from typing import Tuple, Dict from public import public from pyecsca.ec.mult import ScalarMultiplier from pyecsca.ec.point import Point from pyecsca.ec.context import DefaultContext, local from pyecsca.ec.params import DomainParameters from pyecsca.sca.trace import Trace from pyecsca.sca.trace.combine import average, subtract from pyecsca.sca.trace.process import absolute from pyecsca.sca.trace.plot import plot_trace @public class DPA: traces: list[Trace] points: list[Point] mult: ScalarMultiplier params: DomainParameters doms: Dict[str, list[Trace]] def __init__( self, points: list[Point], traces: list[Trace], mult: ScalarMultiplier, params: DomainParameters, ): """ :param points: Points on which scalar multiplication with secret scalar was performed :param traces: Power traces corresponding to the scalar multiplication for each of the points :param mult: Scalar multiplier used :param params: Domain parameters used """ self.points = points self.traces = traces self.mult = mult self.params = params self.doms = {"guess_one": [], "guess_zero": []} def compute_split_point( self, guessed_scalar: int, target_bit: int, point: Point ) -> Point: with local(DefaultContext()) as ctx: self.mult.init(self.params, point) self.mult.multiply(guessed_scalar) action_index = -1 for bit in bin(guessed_scalar)[2 : target_bit + 2]: if bit == "1": action_index += 2 elif bit == "0": action_index += 1 result = ctx.actions[0].get_by_index([action_index]).action return result.output_points[0] def split_traces( self, guessed_scalar: int, target_bit: int ) -> Tuple[list[Trace], list[Trace]]: one_traces = [] zero_traces = [] for i in range(len(self.points)): # TODO: works only if the computed split point has "X" coordinate split_value = self.compute_split_point( guessed_scalar, target_bit, self.points[i] ).X if int(split_value) & 1 == 1: one_traces.append(self.traces[i]) elif int(split_value) & 1 == 0: zero_traces.append(self.traces[i]) return one_traces, zero_traces def calculate_difference_of_means( self, one_traces: list[Trace], zero_traces: list[Trace] ) -> Trace: avg_ones = average(*one_traces) avg_zeros = average(*zero_traces) return subtract(avg_ones, avg_zeros) # type: ignore def plot_difference_of_means(self, dom): return plot_trace(dom).opts(width=950, height=600) def recover_bit( self, recovered_scalar: int, target_bit: int, scalar_bit_length: int, real_pub_key: Point, ) -> int: if target_bit == scalar_bit_length - 1: self.mult.init(self.params, self.params.generator) if real_pub_key == self.mult.multiply(recovered_scalar): return recovered_scalar return recovered_scalar | 1 mask = 1 << (scalar_bit_length - target_bit - 1) guessed_scalar_0 = recovered_scalar guessed_scalar_1 = recovered_scalar | mask ones_0, zeros_0 = self.split_traces(guessed_scalar_0, target_bit) ones_1, zeros_1 = self.split_traces(guessed_scalar_1, target_bit) dom_0 = self.calculate_difference_of_means(ones_0, zeros_0) dom_1 = self.calculate_difference_of_means(ones_1, zeros_1) self.doms["guess_zero"].append(dom_0) self.doms["guess_one"].append(dom_1) if max(absolute(dom_0)) > max(absolute(dom_1)): return guessed_scalar_0 return guessed_scalar_1 def perform(self, scalar_bit_length: int, real_pub_key: Point) -> int: recovered_scalar = 1 << (scalar_bit_length - 1) for target_bit in range(1, scalar_bit_length): recovered_scalar = self.recover_bit( recovered_scalar, target_bit, scalar_bit_length, real_pub_key ) return recovered_scalar