aboutsummaryrefslogtreecommitdiff
path: root/core/math/matrix3.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'core/math/matrix3.cpp')
-rw-r--r--core/math/matrix3.cpp105
1 files changed, 100 insertions, 5 deletions
diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp
index ab3bca79a..8ee8ccb45 100644
--- a/core/math/matrix3.cpp
+++ b/core/math/matrix3.cpp
@@ -5,8 +5,8 @@
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
-/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
-/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
+/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
@@ -27,6 +27,7 @@
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
+
#include "matrix3.h"
#include "math_funcs.h"
#include "os/copymem.h"
@@ -228,12 +229,24 @@ void Basis::scale(const Vector3 &p_scale) {
}
Basis Basis::scaled(const Vector3 &p_scale) const {
-
Basis m = *this;
m.scale(p_scale);
return m;
}
+void Basis::scale_local(const Vector3 &p_scale) {
+ // performs a scaling in object-local coordinate system:
+ // M -> (M.S.Minv).M = M.S.
+ *this = scaled_local(p_scale);
+}
+
+Basis Basis::scaled_local(const Vector3 &p_scale) const {
+ Basis b;
+ b.set_scale(p_scale);
+
+ return (*this) * b;
+}
+
void Basis::set_scale(const Vector3 &p_scale) {
set_axis(0, get_axis(0).normalized() * p_scale.x);
@@ -241,7 +254,7 @@ void Basis::set_scale(const Vector3 &p_scale) {
set_axis(2, get_axis(2).normalized() * p_scale.z);
}
-Vector3 Basis::get_scale() const {
+Vector3 Basis::get_scale_abs() const {
return Vector3(
Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
@@ -249,7 +262,13 @@ Vector3 Basis::get_scale() const {
Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
}
-Vector3 Basis::get_signed_scale() const {
+Vector3 Basis::get_scale_local() const {
+ real_t det_sign = determinant() > 0 ? 1 : -1;
+ return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length());
+}
+
+// get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature.
+Vector3 Basis::get_scale() const {
// FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
// A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
// P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
@@ -311,6 +330,16 @@ void Basis::rotate(const Vector3 &p_axis, real_t p_phi) {
*this = rotated(p_axis, p_phi);
}
+void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) {
+ // performs a rotation in object-local coordinate system:
+ // M -> (M.R.Minv).M = M.R.
+ *this = rotated_local(p_axis, p_phi);
+}
+Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const {
+
+ return (*this) * Basis(p_axis, p_phi);
+}
+
Basis Basis::rotated(const Vector3 &p_euler) const {
return Basis(p_euler) * (*this);
}
@@ -319,6 +348,14 @@ void Basis::rotate(const Vector3 &p_euler) {
*this = rotated(p_euler);
}
+Basis Basis::rotated(const Quat &p_quat) const {
+ return Basis(p_quat) * (*this);
+}
+
+void Basis::rotate(const Quat &p_quat) {
+ *this = rotated(p_quat);
+}
+
// TODO: rename this to get_rotation_euler
Vector3 Basis::get_rotation() const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
@@ -348,6 +385,22 @@ void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
m.get_axis_angle(p_axis, p_angle);
}
+void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const {
+ // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
+ // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
+ // See the comment in get_scale() for further information.
+ Basis m = transposed();
+ m.orthonormalize();
+ real_t det = m.determinant();
+ if (det < 0) {
+ // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
+ m.scale(Vector3(-1, -1, -1));
+ }
+
+ m.get_axis_angle(p_axis, p_angle);
+ p_angle = -p_angle;
+}
+
// get_euler_xyz returns a vector containing the Euler angles in the format
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
// (following the convention they are commonly defined in the literature).
@@ -744,3 +797,45 @@ void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) {
elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine;
elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);
}
+
+void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) {
+ set_diagonal(p_scale);
+ rotate(p_axis, p_phi);
+}
+
+void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) {
+ set_diagonal(p_scale);
+ rotate(p_euler);
+}
+
+void Basis::set_quat_scale(const Quat &p_quat, const Vector3 &p_scale) {
+ set_diagonal(p_scale);
+ rotate(p_quat);
+}
+
+void Basis::set_diagonal(const Vector3 p_diag) {
+ elements[0][0] = p_diag.x;
+ elements[0][1] = 0;
+ elements[0][2] = 0;
+
+ elements[1][0] = 0;
+ elements[1][1] = p_diag.y;
+ elements[1][2] = 0;
+
+ elements[2][0] = 0;
+ elements[2][1] = 0;
+ elements[2][2] = p_diag.z;
+}
+
+Basis Basis::slerp(const Basis &target, const real_t &t) const {
+ // TODO: implement this directly without using quaternions to make it more efficient
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V(is_rotation() == false, Basis());
+ ERR_FAIL_COND_V(target.is_rotation() == false, Basis());
+#endif
+
+ Quat from(*this);
+ Quat to(target);
+
+ return Basis(from.slerp(to, t));
+}