1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
/*
* ecgen, tool for generating Elliptic curve domain parameters
* Copyright (C) 2017 J08nY
*/
#include "order.h"
#include "exhaustive/arg.h"
#include "io/input.h"
GENERATOR(order_gen_input) {
pari_sp ltop = avma;
GEN ord = input_int("order", cfg->bits);
if (gequalm1(ord)) {
avma = ltop;
return -4;
} else {
curve->order = ord;
obj_insert_shallow(curve->curve, 1, ord);
return 1;
}
}
GENERATOR(order_gen_any) {
GEN ord = ellff_get_card(curve->curve);
if (isclone(ord)) {
curve->order = gcopy(ord);
} else {
curve->order = ord;
}
return 1;
}
GENERATOR(order_gen_sea) {
pari_sp ltop = avma;
GEN order = ellsea(curve->curve, 0);
if (gequal0(order)) {
avma = ltop;
return -4;
} else {
curve->order = order;
obj_insert_shallow(curve->curve, 1, order);
return 1;
}
}
GENERATOR(order_gen_smallfact) {
HAS_ARG(args);
pari_ulong smallfact = *(pari_ulong *)args->args;
pari_sp ltop = avma;
GEN fact = mpfact(smallfact);
pari_ulong lfact = 0;
if (lgefint(fact) > 3) {
lfact = 0;
} else {
lfact = itou(fact);
}
GEN order = ellsea(curve->curve, lfact);
if (gequal0(order)) {
avma = ltop;
return -4;
}
GEN factors = factor(order);
GEN primes = gel(factors, 1);
GEN powers = gel(factors, 2);
long len = glength(primes);
GEN total = gen_1;
for (long i = 1; i < len; ++i) {
GEN pow = powii(gel(primes, i), gel(powers, i));
total = mulii(total, pow);
if (abscmpiu(total, smallfact) > 0) {
avma = ltop;
return -4;
}
}
curve->order = gerepileupto(ltop, order);
obj_insert_shallow(curve->curve, 1, curve->order);
return 1;
}
GENERATOR(order_gen_prime) {
pari_sp ltop = avma;
GEN order = ellsea(curve->curve, 1);
if (gequal0(order) || !(isprime(order))) {
avma = ltop;
return -4;
} else {
curve->order = order;
obj_insert_shallow(curve->curve, 1, curve->order);
return 1;
}
}
CHECK(order_check_pohlig_hellman) {
HAS_ARG(args);
pari_sp ltop = avma;
const char *min_fact = args->args;
GEN minf = strtoi(min_fact);
GEN factors = factor(curve->order);
GEN primes = gel(factors, 1);
long len = glength(primes);
if (mpcmp(gel(primes, len), minf) <= 0) {
avma = ltop;
return -4;
} else {
avma = ltop;
return 1;
}
}
CHECK(order_check_discriminant) {
HAS_ARG(args);
if (cfg->field == FIELD_BINARY) return 1;
pari_sp ltop = avma;
const char *min_disc = args->args;
GEN mind = strtoi(min_disc);
GEN t = negi(subii(curve->order, addii(curve->field, gen_1)));
GEN tp = subii(sqri(t), mulis(curve->field, 4));
GEN tp_factors = factor(tp);
GEN tp_primes = gel(tp_factors, 1);
GEN tp_pows = gel(tp_factors, 2);
long tp_pow_len = glength(tp_pows);
GEN value = gen_1;
for (long i = 1; i <= tp_pow_len; ++i) {
if (!dvdis(gel(tp_pows, i), 2)) {
continue;
}
GEN one_value = powii(gel(tp_primes, i), divis(gel(tp_pows, i), 2));
muliiz(value, one_value, value);
}
GEN s = value;
GEN D = divii(tp, s);
if (mod4(D) != 1) {
D = mulis(D, 4);
}
if (abscmpii(D, mind) <= 0) {
avma = ltop;
return -4;
}
avma = ltop;
return 1;
}
|