aboutsummaryrefslogtreecommitdiff
path: root/analysis/countermeasures/visualize.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'analysis/countermeasures/visualize.ipynb')
-rw-r--r--analysis/countermeasures/visualize.ipynb406
1 files changed, 0 insertions, 406 deletions
diff --git a/analysis/countermeasures/visualize.ipynb b/analysis/countermeasures/visualize.ipynb
deleted file mode 100644
index 709e566..0000000
--- a/analysis/countermeasures/visualize.ipynb
+++ /dev/null
@@ -1,406 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "52a95c74-8fc0-4021-a8e9-8587ff6f1d9e",
- "metadata": {},
- "source": [
- "# Visualizing prob-maps"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "3232df80-2a65-47ce-bc77-6a64f44d2404",
- "metadata": {},
- "outputs": [],
- "source": [
- "import pickle\n",
- "import itertools\n",
- "import glob\n",
- "import gc\n",
- "\n",
- "import matplotlib\n",
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "\n",
- "from tqdm.auto import tqdm, trange\n",
- "from statsmodels.stats.proportion import proportion_confint\n",
- "\n",
- "from pyecsca.ec.mult import *\n",
- "from pyecsca.misc.utils import TaskExecutor\n",
- "\n",
- "from common import *\n",
- "\n",
- "%matplotlib ipympl"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "4273bd5e-0ec6-4e5c-b63e-74cc325a8ece",
- "metadata": {},
- "source": [
- "## Setup\n",
- "Setup some plotting and the computations of prob-maps out of the small scalar data and divisors."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "e89e66dc-4a9b-4320-8612-a8fa9af04b69",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Setup the ticks and colors deterministically.\n",
- "mult_klasses = sorted(list(set(map(lambda mult: mult.klass, all_mults))), key=lambda klass: klass.__name__)\n",
- "mult_kwarg_map = {klass: 0 for klass in mult_klasses}\n",
- "mult_cm_map = {mult: 0 for mult in all_mults}\n",
- "mult_colors = matplotlib.cm.tab20(range(len(mult_klasses)))\n",
- "mult_styles = ['-', '--', '-.', ':', (5, (10, 3)), (0, (5, 1)), (0, (3, 1, 1, 1, 1, 1)), (0, (3, 1, 1, 1)), (0, (1, 1)), (0, (3, 10, 1, 10))]\n",
- "mult_markers = [None, \"o\", \"+\", \"*\", \"^\", \"s\"]\n",
- "colors = {}\n",
- "styles = {}\n",
- "markers = {}\n",
- "for mult in all_mults:\n",
- " color = mult_colors[mult_klasses.index(mult.klass) % len(mult_colors)]\n",
- " style = mult_styles[mult_kwarg_map[mult.klass] % len(mult_styles)]\n",
- " mult_kwarg_map[mult.klass] += 1\n",
- " for cm in (None, \"gsr\", \"additive\", \"multiplicative\", \"euclidean\", \"bt\"):\n",
- " mwc = mult.with_countermeasure(cm)\n",
- " colors[mwc] = color\n",
- " styles[mwc] = style\n",
- " markers[mwc] = mult_markers[mult_cm_map[mult] % len(mult_markers)]\n",
- " mult_cm_map[mult] += 1\n",
- "\n",
- "majticks = np.arange(0, 1, 0.1)\n",
- "minticks = np.arange(0, 1, 0.05)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2596562f-8a6a-4a25-ae82-a6b9562d8a40",
- "metadata": {},
- "source": [
- "## Divisors\n",
- "The cell below contains some interesting divisors for distinguishing scalarmults."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "bab2a086-8b3d-4e76-bf5c-46ea2b617708",
- "metadata": {},
- "outputs": [],
- "source": [
- "from common import divisor_map\n",
- "for d, ds in divisor_map.items():\n",
- " print(f\"{d:<27}\", ds[:3], \"...\", ds[-1:])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "638f8634-1f6e-4844-a796-096611dfbac2",
- "metadata": {},
- "outputs": [],
- "source": [
- "bits = 256\n",
- "num_workers = 28"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "8b008248-a0aa-41fa-933c-f325f8eec31b",
- "metadata": {},
- "source": [
- "## Configuration\n",
- "Select the mults you want to compute the prob-maps for here as well as a set of divisors. It is good to set `all` here, compute the prob-maps for all the divisors, save them and they continue with visualizing them on subsets of divisors."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "4d2a0f19-8275-4db8-b3fc-c930d8ba2177",
- "metadata": {},
- "outputs": [],
- "source": [
- "selected_mults = all_mults\n",
- "divisor_name = \"all\"\n",
- "kind = \"precomp+necessary\"\n",
- "showci = False\n",
- "selected_divisors = divisor_map[divisor_name]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "19d986ab-5fe7-4dd6-b5b5-4e75307217d6",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Optionally, load\n",
- "with open(f\"{divisor_name}_{kind}_distrs.pickle\", \"rb\") as f:\n",
- " distributions_mults = pickle.load(f)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ef5b7a43-74b4-4e72-a3a1-955e175f5297",
- "metadata": {},
- "source": [
- "Now, go over all the divisor sets and visualize them (without the combs) into PNGs in the graphs/ directory."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "5ccc28f6-3994-4a0d-8639-2f6df4dddd26",
- "metadata": {},
- "outputs": [],
- "source": [
- "for mult, probmap in distributions_mults.items():\n",
- " for divisor in sorted(divisor_map[divisor_name]):\n",
- " if divisor not in probmap.probs:\n",
- " print(f\"Missing {mult}, {divisor}\")\n",
- " if probmap.kind is not None and probmap.kind != kind:\n",
- " print(\"Bad kind! Did you forget to load?\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "9b6f169b-07b3-4b27-ba36-8b90418cd072",
- "metadata": {},
- "source": [
- "## Plots (nocomb)\n",
- "Let's visualize all the divisor groups while looking at the multipliers and countermeasures except the comb-like ones."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "906b5d78-b3a4-4cbb-8051-092d411ba735",
- "metadata": {},
- "outputs": [],
- "source": [
- "for divisor_name in divisor_map:\n",
- " plot_mults = list(filter(lambda mult: mult in distributions_mults and mult.klass not in (CombMultiplier, BGMWMultiplier), all_mults_with_ctr))\n",
- " print(divisor_name, \"nocomb\")\n",
- " plot_divisors = sorted(divisor_map[divisor_name])\n",
- " L = len(plot_divisors)\n",
- " N = len(plot_mults)\n",
- " x = list(range(L))\n",
- " \n",
- " fig = plt.figure(figsize=(L/4+10, 24))\n",
- " ax = plt.subplot(111)\n",
- " \n",
- " vals = np.zeros((N, L))\n",
- " n_samples = 0\n",
- " for i, mult in enumerate(plot_mults):\n",
- " probmap = distributions_mults[mult]\n",
- " y_values = [probmap[l] for l in plot_divisors]\n",
- " vals[i,] = y_values\n",
- " ax.plot(x, y_values,\n",
- " color=colors[mult],\n",
- " linestyle=styles[mult],\n",
- " marker=markers[mult],\n",
- " label=str(mult) if mult.countermeasure is None else \"_nolegend_\")\n",
- " if showci:\n",
- " cis = [conf_interval(p, probmap.samples) for p in y_values]\n",
- " ci_low = [ci[0] for ci in cis]\n",
- " ci_high = [ci[1] for ci in cis]\n",
- " ax.fill_between(x, ci_low, ci_high, color=\"black\", alpha=0.1)\n",
- " n_samples += probmap.samples\n",
- " \n",
- " ax.set_title(f\"{divisor_name} ({kind})\\nSamples: \" + str(n_samples//N))\n",
- " \n",
- " #var = np.var(vals, axis=0)\n",
- " #ax.plot(x, var / np.max(var), label=\"cross-mult variance (normalized)\", ls=\"--\", lw=2, color=\"black\")\n",
- " \n",
- " ax.set_xlabel(\"divisors\")\n",
- " ax.set_ylabel(\"error probability\")\n",
- " ax.set_yticks(majticks)\n",
- " ax.set_yticks(minticks, minor=True)\n",
- " ax.set_xticks(x, plot_divisors, rotation=90)\n",
- " \n",
- " ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n",
- " ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n",
- " ax.grid(axis=\"x\", alpha=0.7)\n",
- " plt.tight_layout()\n",
- " box = ax.get_position()\n",
- " ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])\n",
- " \n",
- " ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))\n",
- "\n",
- " fig.savefig(f\"graphs/{kind}-kind/{divisor_name}-nocomb{'+ci' if showci else ''}.pdf\");\n",
- " plt.close()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "4068e7d0-addb-45d0-ba87-e572d4c82fbd",
- "metadata": {},
- "source": [
- "## Plots (allmults)\n",
- "Now, lets also do plots with allmults for all divisor groups."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "9b9aa7a8-0d9d-4ce3-a936-8ced2948f562",
- "metadata": {},
- "outputs": [],
- "source": [
- "for divisor_name in divisor_map:\n",
- " plot_mults = list(filter(lambda mult: mult in distributions_mults, all_mults_with_ctr))\n",
- " print(divisor_name, \"allmults\")\n",
- " plot_divisors = sorted(divisor_map[divisor_name])\n",
- " L = len(plot_divisors)\n",
- " N = len(plot_mults)\n",
- " x = list(range(L))\n",
- " \n",
- " fig = plt.figure(figsize=(L/4+10, 26))\n",
- " ax = plt.subplot(111)\n",
- " \n",
- " vals = np.zeros((N, L))\n",
- " n_samples = 0\n",
- " for i, mult in enumerate(plot_mults):\n",
- " probmap = distributions_mults[mult]\n",
- " y_values = [probmap[l] for l in plot_divisors]\n",
- " vals[i,] = y_values\n",
- " ax.plot(x, y_values,\n",
- " color=colors[mult],\n",
- " linestyle=styles[mult],\n",
- " marker=markers[mult],\n",
- " label=str(mult) if mult.countermeasure is None else \"_nolegend_\")\n",
- " if showci:\n",
- " cis = [conf_interval(p, probmap.samples) for p in y_values]\n",
- " ci_low = [ci[0] for ci in cis]\n",
- " ci_high = [ci[1] for ci in cis]\n",
- " ax.fill_between(x, ci_low, ci_high, color=\"black\", alpha=0.1)\n",
- " n_samples += probmap.samples\n",
- " \n",
- " ax.set_title(f\"{divisor_name} ({kind})\\nSamples(avg): \" + str(n_samples//N))\n",
- " \n",
- " #var = np.var(vals, axis=0)\n",
- " #ax.plot(x, var / np.max(var), label=\"cross-mult variance (normalized)\", ls=\"--\", lw=2, color=\"black\")\n",
- " \n",
- " ax.set_xlabel(\"divisors\")\n",
- " ax.set_ylabel(\"error probability\")\n",
- " ax.set_yticks(majticks)\n",
- " ax.set_yticks(minticks, minor=True)\n",
- " ax.set_xticks(x, plot_divisors, rotation=90)\n",
- " \n",
- " ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n",
- " ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n",
- " ax.grid(axis=\"x\", alpha=0.7)\n",
- " plt.tight_layout()\n",
- " box = ax.get_position()\n",
- " ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])\n",
- " \n",
- " ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))\n",
- "\n",
- " fig.savefig(f\"graphs/{kind}-kind/{divisor_name}-allmults{'+ci' if showci else ''}.pdf\")\n",
- " plt.close()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "df2e236a-4540-4677-a7f1-563c4cc37a3e",
- "metadata": {},
- "source": [
- "## Interactive plot\n",
- "Below you can choose a concrete divisor set and visualize it with all the mults, or just some to your liking."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "b464865d-b169-446e-a9e7-0cead699aee1",
- "metadata": {},
- "outputs": [],
- "source": [
- "#divisor_name = \"powers_of_2_large\"\n",
- "divisor_name = \"feature\"\n",
- "plot_mults = list(filter(lambda mult: mult in distributions_mults, all_mults_with_ctr))\n",
- "#plot_divisors = (61, 65, 111, 165, 1536, 12288) \n",
- "plot_divisors = (55, 65, 165, 248, 3072)\n",
- "L = len(plot_divisors)\n",
- "N = len(plot_mults)\n",
- "x = list(range(L))\n",
- "\n",
- "fig = plt.figure(figsize=(L/4+15, 24))\n",
- "ax = plt.subplot(111)\n",
- "\n",
- "vals = np.zeros((N, L))\n",
- "n_samples = 0\n",
- "for i, mult in enumerate(plot_mults):\n",
- " probmap = distributions_mults[mult]\n",
- " y_values = [probmap[l] for l in plot_divisors]\n",
- " vals[i,] = y_values\n",
- " ax.plot(x, y_values,\n",
- " color=colors[mult],\n",
- " linestyle=styles[mult],\n",
- " marker=markers[mult],\n",
- " label=str(mult) if mult.countermeasure is None else \"_nolegend_\")\n",
- " if showci:\n",
- " cis = [conf_interval(p, probmap.samples) for p in y_values]\n",
- " ci_low = [ci[0] for ci in cis]\n",
- " ci_high = [ci[1] for ci in cis]\n",
- " ax.fill_between(x, ci_low, ci_high, color=\"black\", alpha=0.1)\n",
- " n_samples += probmap.samples\n",
- "\n",
- "ax.set_title(f\"{divisor_name} ({kind})\\nSamples(avg): \" + str(n_samples//N))\n",
- "\n",
- "#var = np.var(vals, axis=0)\n",
- "#ax.plot(x, var / np.max(var), label=\"cross-mult variance (normalized)\", ls=\"--\", lw=2, color=\"black\")\n",
- "\n",
- "ax.set_xlabel(\"divisors\")\n",
- "ax.set_ylabel(\"error probability\")\n",
- "ax.set_yticks(majticks)\n",
- "ax.set_yticks(minticks, minor=True)\n",
- "ax.set_xticks(x, plot_divisors, rotation=90)\n",
- "\n",
- "ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n",
- "ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n",
- "ax.grid(axis=\"x\", alpha=0.7)\n",
- "plt.tight_layout()\n",
- "box = ax.get_position()\n",
- "ax.set_position([box.x0, box.y0, box.width * 0.7, box.height])\n",
- "\n",
- "# Put a legend to the right of the current axis\n",
- "ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))\n",
- "plt.show()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "d68f0bfc-cdf1-4891-b0e5-0b6d1b02ded7",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.12.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}