1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
from copy import copy
from typing import Mapping, Tuple, Optional, List
from pyecsca.ec.naf import naf, wnaf
from .context import Context
from .curve import EllipticCurve
from .formula import Formula, AdditionFormula, DoublingFormula, ScalingFormula, LadderFormula
from .point import Point
class ScalarMultiplier(object):
curve: EllipticCurve
formulas: Mapping[str, Formula]
context: Context
_point: Point = None
def __init__(self, curve: EllipticCurve, ctx: Context = None, **formulas: Optional[Formula]):
for formula in formulas.values():
if formula is not None and formula.coordinate_model is not curve.coordinate_model:
raise ValueError
self.curve = curve
if ctx:
self.context = ctx
else:
self.context = Context()
self.formulas = dict(filter(lambda pair: pair[1] is not None, formulas.items()))
def _add(self, one: Point, other: Point) -> Point:
if "add" not in self.formulas:
raise NotImplementedError
if one == self.curve.neutral:
return copy(other)
if other == self.curve.neutral:
return copy(one)
return self.context.execute(self.formulas["add"], one, other, **self.curve.parameters)[0]
def _dbl(self, point: Point) -> Point:
if "dbl" not in self.formulas:
raise NotImplementedError
if point == self.curve.neutral:
return copy(point)
return self.context.execute(self.formulas["dbl"], point, **self.curve.parameters)[0]
def _scl(self, point: Point) -> Point:
if "scl" not in self.formulas:
raise NotImplementedError
return self.context.execute(self.formulas["scl"], point, **self.curve.parameters)[0]
def _ladd(self, start: Point, to_dbl: Point, to_add: Point) -> Tuple[Point, ...]:
if "ladd" not in self.formulas:
raise NotImplementedError
return self.context.execute(self.formulas["ladd"], start, to_dbl, to_add,
**self.curve.parameters)
def _neg(self, point: Point) -> Point:
# TODO
raise NotImplementedError
def init(self, point: Point):
self._point = point
def _init_multiply(self, point: Optional[Point]) -> Point:
if point is None:
if self._point is None:
raise ValueError
else:
if self._point != point:
self.init(point)
return self._point
def multiply(self, scalar: int, point: Optional[Point] = None) -> Point:
raise NotImplementedError
class LTRMultiplier(ScalarMultiplier):
always: bool
def __init__(self, curve: EllipticCurve, add: AdditionFormula, dbl: DoublingFormula,
scl: ScalingFormula = None,
ctx: Context = None, always: bool = False):
super().__init__(curve, ctx, add=add, dbl=dbl, scl=scl)
self.always = always
def multiply(self, scalar: int, point: Optional[Point] = None) -> Point:
q = self._init_multiply(point)
r = copy(self.curve.neutral)
for i in range(scalar.bit_length(), -1, -1):
r = self._dbl(r)
if scalar & (1 << i) != 0:
r = self._add(r, q)
elif self.always:
self._add(r, q)
if "scl" in self.formulas:
r = self._scl(r)
return r
class RTLMultiplier(ScalarMultiplier):
always: bool
def __init__(self, curve: EllipticCurve, add: AdditionFormula, dbl: DoublingFormula,
scl: ScalingFormula = None,
ctx: Context = None, always: bool = False):
super().__init__(curve, ctx, add=add, dbl=dbl, scl=scl)
self.always = always
def multiply(self, scalar: int, point: Optional[Point] = None) -> Point:
q = self._init_multiply(point)
r = copy(self.curve.neutral)
while scalar > 0:
if scalar & 1 != 0:
r = self._add(r, q)
elif self.always:
self._add(r, q)
q = self._dbl(q)
scalar >>= 1
if "scl" in self.formulas:
r = self._scl(r)
return r
class LadderMultiplier(ScalarMultiplier):
def __init__(self, curve: EllipticCurve, ladd: LadderFormula, scl: ScalingFormula = None,
ctx: Context = None):
super().__init__(curve, ctx, ladd=ladd, scl=scl)
def multiply(self, scalar: int, point: Optional[Point] = None) -> Point:
q = self._init_multiply(point)
p0 = copy(q)
p1 = self._ladd(self.curve.neutral, q, q)[1]
for i in range(scalar.bit_length(), -1, -1):
if scalar & i != 0:
p0, p1 = self._ladd(q, p1, p0)
else:
p0, p1 = self._ladd(q, p0, p1)
if "scl" in self.formulas:
p0 = self._scl(p0)
return p0
class BinaryNAFMultiplier(ScalarMultiplier):
_point_neg: Point
def __init__(self, curve: EllipticCurve, add: AdditionFormula, dbl: DoublingFormula,
scl: ScalingFormula = None,
ctx: Context = None):
super().__init__(curve, ctx, add=add, dbl=dbl, scl=scl)
def init(self, point: Point):
super().init(point)
self._point_neg = self._neg(point)
def multiply(self, scalar: int, point: Optional[Point] = None) -> Point:
self._init_multiply(point)
bnaf = naf(scalar)
q = copy(self.curve.neutral)
for val in bnaf:
q = self._dbl(q)
if val == 1:
q = self._add(q, self._point)
if val == -1:
q = self._add(q, self._point_neg)
return q
class WindowNAFMultiplier(ScalarMultiplier):
_points: List[Point]
_width: int
def __init__(self, curve: EllipticCurve, add: AdditionFormula, dbl: DoublingFormula, width: int,
scl: ScalingFormula = None,
ctx: Context = None):
super().__init__(curve, ctx, add=add, dbl=dbl, scl=scl)
self._width = width
def init(self, point: Point):
self._point = point
# TODO: precompute {1, 3, 5, upto 2^(w-1)-1}
def multiply(self, scalar: int, point: Optional[Point] = None):
self._init_multiply(point)
naf = wnaf(scalar, self._width)
q = copy(self.curve.neutral)
for val in naf:
q = self._dbl(q)
if val > 0:
q = self._add(q, self._points[val])
elif val < 0:
neg = self._neg(self._points[-val])
q = self._add(q, neg)
return q
|