diff options
| author | J08nY | 2025-04-16 11:51:22 +0200 |
|---|---|---|
| committer | J08nY | 2025-04-16 11:51:22 +0200 |
| commit | ba6e1218096bb47d8816d809293416c24196ce58 (patch) | |
| tree | 51ee6a1af130818d1e48da403441a6b016e14b18 /analysis/ec.py | |
| parent | 8fa738d40fe7b905d12b90dbe9229a3a7d02a9a1 (diff) | |
| download | ECTester-ba6e1218096bb47d8816d809293416c24196ce58.tar.gz ECTester-ba6e1218096bb47d8816d809293416c24196ce58.tar.zst ECTester-ba6e1218096bb47d8816d809293416c24196ce58.zip | |
Diffstat (limited to 'analysis/ec.py')
| -rw-r--r-- | analysis/ec.py | 1010 |
1 files changed, 1010 insertions, 0 deletions
diff --git a/analysis/ec.py b/analysis/ec.py new file mode 100644 index 0000000..4e3244a --- /dev/null +++ b/analysis/ec.py @@ -0,0 +1,1010 @@ +""" +This module is a collection of modules glued together, to provide basic +elliptic curve arithmetic for curves over prime and binary fields. It consists of + - tinyec: https://github.com/alexmgr/tinyec (GPL v3 licensed) + - pyfinite: https://github.com/emin63/pyfinite (MIT licensed) + - modular square root from https://eli.thegreenplace.net/2009/03/07/computing-modular-square-roots-in-python + - and some of my own code: https://github.com/J08nY +""" + +import abc +import random +from functools import reduce, wraps +from os import path + + +def legendre_symbol(a, p): + """ Compute the Legendre symbol a|p using + Euler's criterion. p is a prime, a is + relatively prime to p (if p divides + a, then a|p = 0) + + Returns 1 if a has a square root modulo + p, -1 otherwise. + """ + ls = pow(a, (p - 1) // 2, p) + return -1 if ls == p - 1 else ls + + +def is_prime(n, trials=50): + """ + Miller-Rabin primality test. + """ + s = 0 + d = n - 1 + while d % 2 == 0: + d >>= 1 + s += 1 + assert (2 ** s * d == n - 1) + + def trial_composite(a): + if pow(a, d, n) == 1: + return False + for i in range(s): + if pow(a, 2 ** i * d, n) == n - 1: + return False + return True + + for i in range(trials): # number of trials + a = random.randrange(2, n) + if trial_composite(a): + return False + return True + + +def gcd(a, b): + """Euclid's greatest common denominator algorithm.""" + if abs(a) < abs(b): + return gcd(b, a) + + while abs(b) > 0: + q, r = divmod(a, b) + a, b = b, r + + return a + + +def extgcd(a, b): + """Extended Euclid's greatest common denominator algorithm.""" + if abs(b) > abs(a): + (x, y, d) = extgcd(b, a) + return y, x, d + + if abs(b) == 0: + return 1, 0, a + + x1, x2, y1, y2 = 0, 1, 1, 0 + while abs(b) > 0: + q, r = divmod(a, b) + x = x2 - q * x1 + y = y2 - q * y1 + a, b, x2, x1, y2, y1 = b, r, x1, x, y1, y + + return x2, y2, a + + +def check(func): + @wraps(func) + def method(self, other): + if isinstance(other, int): + other = self.__class__(other, self.field) + if type(self) is type(other): + if self.field == other.field: + return func(self, other) + else: + raise ValueError + else: + raise TypeError + + return method + + +class Mod(object): + """An element x of ℤₙ.""" + + def __init__(self, x: int, n: int): + self.x = x % n + self.field = n + + @check + def __add__(self, other): + return Mod((self.x + other.x) % self.field, self.field) + + @check + def __radd__(self, other): + return self + other + + @check + def __sub__(self, other): + return Mod((self.x - other.x) % self.field, self.field) + + @check + def __rsub__(self, other): + return -self + other + + def __neg__(self): + return Mod(self.field - self.x, self.field) + + def inverse(self): + x, y, d = extgcd(self.x, self.field) + return Mod(x, self.field) + + def __invert__(self): + return self.inverse() + + @check + def __mul__(self, other): + return Mod((self.x * other.x) % self.field, self.field) + + @check + def __rmul__(self, other): + return self * other + + @check + def __truediv__(self, other): + return self * ~other + + @check + def __rtruediv__(self, other): + return ~self * other + + @check + def __floordiv__(self, other): + return self * ~other + + @check + def __rfloordiv__(self, other): + return ~self * other + + @check + def __div__(self, other): + return self.__floordiv__(other) + + @check + def __rdiv__(self, other): + return self.__rfloordiv__(other) + + @check + def __divmod__(self, divisor): + q, r = divmod(self.x, divisor.x) + return Mod(q, self.field), Mod(r, self.field) + + def __int__(self): + return self.x + + def __eq__(self, other): + if type(other) is not Mod: + return False + return self.x == other.x and self.field == other.field + + def __ne__(self, other): + return not self == other + + def __repr__(self): + return str(self.x) + + def __pow__(self, n): + if not isinstance(n, int): + raise TypeError + if n == 0: + return Mod(1, self.field) + if n < 0: + return (~self) ** -n + if n == 1: + return self + if n == 2: + return self * self + + q = self + r = self if n & 1 else Mod(1, self.field) + + i = 2 + while i <= n: + q = (q * q) + if n & i == i: + r = (q * r) + i = i << 1 + return r + + def sqrt(self): + if not is_prime(self.field): + raise NotImplementedError + # Simple cases + if legendre_symbol(self.x, self.field) != 1 or self.x == 0 or self.field == 2: + raise ValueError("Not a quadratic residue.") + if self.field % 4 == 3: + return self ** ((self.field + 1) // 4) + + a = self.x + p = self.field + s = p - 1 + e = 0 + while s % 2 == 0: + s /= 2 + e += 1 + + n = 2 + while legendre_symbol(n, p) != -1: + n += 1 + + x = pow(a, (s + 1) / 2, p) + b = pow(a, s, p) + g = pow(n, s, p) + r = e + + while True: + t = b + m = 0 + for m in range(r): + if t == 1: + break + t = pow(t, 2, p) + + if m == 0: + return Mod(x, p) + + gs = pow(g, 2 ** (r - m - 1), p) + g = (gs * gs) % p + x = (x * gs) % p + b = (b * g) % p + r = m + + +class FField(object): + """ + The FField class implements a binary field. + """ + + def __init__(self, n, gen): + """ + This method constructs the field GF(2^n). It takes two + required arguments, n and gen, + representing the coefficients of the generator polynomial + (of degree n) to use. + Note that you can look at the generator for the field object + F by looking at F.generator. + """ + + self.n = n + if len(gen) != n + 1: + full_gen = [0] * (n + 1) + for i in gen: + full_gen[i] = 1 + gen = full_gen[::-1] + self.generator = self.to_element(gen) + self.unity = 1 + + def add(self, x, y): + """ + Adds two field elements and returns the result. + """ + + return x ^ y + + def subtract(self, x, y): + """ + Subtracts the second argument from the first and returns + the result. In fields of characteristic two this is the same + as the Add method. + """ + return x ^ y + + def multiply(self, f, v): + """ + Multiplies two field elements (modulo the generator + self.generator) and returns the result. + + See MultiplyWithoutReducing if you don't want multiplication + modulo self.generator. + """ + m = self.multiply_no_reduce(f, v) + return self.full_division(m, self.generator, self.find_degree(m), self.n)[1] + + def inverse(self, f): + """ + Computes the multiplicative inverse of its argument and + returns the result. + """ + return self.ext_gcd(self.unity, f, self.generator, self.find_degree(f), self.n)[1] + + def divide(self, f, v): + """ + Divide(f,v) returns f * v^-1. + """ + return self.multiply(f, self.inverse(v)) + + def exponentiate(self, f, n): + """ + Exponentiate(f, n) returns f^n. + """ + if not isinstance(n, int): + raise TypeError + if n == 0: + return self.unity + if n < 0: + f = self.inverse(f) + n = -n + if n == 1: + return f + if n == 2: + return self.multiply(f, f) + + q = f + r = f if n & 1 else self.unity + + i = 2 + while i <= n: + q = self.multiply(q, q) + if n & i == i: + r = self.multiply(q, r) + i = i << 1 + return r + + def sqrt(self, f): + return self.exponentiate(f, (2 ** self.n) - 1) + + def trace(self, f): + t = f + for _ in range(1, self.n): + t = self.add(self.multiply(t, t), f) + return t + + def half_trace(self, f): + if self.n % 2 != 1: + raise ValueError + h = f + for _ in range(1, (self.n - 1) // 2): + h = self.multiply(h, h) + h = self.add(self.multiply(h, h), f) + return h + + def find_degree(self, v): + """ + Find the degree of the polynomial representing the input field + element v. This takes O(degree(v)) operations. + + A faster version requiring only O(log(degree(v))) + could be written using binary search... + """ + if v: + return v.bit_length() - 1 + else: + return 0 + + def multiply_no_reduce(self, f, v): + """ + Multiplies two field elements and does not take the result + modulo self.generator. You probably should not use this + unless you know what you are doing; look at Multiply instead. + """ + + result = 0 + mask = self.unity + for i in range(self.n + 1): + if mask & v: + result = result ^ f + f = f << 1 + mask = mask << 1 + return result + + def ext_gcd(self, d, a, b, a_degree, b_degree): + """ + Takes arguments (d,a,b,aDegree,bDegree) where d = gcd(a,b) + and returns the result of the extended Euclid algorithm + on (d,a,b). + """ + if b == 0: + return a, self.unity, 0 + else: + (floorADivB, aModB) = self.full_division(a, b, a_degree, b_degree) + (d, x, y) = self.ext_gcd(d, b, aModB, b_degree, self.find_degree(aModB)) + return d, y, self.subtract(x, self.multiply(floorADivB, y)) + + def full_division(self, f, v, f_degree, v_degree): + """ + Takes four arguments, f, v, fDegree, and vDegree where + fDegree and vDegree are the degrees of the field elements + f and v represented as a polynomials. + This method returns the field elements a and b such that + + f(x) = a(x) * v(x) + b(x). + + That is, a is the divisor and b is the remainder, or in + other words a is like floor(f/v) and b is like f modulo v. + """ + + result = 0 + mask = self.unity << f_degree + for i in range(f_degree, v_degree - 1, -1): + if mask & f: + result = result ^ (self.unity << (i - v_degree)) + f = self.subtract(f, v << (i - v_degree)) + mask = mask >> self.unity + return result, f + + def coefficients(self, f): + """ + Show coefficients of input field element represented as a + polynomial in decreasing order. + """ + + result = [] + for i in range(self.n, -1, -1): + if (self.unity << i) & f: + result.append(1) + else: + result.append(0) + + return result + + def polynomial(self, f): + """ + Show input field element represented as a polynomial. + """ + + f_degree = self.find_degree(f) + result = '' + + if f == 0: + return '0' + + for i in range(f_degree, 0, -1): + if (1 << i) & f: + result = result + (' x^' + repr(i)) + if 1 & f: + result = result + ' ' + repr(1) + return result.strip().replace(' ', ' + ') + + def to_element(self, l): + """ + This method takes as input a binary list (e.g. [1, 0, 1, 1]) + and converts it to a decimal representation of a field element. + For example, [1, 0, 1, 1] is mapped to 8 | 2 | 1 = 11. + + Note if the input list is of degree >= to the degree of the + generator for the field, then you will have to call take the + result modulo the generator to get a proper element in the + field. + """ + + temp = map(lambda a, b: a << b, l, range(len(l) - 1, -1, -1)) + return reduce(lambda a, b: a | b, temp) + + def __str__(self): + return "F_(2^{}): {}".format(self.n, self.polynomial(self.generator)) + + def __repr__(self): + return str(self) + + +class FElement(object): + """ + This class provides field elements which overload the + +,-,*,%,//,/ operators to be the appropriate field operation. + Note that before creating FElement objects you must first + create an FField object. + """ + + def __init__(self, f, field): + """ + The constructor takes two arguments, field, and e where + field is an FField object and e is an integer representing + an element in FField. + + The result is a new FElement instance. + """ + self.f = f + self.field = field + + @check + def __add__(self, other): + return FElement(self.field.add(self.f, other.f), self.field) + + @check + def __sub__(self, other): + return FElement(self.field.add(self.f, other.f), self.field) + + def __neg__(self): + return self + + @check + def __mul__(self, other): + return FElement(self.field.multiply(self.f, other.f), self.field) + + @check + def __floordiv__(self, o): + return FElement(self.field.full_division(self.f, o.f, + self.field.find_degree(self.f), + self.field.find_degree(o.f))[0], self.field) + + @check + def __truediv__(self, other): + return FElement(self.field.divide(self.f, other.f), self.field) + + def __div__(self, *args, **kwargs): + return self.__truediv__(*args, **kwargs) + + @check + def __divmod__(self, other): + d, m = self.field.full_division(self.f, other.f, + self.field.find_degree(self.f), + self.field.find_degree(other.f)) + return FElement(d, self.field), FElement(m, self.field) + + def inverse(self): + return FElement(self.field.inverse(self.f), self.field) + + def __invert__(self): + return self.inverse() + + def sqrt(self): + return FElement(self.field.sqrt(self.f), self.field) + + def trace(self): + return FElement(self.field.trace(self.f), self.field) + + def half_trace(self): + return FElement(self.field.half_trace(self.f), self.field) + + def __pow__(self, power, modulo=None): + return FElement(self.field.exponentiate(self.f, power), self.field) + + def __str__(self): + return str(int(self)) + + def __repr__(self): + return str(self) + + def __int__(self): + return self.f + + def __eq__(self, other): + if not isinstance(other, FElement): + return False + if self.field != other.field: + return False + return self.f == other.f + + +class Curve(object): + __metaclass__ = abc.ABCMeta + + def __init__(self, field, a, b, group, name=None): + self.field = field + if name is None: + name = "undefined" + self.name = name + self.a = a + self.b = b + self.group = group + self.g = Point(self, self.group.g[0], self.group.g[1]) + + @abc.abstractmethod + def is_singular(self): + ... + + @abc.abstractmethod + def on_curve(self, x, y): + ... + + @abc.abstractmethod + def add(self, x1, y1, x2, y2): + ... + + @abc.abstractmethod + def dbl(self, x, y): + ... + + @abc.abstractmethod + def neg(self, x, y): + ... + + @abc.abstractmethod + def encode_point(self, point, compressed=False): + ... + + @abc.abstractmethod + def decode_point(self, byte_data): + ... + + def bit_size(self): + return self.group.n.bit_length() + + def byte_size(self): + return (self.bit_size() + 7) // 8 + + @abc.abstractmethod + def field_size(self): + ... + + def __eq__(self, other): + if not isinstance(other, Curve): + return False + return self.field == other.field and self.a == other.a and self.b == other.b and self.group == other.group + + def __repr__(self): + return str(self) + + +class CurveFp(Curve): + def is_singular(self): + return (4 * self.a ** 3 + 27 * self.b ** 2) == 0 + + def on_curve(self, x, y): + return (y ** 2 - x ** 3 - self.a * x - self.b) == 0 + + def add(self, x1, y1, x2, y2): + lm = (y2 - y1) / (x2 - x1) + x3 = lm ** 2 - x1 - x2 + y3 = lm * (x1 - x3) - y1 + return x3, y3 + + def dbl(self, x, y): + lm = (3 * x ** 2 + self.a) / (2 * y) + x3 = lm ** 2 - (2 * x) + y3 = lm * (x - x3) - y + return x3, y3 + + def mul(self, k, x, y, z=1): + def _add(x1, y1, z1, x2, y2, z2): + yz = y1 * z2 + xz = x1 * z2 + zz = z1 * z2 + u = y2 * z1 - yz + uu = u ** 2 + v = x2 * z1 - xz + vv = v ** 2 + vvv = v * vv + r = vv * xz + a = uu * zz - vvv - 2 * r + x3 = v * a + y3 = u * (r - a) - vvv * yz + z3 = vvv * zz + return x3, y3, z3 + + def _dbl(x1, y1, z1): + xx = x1 ** 2 + zz = z1 ** 2 + w = self.a * zz + 3 * xx + s = 2 * y1 * z1 + ss = s ** 2 + sss = s * ss + r = y1 * s + rr = r ** 2 + b = (x1 + r) ** 2 - xx - rr + h = w ** 2 - 2 * b + x3 = h * s + y3 = w * (b - h) - 2 * rr + z3 = sss + return x3, y3, z3 + r0 = (x, y, z) + r1 = _dbl(x, y, z) + for i in range(k.bit_length() - 2, -1, -1): + if k & (1 << i): + r0 = _add(*r0, *r1) + r1 = _dbl(*r1) + else: + r1 = _add(*r0, *r1) + r0 = _dbl(*r0) + rx, ry, rz = r0 + rzi = ~rz + return rx * rzi, ry * rzi + + def neg(self, x, y): + return x, -y + + def field_size(self): + return self.field.bit_length() + + def encode_point(self, point, compressed=False): + byte_size = (self.field_size() + 7) // 8 + if not compressed: + return bytes((0x04,)) + int(point.x).to_bytes(byte_size, byteorder="big") + int( + point.y).to_bytes(byte_size, byteorder="big") + else: + yp = int(point.y) & 1 + pc = bytes((0x02 | yp,)) + return pc + int(point.x).to_bytes(byte_size, byteorder="big") + + def decode_point(self, byte_data): + if byte_data[0] == 0 and len(byte_data) == 1: + return Inf(self) + byte_size = (self.field_size() + 7) // 8 + if byte_data[0] in (0x04, 0x06): + if len(byte_data) != 1 + byte_size * 2: + raise ValueError + x = Mod(int.from_bytes(byte_data[1:byte_size + 1], byteorder="big"), self.field) + y = Mod(int.from_bytes(byte_data[byte_size + 1:], byteorder="big"), self.field) + return Point(self, x, y) + elif byte_data[0] in (0x02, 0x03): + if len(byte_data) != 1 + byte_size: + raise ValueError + x = Mod(int.from_bytes(byte_data[1:byte_size + 1], byteorder="big"), self.field) + rhs = x ** 3 + self.a * x + self.b + sqrt = rhs.sqrt() + yp = byte_data[0] & 1 + if int(sqrt) & 1 == yp: + return Point(self, x, sqrt) + else: + return Point(self, x, self.field - sqrt) + raise ValueError + + def __str__(self): + return "\"{}\": y^2 = x^3 + {}x + {} over {}".format(self.name, self.a, self.b, self.field) + + +class CurveF2m(Curve): + def is_singular(self): + return self.b == 0 + + def on_curve(self, x, y): + return (y ** 2 + x * y - x ** 3 - self.a * x ^ 2 - self.b) == 0 + + def add(self, x1, y1, x2, y2): + lm = (y1 + y2) / (x1 + x2) + x3 = lm ** 2 + lm + x1 + x2 + self.a + y3 = lm * (x1 + x3) + x3 + y1 + return x3, y3 + + def dbl(self, x, y): + lm = x + y / x + x3 = lm ** 2 + lm + self.a + y3 = x ** 2 + lm * x3 + x3 + return x3, y3 + + def mul(self, k, x, y, z=1): + def _add(x1, y1, z1, x2, y2, z2): + a = x1 * z2 + b = x2 * z1 + c = a ** 2 + d = b ** 2 + e = a + b + f = c + d + g = y1 * (z2 ** 2) + h = y2 * (z1 ** 2) + i = g + h + j = i * e + z3 = f * z1 * z2 + x3 = a * (h + d) + b * (c + g) + y3 = (a * j + f * g) * f + (j + z3) * x3 + return x3, y3, z3 + + def _dbl(x1, y1, z1): + a = x1 * z1 + b = x1 * x1 + c = b + y1 + d = a * c + z3 = a * a + x3 = c ** 2 + d + self.a * z3 + y3 = (z3 + d) * x3 + b ** 2 * z3 + return x3, y3, z3 + r0 = (x, y, z) + r1 = _dbl(x, y, z) + for i in range(k.bit_length() - 2, -1, -1): + if k & (1 << i): + r0 = _add(*r0, *r1) + r1 = _dbl(*r1) + else: + r1 = _add(*r0, *r1) + r0 = _dbl(*r0) + rx, ry, rz = r0 + rzi = ~rz + return rx * rzi, ry * (rzi ** 2) + + def neg(self, x, y): + return x, x + y + + def field_size(self): + return self.field.n + + def encode_point(self, point, compressed=False): + byte_size = (self.field_size() + 7) // 8 + if not compressed: + return bytes((0x04,)) + int(point.x).to_bytes(byte_size, byteorder="big") + int( + point.y).to_bytes(byte_size, byteorder="big") + else: + if int(point.x) == 0: + yp = 0 + else: + yp = int(point.y * point.x.inverse()) + pc = bytes((0x02 | yp,)) + return pc + int(point.x).to_bytes(byte_size, byteorder="big") + + def decode_point(self, byte_data): + if byte_data[0] == 0 and len(byte_data) == 1: + return Inf(self) + byte_size = (self.field_size() + 7) // 8 + if byte_data[0] in (0x04, 0x06): + if len(byte_data) != 1 + byte_size * 2: + raise ValueError + x = FElement(int.from_bytes(byte_data[1:byte_size + 1], byteorder="big"), self.field) + y = FElement(int.from_bytes(byte_data[byte_size + 1:], byteorder="big"), self.field) + return Point(self, x, y) + elif byte_data[0] in (0x02, 0x03): + if self.field.n % 2 != 1: + raise NotImplementedError + x = FElement(int.from_bytes(byte_data[1:byte_size + 1], byteorder="big"), self.field) + yp = byte_data[0] & 1 + if int(x) == 0: + y = self.b ** (2 ** (self.field.n - 1)) + else: + rhs = x + self.a + self.b * x ** (-2) + z = rhs.half_trace() + if z ** 2 + z != rhs: + raise ValueError + if int(z) & 1 != yp: + z += 1 + y = x * z + return Point(self, x, y) + raise ValueError + + def __str__(self): + return "\"{}\" => y^2 + xy = x^3 + {}x^2 + {} over {}".format(self.name, self.a, self.b, + self.field) + + +class SubGroup(object): + def __init__(self, g, n, h): + self.g = g + self.n = n + self.h = h + + def __eq__(self, other): + if not isinstance(other, SubGroup): + return False + return self.g == other.g and self.n == other.n and self.h == other.h + + def __str__(self): + return "Subgroup => generator {}, order: {}, cofactor: {}".format(self.g, self.n, self.h) + + def __repr__(self): + return str(self) + + +class Inf(object): + def __init__(self, curve, x=None, y=None): + self.x = x + self.y = y + self.curve = curve + + def __eq__(self, other): + if not isinstance(other, Inf): + return False + return self.curve == other.curve + + def __ne__(self, other): + return not self.__eq__(other) + + def __neg__(self): + return self + + def __add__(self, other): + if isinstance(other, Inf): + return Inf(self.curve) + if isinstance(other, Point): + return other + raise TypeError( + "Unsupported operand type(s) for +: '%s' and '%s'" % (self.__class__.__name__, + other.__class__.__name__)) + + def __radd__(self, other): + return self + other + + def __sub__(self, other): + if isinstance(other, Inf): + return Inf(self.curve) + if isinstance(other, Point): + return other + raise TypeError( + "Unsupported operand type(s) for +: '%s' and '%s'" % (self.__class__.__name__, + other.__class__.__name__)) + + def __str__(self): + return "{} on {}".format(self.__class__.__name__, self.curve) + + def __repr__(self): + return str(self) + + +class Point(object): + def __init__(self, curve, x, y): + self.curve = curve + self.x = x + self.y = y + + def __eq__(self, other): + if not isinstance(other, Point): + return False + return self.x == other.x and self.y == other.y and self.curve == other.curve + + def __ne__(self, other): + return not self.__eq__(other) + + def __neg__(self): + return Point(self.curve, *self.curve.neg(self.x, self.y)) + + def __add__(self, other): + if isinstance(other, Inf): + return self + if isinstance(other, Point): + if self.curve != other.curve: + raise ValueError("Cannot add points belonging to different curves") + if self == -other: + return Inf(self.curve) + elif self == other: + return Point(self.curve, *self.curve.dbl(self.x, self.y)) + else: + return Point(self.curve, *self.curve.add(self.x, self.y, other.x, other.y)) + else: + raise TypeError( + "Unsupported operand type(s) for +: '{}' and '{}'".format( + self.__class__.__name__, + other.__class__.__name__)) + + def __radd__(self, other): + return self + other + + def __sub__(self, other): + return self + (-other) + + def __rsub__(self, other): + return self - other + + def __mul__(self, other): + if isinstance(other, int): + if other % self.curve.group.n == 0: + return Inf(self.curve) + if other < 0: + other = -other + addend = -self + else: + addend = self + if hasattr(self.curve, "mul") and callable(getattr(self.curve, "mul")): + return Point(self.curve, *self.curve.mul(other, addend.x, addend.y)) + else: + result = Inf(self.curve) + # Iterate over all bits starting by the LSB + for bit in reversed([int(i) for i in bin(abs(other))[2:]]): + if bit == 1: + result += addend + addend += addend + return result + else: + raise TypeError( + "Unsupported operand type(s) for *: '%s' and '%s'" % (other.__class__.__name__, + self.__class__.__name__)) + + def __rmul__(self, other): + return self * other + + def __str__(self): + return "({}, {}) on {}".format(self.x, self.y, self.curve) + + def __repr__(self): + return str(self) + + +def load_curve(file, name=None): + data = file.read() + parts = list(map(lambda x: int(x, 16), data.split(","))) + if len(parts) == 7: + p, a, b, gx, gy, n, h = parts + g = (Mod(gx, p), Mod(gy, p)) + group = SubGroup(g, n, h) + return CurveFp(p, Mod(a, p), Mod(b, p), group, name) + elif len(parts) == 10: + m, e1, e2, e3, a, b, gx, gy, n, h = parts + poly = [m, e1, e2, e3, 0] + field = FField(m, poly) + g = (FElement(gx, field), FElement(gy, field)) + group = SubGroup(g, n, h) + return CurveF2m(field, FElement(a, field), FElement(b, field), group, name) + else: + raise ValueError("Invalid curve data") + + +def get_curve(idd): + cat, i = idd.split("/") + with open(path.join("..", "src", "cz", "crcs", "ectester", "data", cat, i + ".csv"), "r") as f: + return load_curve(f, i) + |
