diff options
Diffstat (limited to 'test/sca/test_align.py')
| -rw-r--r-- | test/sca/test_align.py | 105 |
1 files changed, 82 insertions, 23 deletions
diff --git a/test/sca/test_align.py b/test/sca/test_align.py index 2630b24..607b297 100644 --- a/test/sca/test_align.py +++ b/test/sca/test_align.py @@ -1,28 +1,49 @@ import numpy as np -from pyecsca.sca import align_correlation, align_peaks, align_sad, align_dtw_scale,\ - align_dtw, Trace, InspectorTraceSet +from pyecsca.sca import ( + align_correlation, + align_peaks, + align_sad, + align_dtw_scale, + align_dtw, + Trace, + InspectorTraceSet, +) from .utils import Plottable, slow class AlignTests(Plottable): - def test_align(self): - first_arr = np.array([10, 64, 120, 64, 10, 10, 10, 10, 10], dtype=np.dtype("i1")) + first_arr = np.array( + [10, 64, 120, 64, 10, 10, 10, 10, 10], dtype=np.dtype("i1") + ) second_arr = np.array([10, 10, 10, 10, 50, 80, 50, 20], dtype=np.dtype("i1")) third_arr = np.array([70, 30, 42, 35, 28, 21, 15, 10, 5], dtype=np.dtype("i1")) a = Trace(first_arr) b = Trace(second_arr) c = Trace(third_arr) - result, offsets = align_correlation(a, b, c, reference_offset=1, reference_length=3, max_offset=4, min_correlation=0.65) + result, offsets = align_correlation( + a, + b, + c, + reference_offset=1, + reference_length=3, + max_offset=4, + min_correlation=0.65, + ) self.assertIsNotNone(result) self.assertEqual(len(result), 2) np.testing.assert_equal(result[0].samples, first_arr) - np.testing.assert_equal(result[1].samples, np.array([10, 50, 80, 50, 20, 0, 0, 0], dtype=np.dtype("i1"))) + np.testing.assert_equal( + result[1].samples, + np.array([10, 50, 80, 50, 20, 0, 0, 0], dtype=np.dtype("i1")), + ) @slow def test_large_align(self): example = InspectorTraceSet.read("test/data/example.trs") - result, offsets = align_correlation(*example, reference_offset=100000, reference_length=20000, max_offset=15000) + result, offsets = align_correlation( + *example, reference_offset=100000, reference_length=20000, max_offset=15000 + ) self.assertIsNotNone(result) @slow @@ -32,25 +53,46 @@ class AlignTests(Plottable): self.assertIsNotNone(result) def test_peak_align(self): - first_arr = np.array([10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10], dtype=np.dtype("i1")) - second_arr = np.array([10, 10, 10, 10, 90, 40, 50, 20, 10, 17, 16, 10], dtype=np.dtype("i1")) + first_arr = np.array( + [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10], dtype=np.dtype("i1") + ) + second_arr = np.array( + [10, 10, 10, 10, 90, 40, 50, 20, 10, 17, 16, 10], dtype=np.dtype("i1") + ) a = Trace(first_arr) b = Trace(second_arr) - result, offsets = align_peaks(a, b, reference_offset=2, reference_length=5, max_offset=3) + result, offsets = align_peaks( + a, b, reference_offset=2, reference_length=5, max_offset=3 + ) self.assertEqual(np.argmax(result[0].samples), np.argmax(result[1].samples)) def test_sad_align(self): - first_arr = np.array([10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10], dtype=np.dtype("i1")) - second_arr = np.array([10, 10, 90, 40, 50, 20, 10, 17, 16, 10, 10], dtype=np.dtype("i1")) + first_arr = np.array( + [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10], dtype=np.dtype("i1") + ) + second_arr = np.array( + [10, 10, 90, 40, 50, 20, 10, 17, 16, 10, 10], dtype=np.dtype("i1") + ) a = Trace(first_arr) b = Trace(second_arr) - result, offsets = align_sad(a, b, reference_offset=2, reference_length=5, max_offset=3) + result, offsets = align_sad( + a, b, reference_offset=2, reference_length=5, max_offset=3 + ) self.assertEqual(len(result), 2) def test_dtw_align_scale(self): - first_arr = np.array([10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10, 8, 10, 12, 10, 13, 9], dtype=np.dtype("f2")) - second_arr = np.array([10, 10, 60, 40, 90, 20, 10, 17, 16, 10, 10, 10, 10, 10, 17, 12, 10], dtype=np.dtype("f2")) - third_arr = np.array([10, 30, 20, 21, 15, 8, 10, 37, 21, 77, 20, 28, 25, 10, 9, 10, 15, 9, 10], dtype=np.dtype("f2")) + first_arr = np.array( + [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10, 8, 10, 12, 10, 13, 9], + dtype=np.dtype("f2"), + ) + second_arr = np.array( + [10, 10, 60, 40, 90, 20, 10, 17, 16, 10, 10, 10, 10, 10, 17, 12, 10], + dtype=np.dtype("f2"), + ) + third_arr = np.array( + [10, 30, 20, 21, 15, 8, 10, 37, 21, 77, 20, 28, 25, 10, 9, 10, 15, 9, 10], + dtype=np.dtype("f2"), + ) a = Trace(first_arr) b = Trace(second_arr) c = Trace(third_arr) @@ -62,14 +104,27 @@ class AlignTests(Plottable): result_other = align_dtw_scale(a, b, c, fast=False) - self.assertEqual(np.argmax(result_other[0].samples), np.argmax(result_other[1].samples)) - self.assertEqual(np.argmax(result_other[1].samples), np.argmax(result_other[2].samples)) + self.assertEqual( + np.argmax(result_other[0].samples), np.argmax(result_other[1].samples) + ) + self.assertEqual( + np.argmax(result_other[1].samples), np.argmax(result_other[2].samples) + ) self.plot(*result_other) def test_dtw_align(self): - first_arr = np.array([10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10, 8, 10, 12, 10, 13, 9], dtype=np.dtype("i1")) - second_arr = np.array([10, 10, 60, 40, 90, 20, 10, 17, 16, 10, 10, 10, 10, 10, 17, 12, 10], dtype=np.dtype("i1")) - third_arr = np.array([10, 30, 20, 21, 15, 8, 10, 47, 21, 77, 20, 28, 25, 10, 9, 10, 15, 9, 10], dtype=np.dtype("i1")) + first_arr = np.array( + [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10, 8, 10, 12, 10, 13, 9], + dtype=np.dtype("i1"), + ) + second_arr = np.array( + [10, 10, 60, 40, 90, 20, 10, 17, 16, 10, 10, 10, 10, 10, 17, 12, 10], + dtype=np.dtype("i1"), + ) + third_arr = np.array( + [10, 30, 20, 21, 15, 8, 10, 47, 21, 77, 20, 28, 25, 10, 9, 10, 15, 9, 10], + dtype=np.dtype("i1"), + ) a = Trace(first_arr) b = Trace(second_arr) c = Trace(third_arr) @@ -81,6 +136,10 @@ class AlignTests(Plottable): result_other = align_dtw(a, b, c, fast=False) - self.assertEqual(np.argmax(result_other[0].samples), np.argmax(result_other[1].samples)) - self.assertEqual(np.argmax(result_other[1].samples), np.argmax(result_other[2].samples)) + self.assertEqual( + np.argmax(result_other[0].samples), np.argmax(result_other[1].samples) + ) + self.assertEqual( + np.argmax(result_other[1].samples), np.argmax(result_other[2].samples) + ) self.plot(*result_other) |
