diff options
Diffstat (limited to 'docs/IMPLEMENTATIONS.md')
| -rw-r--r-- | docs/IMPLEMENTATIONS.md | 16 |
1 files changed, 13 insertions, 3 deletions
diff --git a/docs/IMPLEMENTATIONS.md b/docs/IMPLEMENTATIONS.md index b4a4ea8..724150f 100644 --- a/docs/IMPLEMENTATIONS.md +++ b/docs/IMPLEMENTATIONS.md @@ -536,17 +536,27 @@ y_n &= \frac{(x_n + x_1)((x_n + x_1)(x_{n+1} + x_1) + x_1^2 + y_1)}{x_1} + y_1 ## References [^1]: HANKERSON, Darrel; MENEZES, Alfred J.; VANSTONE, Scott. Guide to Elliptic Curve Cryptography. New York, USA: Springer, 2004. ISBN 9780387218465. Available from DOI: [10.1007/b97644](https://dx.doi.org/10.1007/b97644). -[^2]: COHEN, Henri; FREY, Gerhard; AVANZI, Roberto M.; DOCHE, Christophe; LANGE, -Tanja; NGUYEN, Kim; VERCAUTEREN, Frederik. Handbook of Elliptic and Hyper- -elliptic Curve Cryptography. CRC Press, 2005-07-19. Discrete Mathematics and It’s Applications, no. 34. ISBN 9781584885184. + +[^2]: COHEN, Henri; FREY, Gerhard; AVANZI, Roberto M.; DOCHE, Christophe; LANGE, Tanja; NGUYEN, Kim; VERCAUTEREN, Frederik. Handbook of Elliptic and Hyper-elliptic Curve Cryptography. CRC Press, 2005-07-19. Discrete Mathematics and It’s Applications, no. 34. ISBN 9781584885184. + [^3]: BERNSTEIN, Daniel J.; LANGE, Tanja. Explicit Formulas Database, <https://www.hyperelliptic.org/EFD/> + [^4]: <http://point-at-infinity.org/ecc/> + [^5]: KNUTH, Donald: The Art of Computer Programming, Volume 2: Seminumerical algorithms + [^6]: GORDON, Daniel M.: A survey of fast exponentiation methods. + [^7]: MORAIN, Francois; OLIVOS, Jorge: Speeding up the computations on an elliptic curve using addition-subtraction chains. + [^8]: JOYE, Marc; YEN, Sung-Ming: The Montgomery Powering Ladder. + [^9]: MOLLER, Bodo: Securing Elliptic Curve Point Multiplication against Side-Channel Attacks. + [^10]: MOLLER, Bodo: Improved Techniques for Fast Exponentiation. + [^11]: MOLLER, Bodo: Fractional Windows Revisited: Improved Signed-Digit Representations for Efficient Exponentiation. + [^12]: KOYAMA, Kenji; TSURUOKA, Yukio: Speeding up Elliptic Cryptosystems by Using a Signed Binary Window Method. + [^13]: GALLANT, Robert P.; LAMBERT, Robert J.; VANSTONE, Scott A.: Faster point multiplication on elliptic curves with efficient endomorphisms.
\ No newline at end of file |
