 1 then Q ← Q + P.
3.3 If k_i = -1 then Q ← Q - P.
4. Return(Q).
Can be made constant time.
Cost: \( C_{bin\_NAF} = l(k)C_2 + \sigma(k)C_+ + \text{NAF computation cost}\) ?
### Sliding window
<u>Algorithm 13.6</u> in HEHCC[^2]
<u>Algorithm 3.38</u> in GECC[^1]
INPUT: Window width w, positive integer k, P ∈ E(F_q).
OUTPUT: [k]P.
1. Use Algorithm 3.30 to compute NAF(k).
2. Compute P_i = [i]P for i ∈ {1, 3, . . ., 2(2^w - (-1)^w)/3 - 1}. //precomputation
3. Q ← ∞, i ← l - 1.
4. While i ≥ 0 do
4.1 If k_i = 0 then:
t ← 1, u ← 0.
Else:
find the largest t ≤ w such that u ← (k_i , . . ., k_{i-t+1}) is odd.
4.3 Q ← [2^t]Q.
4.4 If u > 0 then:
Q ← Q + P_u.
Else:
if u < 0 then Q ← Q - P_{-u}.
4.5 i ← i - t.
5. Return(Q).
### Window NAF multiplication
**Definition 3.32**[^1] Let \( w \ge 2 \) be a positive integer. A *width-w NAF* of a positive integer *k* is an expression \( k = \Sigma_{i=0}^{l - 1} k_i 2^i \) where each nonzero coefficient \( k_i \) is odd, \( \vert k_i \vert < 2^{w - 1}, k_{l-1} \ne 0 \), and at most one of any *w* consecutive digits is nonzero. The length of the width-w NAF is *l*.
<u>Algorithm 3.35</u> Computing the width-w NAF of a positive integer[^1]
INPUT : Window width w, positive integer k.
OUTPUT : NAF-w(k).
1. i ← 0.
2. While k ≥ 1 do
2.1 If k is odd then:
k_i ← k mods 2^w , k ← k − k_i; // k mods 2^w is an integer u, -2^{w-1} ≤ u < 2^{w-1}, u ≡ k mod 2^w
2.2 Else:
k_i ← 0.
2.3 k ← k/2, i ← i + 1.
3. Return(k_{i−1}, k_{i−2}, . . ., k_1, k_0).
<u>Algorithm 3.36</u> in GECC[^1]
INPUT: Window width w, positive integer k, P ∈ E(F_q).
OUTPUT: [k]P.
1. Use Algorithm 3.35 to compute NAF-w(k).
2. Compute P_i = [i]P for i ∈ {1, 3, 5, . . ., 2^{w-1} - 1}. //precomputation
3. Q ← ∞.
4. For i from l - 1 downto 0 do
4.1 Q ← 2Q.
4.2 If k i = 0 then:
If k_i > 0 then Q ← Q + P_{ki} ;
Else Q ← Q - P_{-k_i} .
5. Return(Q).
### Fractional window
[^10] and [^11]
### Montgomery ladder
The same name, Montgomery ladder, is used both for the general ladder idea of exponentiation/scalar-multiplication and the concrete *x*-coordinate only addition formulas and scalar multiplication algorithm on Montgomery curves.
<u>Algorithm 13.35</u> in [^2] (general Montgomery ladder)
INPUT: k = (k_{t-1}, ..., k_1, k_0)_2, P ∈ E(F_q).
OUTPUT: [k]P .
1. P_1 ← P and P_2 ← [2]P
2. For i = t − 2 downto 0 do
2.1 If k_i = 0 then
P_1 ← [2]P_1; P_2 ← P_1 + P_2.
Else
P_1 ← P_1 + P_2; P_2 ← [2]P_2.
3. Return(P_1).
<u>Algorithm 3.</u> in [^8] (general Montgomery ladder)
INPUT: G ∈ E(F_q), k = (1, k_{t−2}, . . . , k_0)2
OUTPUT: Y = kG
R0 ← G; R1 ← [2]G
for j = t − 2 downto 0 do
if (k_j = 0) then
R1 ← R0 + R1; R0 ← [2]R0
else [if (kj = 1)]
R0 ← R0 + R1; R1 ← [2]R1
return R0
Montgomery addition formulas (Projective coordinates/XZ coordinates):[^2]
- Addition (\( n \ne m \)):
\begin{align*}
X_{m+n} &= Z_{m-n}((X_m - Z_m)(X_n + Z_n) + (X_m + Z_m)(X_n - Z_n))^2 \\
Z_{m+n} &= X_{m-n}((X_m - Z_m)(X_n + Z_n) - (X_m + Z_m)(X_n - Z_n))^2
\end{align*}
- Doubling:
\begin{align*}
4X_nZ_n &= (X_n + Z_n)^2 - (X_n - Z_n)^2 \\
X_{2n} &= (X_n + Z_n)^2 (X_n - Z_n)^2 \\
Z_{2n} &= 4X_nZ_n((X_n - Z_n)^2 + ((A + 2)/4)(4X_nZ_n))
\end{align*}
- \( Y \) recovery:
\begin{align*}
x_n &= X_n / Z_n; \qquad x_{n+1} = X_{n+1} / Z_{n+1} \\
y_n &= \frac{(x_1x_n + 1) (x_1 + x_n + 2A) - 2A - (x_1 - x_n)^2x_{n+1}}{2By_1}
\end{align*}
### Brier-Joye (+ Lopez-Dahab) ladder
Not really a scalar-multiplication algorithm. Generalization of the stricter Montgomery ladder(the *x*-coordinate only scalar-mult algo and addition formulas on Montgomery curves) to short Weierstrass elliptic curves over fields of \( \text{char}\ \mathbb{K} \ne 2, 3 \) by Brier & Joye. Furthermore the *x*-coordinate only addition formulas were generalized to curves over \( \mathbb{F}_{2^m} \) by Lopez & Dahab.
Brier-Joye addition formulas (Projective coordinates/XZ coordinates):[^2]
- Addition (\( n \ne m \)):
\begin{align*}
X_{m+n} &= Z_{m-n}(-4a_6Z_mZ_n(X_mZ_n + X_nZ_m) + (X_mX_n - a_4 Z_mZ_n)^2) \\
Z_{m+n} &= X_{m-n}(X_mZ_n - X_nZ_m)^2
\end{align*}
- Doubling:
\begin{align*}
X_{2n} &= (X_n^2 - a_4Z_n^2)^2 - 8 a_6X_nZ_n^3 \\
Z_{2n} &= 4Z_n(X_n(X_n^2 + a_4 Z_n^2) + a_6Z_n^3)
\end{align*}
- \( Y \) recovery:
\begin{align*}
x_n &= X_n / Z_n; \qquad x_{n+1} = X_{n+1} / Z_{n+1} \\
y_n &= \frac{2a_6 +(x_1x_n + a_4) (x_1 + x_n) - (x_1 - x_n)^2x_{n+1}}{2y_1}
\end{align*}
Lopez-Dahab addition formulas (Projective coordinates/XZ coordinates):[^2]
- Addition (\( n \ne m \)):
\begin{align*}
Z_{m+n} &= (X_mZ_n)^2 + (X_nZ_m)^2 \\
X_{m+n} &= Z_{m+n}X_{m-n} + X_mZ_nX_nZ_m
\end{align*}
- Doubling:
\begin{align*}
X_{2n} &= X_n^4 + a_6Z_n^4 = (X_n^2 + \sqrt{a_6}Z_n^2)^2 \\
Z_{2n} &= X_n^2Z_n^2
\end{align*}
- \( Y \) recovery:
\begin{align*}
x_n &= X_n / Z_n; \qquad x_{n+1} = X_{n+1} / Z_{n+1} \\
y_n &= \frac{(x_n + x_1)((x_n + x_1)(x_{n+1} + x_1) + x_1^2 + y_1)}{x_1} + y_1
\end{align*}
### Fixed-base windowing (BGMW)
<u>Algorithm 3.41</u> and <u>Algorithm 3.42</u> in GECC[^1]
### Fixed-base comb
<u>Algorithm 3.44</u> and <u>Algorithm 3.45</u> in GECC[^1]
### Möller-1
> The method may fail in some cases in that an addition step may turn out to be a point doubling or may involve the point at infinity (which both requires special treatment and is potentially clearly visible through side channels). However, we will show that the probability of this happening is negligible if multipliers are appropriately selected: Randomly chosen e is safe.[^9]
## References
[^1]: HANKERSON, Darrel; MENEZES, Alfred J.; VANSTONE, Scott. Guide to Elliptic Curve Cryptography. New York, USA: Springer, 2004. ISBN 9780387218465. Available from DOI: [10.1007/b97644](https://dx.doi.org/10.1007/b97644).
[^2]: COHEN, Henri; FREY, Gerhard; AVANZI, Roberto M.; DOCHE, Christophe; LANGE,
Tanja; NGUYEN, Kim; VERCAUTEREN, Frederik. Handbook of Elliptic and Hyper-
elliptic Curve Cryptography. CRC Press, 2005-07-19. Discrete Mathematics and It’s Applications, no. 34. ISBN 9781584885184.
[^3]: BERNSTEIN, Daniel J.; LANGE, Tanja. Explicit Formulas Database, <https://www.hyperelliptic.org/EFD/>
[^4]: <http://point-at-infinity.org/ecc/>
[^5]: KNUTH, Donald: The Art of Computer Programming, Volume 2: Seminumerical algorithms
[^6]: GORDON, Daniel M.: A survey of fast exponentiation methods.
[^7]: MORAIN, Francois; OLIVOS, Jorge: Speeding up the computations on an elliptic curve using addition-subtraction chains.
[^8]: JOYE, Marc; YEN, Sung-Ming: The Montgomery Powering Ladder.
[^9]: MOLLER, Bodo: Securing Elliptic Curve Point Multiplication against Side-Channel Attacks.
[^10]: MOLLER, Bodo: Improved Techniques for Fast Exponentiation.
[^11]: MOLLER, Bodo: Fractional Windows Revisited: Improved Signed-Digit Representations for Efficient Exponentiation
|