import numpy as np import pytest from importlib_resources import files, as_file import test.data.sca from pyecsca.sca import ( align_correlation, align_peaks, align_sad, align_dtw_scale, align_dtw, Trace, InspectorTraceSet, ) def test_align(): first_arr = np.array( [10, 64, 120, 64, 10, 10, 10, 10, 10], dtype=np.dtype("i1") ) second_arr = np.array([10, 10, 10, 10, 50, 80, 50, 20], dtype=np.dtype("i1")) third_arr = np.array([70, 30, 42, 35, 28, 21, 15, 10, 5], dtype=np.dtype("i1")) a = Trace(first_arr) b = Trace(second_arr) c = Trace(third_arr) result, offsets = align_correlation( a, b, c, reference_offset=1, reference_length=3, max_offset=4, min_correlation=0.65, ) assert result is not None assert len(result) == 2 np.testing.assert_equal(result[0].samples, first_arr) np.testing.assert_equal( result[1].samples, np.array([10, 50, 80, 50, 20, 0, 0, 0], dtype=np.dtype("i1")), ) assert len(offsets) == 2 assert offsets[0] == 0 assert offsets[1] == 3 @pytest.mark.slow def test_large_align(): with as_file(files(test.data.sca).joinpath("example.trs")) as path: example = InspectorTraceSet.read(path) result, _ = align_correlation( *example, reference_offset=100000, reference_length=20000, max_offset=15000 ) assert result is not None @pytest.mark.slow def test_large_dtw_align(): with as_file(files(test.data.sca).joinpath("example.trs")) as path: example = InspectorTraceSet.read(path) result = align_dtw(*example[:5]) assert result is not None def test_peak_align(): first_arr = np.array( [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10], dtype=np.dtype("i1") ) second_arr = np.array( [10, 10, 10, 10, 90, 40, 50, 20, 10, 17, 16, 10], dtype=np.dtype("i1") ) a = Trace(first_arr) b = Trace(second_arr) result, _ = align_peaks( a, b, reference_offset=2, reference_length=5, max_offset=3 ) assert np.argmax(result[0].samples) == np.argmax(result[1].samples) def test_sad_align(): first_arr = np.array( [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10], dtype=np.dtype("i1") ) second_arr = np.array( [10, 10, 90, 40, 50, 20, 10, 17, 16, 10, 10], dtype=np.dtype("i1") ) a = Trace(first_arr) b = Trace(second_arr) result, _ = align_sad( a, b, reference_offset=2, reference_length=5, max_offset=3 ) assert len(result) == 2 def test_dtw_align(plot): first_arr = np.array( [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10, 8, 10, 12, 10, 13, 9], dtype=np.dtype("i1"), ) second_arr = np.array( [10, 10, 60, 40, 90, 20, 10, 17, 16, 10, 10, 10, 10, 10, 17, 12, 10], dtype=np.dtype("i1"), ) third_arr = np.array( [10, 30, 20, 21, 15, 8, 10, 47, 21, 77, 20, 28, 25, 10, 9, 10, 15, 9, 10], dtype=np.dtype("i1"), ) a = Trace(first_arr) b = Trace(second_arr) c = Trace(third_arr) result = align_dtw(a, b, c) assert np.argmax(result[0].samples) == np.argmax(result[1].samples) assert np.argmax(result[1].samples) == np.argmax(result[2].samples) plot(*result) result_other = align_dtw(a, b, c, fast=False) assert np.argmax(result_other[0].samples) == np.argmax(result_other[1].samples) assert np.argmax(result_other[1].samples) == np.argmax(result_other[2].samples) plot(*result_other) def test_dtw_align_scale(plot): first_arr = np.array( [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10, 8, 10, 12, 10, 13, 9], dtype=np.dtype("f2"), ) second_arr = np.array( [10, 10, 60, 40, 90, 20, 10, 17, 16, 10, 10, 10, 10, 10, 17, 12, 10], dtype=np.dtype("f2"), ) third_arr = np.array( [10, 30, 20, 21, 15, 8, 10, 37, 21, 77, 20, 28, 25, 10, 9, 10, 15, 9, 10], dtype=np.dtype("f2"), ) a = Trace(first_arr) b = Trace(second_arr) c = Trace(third_arr) result = align_dtw_scale(a, b, c) assert np.argmax(result[0].samples) == np.argmax(result[1].samples) assert np.argmax(result[1].samples) == np.argmax(result[2].samples) plot(*result) result_other = align_dtw_scale(a, b, c, fast=False) assert np.argmax(result_other[0].samples) == np.argmax(result_other[1].samples) assert np.argmax(result_other[1].samples) == np.argmax(result_other[2].samples) plot(*result_other)