aboutsummaryrefslogtreecommitdiff
path: root/test/sca/test_align.py
diff options
context:
space:
mode:
Diffstat (limited to 'test/sca/test_align.py')
-rw-r--r--test/sca/test_align.py105
1 files changed, 82 insertions, 23 deletions
diff --git a/test/sca/test_align.py b/test/sca/test_align.py
index 2630b24..607b297 100644
--- a/test/sca/test_align.py
+++ b/test/sca/test_align.py
@@ -1,28 +1,49 @@
import numpy as np
-from pyecsca.sca import align_correlation, align_peaks, align_sad, align_dtw_scale,\
- align_dtw, Trace, InspectorTraceSet
+from pyecsca.sca import (
+ align_correlation,
+ align_peaks,
+ align_sad,
+ align_dtw_scale,
+ align_dtw,
+ Trace,
+ InspectorTraceSet,
+)
from .utils import Plottable, slow
class AlignTests(Plottable):
-
def test_align(self):
- first_arr = np.array([10, 64, 120, 64, 10, 10, 10, 10, 10], dtype=np.dtype("i1"))
+ first_arr = np.array(
+ [10, 64, 120, 64, 10, 10, 10, 10, 10], dtype=np.dtype("i1")
+ )
second_arr = np.array([10, 10, 10, 10, 50, 80, 50, 20], dtype=np.dtype("i1"))
third_arr = np.array([70, 30, 42, 35, 28, 21, 15, 10, 5], dtype=np.dtype("i1"))
a = Trace(first_arr)
b = Trace(second_arr)
c = Trace(third_arr)
- result, offsets = align_correlation(a, b, c, reference_offset=1, reference_length=3, max_offset=4, min_correlation=0.65)
+ result, offsets = align_correlation(
+ a,
+ b,
+ c,
+ reference_offset=1,
+ reference_length=3,
+ max_offset=4,
+ min_correlation=0.65,
+ )
self.assertIsNotNone(result)
self.assertEqual(len(result), 2)
np.testing.assert_equal(result[0].samples, first_arr)
- np.testing.assert_equal(result[1].samples, np.array([10, 50, 80, 50, 20, 0, 0, 0], dtype=np.dtype("i1")))
+ np.testing.assert_equal(
+ result[1].samples,
+ np.array([10, 50, 80, 50, 20, 0, 0, 0], dtype=np.dtype("i1")),
+ )
@slow
def test_large_align(self):
example = InspectorTraceSet.read("test/data/example.trs")
- result, offsets = align_correlation(*example, reference_offset=100000, reference_length=20000, max_offset=15000)
+ result, offsets = align_correlation(
+ *example, reference_offset=100000, reference_length=20000, max_offset=15000
+ )
self.assertIsNotNone(result)
@slow
@@ -32,25 +53,46 @@ class AlignTests(Plottable):
self.assertIsNotNone(result)
def test_peak_align(self):
- first_arr = np.array([10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10], dtype=np.dtype("i1"))
- second_arr = np.array([10, 10, 10, 10, 90, 40, 50, 20, 10, 17, 16, 10], dtype=np.dtype("i1"))
+ first_arr = np.array(
+ [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10], dtype=np.dtype("i1")
+ )
+ second_arr = np.array(
+ [10, 10, 10, 10, 90, 40, 50, 20, 10, 17, 16, 10], dtype=np.dtype("i1")
+ )
a = Trace(first_arr)
b = Trace(second_arr)
- result, offsets = align_peaks(a, b, reference_offset=2, reference_length=5, max_offset=3)
+ result, offsets = align_peaks(
+ a, b, reference_offset=2, reference_length=5, max_offset=3
+ )
self.assertEqual(np.argmax(result[0].samples), np.argmax(result[1].samples))
def test_sad_align(self):
- first_arr = np.array([10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10], dtype=np.dtype("i1"))
- second_arr = np.array([10, 10, 90, 40, 50, 20, 10, 17, 16, 10, 10], dtype=np.dtype("i1"))
+ first_arr = np.array(
+ [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10], dtype=np.dtype("i1")
+ )
+ second_arr = np.array(
+ [10, 10, 90, 40, 50, 20, 10, 17, 16, 10, 10], dtype=np.dtype("i1")
+ )
a = Trace(first_arr)
b = Trace(second_arr)
- result, offsets = align_sad(a, b, reference_offset=2, reference_length=5, max_offset=3)
+ result, offsets = align_sad(
+ a, b, reference_offset=2, reference_length=5, max_offset=3
+ )
self.assertEqual(len(result), 2)
def test_dtw_align_scale(self):
- first_arr = np.array([10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10, 8, 10, 12, 10, 13, 9], dtype=np.dtype("f2"))
- second_arr = np.array([10, 10, 60, 40, 90, 20, 10, 17, 16, 10, 10, 10, 10, 10, 17, 12, 10], dtype=np.dtype("f2"))
- third_arr = np.array([10, 30, 20, 21, 15, 8, 10, 37, 21, 77, 20, 28, 25, 10, 9, 10, 15, 9, 10], dtype=np.dtype("f2"))
+ first_arr = np.array(
+ [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10, 8, 10, 12, 10, 13, 9],
+ dtype=np.dtype("f2"),
+ )
+ second_arr = np.array(
+ [10, 10, 60, 40, 90, 20, 10, 17, 16, 10, 10, 10, 10, 10, 17, 12, 10],
+ dtype=np.dtype("f2"),
+ )
+ third_arr = np.array(
+ [10, 30, 20, 21, 15, 8, 10, 37, 21, 77, 20, 28, 25, 10, 9, 10, 15, 9, 10],
+ dtype=np.dtype("f2"),
+ )
a = Trace(first_arr)
b = Trace(second_arr)
c = Trace(third_arr)
@@ -62,14 +104,27 @@ class AlignTests(Plottable):
result_other = align_dtw_scale(a, b, c, fast=False)
- self.assertEqual(np.argmax(result_other[0].samples), np.argmax(result_other[1].samples))
- self.assertEqual(np.argmax(result_other[1].samples), np.argmax(result_other[2].samples))
+ self.assertEqual(
+ np.argmax(result_other[0].samples), np.argmax(result_other[1].samples)
+ )
+ self.assertEqual(
+ np.argmax(result_other[1].samples), np.argmax(result_other[2].samples)
+ )
self.plot(*result_other)
def test_dtw_align(self):
- first_arr = np.array([10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10, 8, 10, 12, 10, 13, 9], dtype=np.dtype("i1"))
- second_arr = np.array([10, 10, 60, 40, 90, 20, 10, 17, 16, 10, 10, 10, 10, 10, 17, 12, 10], dtype=np.dtype("i1"))
- third_arr = np.array([10, 30, 20, 21, 15, 8, 10, 47, 21, 77, 20, 28, 25, 10, 9, 10, 15, 9, 10], dtype=np.dtype("i1"))
+ first_arr = np.array(
+ [10, 64, 14, 120, 15, 30, 10, 15, 20, 15, 15, 10, 10, 8, 10, 12, 10, 13, 9],
+ dtype=np.dtype("i1"),
+ )
+ second_arr = np.array(
+ [10, 10, 60, 40, 90, 20, 10, 17, 16, 10, 10, 10, 10, 10, 17, 12, 10],
+ dtype=np.dtype("i1"),
+ )
+ third_arr = np.array(
+ [10, 30, 20, 21, 15, 8, 10, 47, 21, 77, 20, 28, 25, 10, 9, 10, 15, 9, 10],
+ dtype=np.dtype("i1"),
+ )
a = Trace(first_arr)
b = Trace(second_arr)
c = Trace(third_arr)
@@ -81,6 +136,10 @@ class AlignTests(Plottable):
result_other = align_dtw(a, b, c, fast=False)
- self.assertEqual(np.argmax(result_other[0].samples), np.argmax(result_other[1].samples))
- self.assertEqual(np.argmax(result_other[1].samples), np.argmax(result_other[2].samples))
+ self.assertEqual(
+ np.argmax(result_other[0].samples), np.argmax(result_other[1].samples)
+ )
+ self.assertEqual(
+ np.argmax(result_other[1].samples), np.argmax(result_other[2].samples)
+ )
self.plot(*result_other)