1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
/*
* ecgen, tool for generating Elliptic curve domain parameters
* Copyright (C) 2017 J08nY
*/
#include "custom.h"
#include "io/output.h"
#include "obj/curve.h"
#include "obj/point.h"
#include "obj/subgroup.h"
#include "util/bits.h"
static size_t custom_add_primes(GEN r, GEN order, GEN **primes,
size_t nprimes) {
debug_log("add_primes r = %Pi, nprimes = %lu", r, nprimes);
size_t nalloc = nprimes;
if (nprimes == 0) {
nalloc = 10;
*primes = try_calloc(sizeof(GEN) * nalloc);
}
GEN logN = ground(glog(order, BIGDEFAULTPREC));
GEN rlog = mulii(r, logN);
GEN rplog = mulii(addis(r, 1), logN);
forprime_t iter;
forprime_init(&iter, rlog, rplog);
GEN prime;
while ((prime = forprime_next(&iter))) {
long k = kronecker(order, prime);
if (k == 1) {
GEN pstar = prime;
GEN ppow = divis(subis(prime, 1), 2);
if (mod2(ppow) == 1) {
pstar = negi(prime);
} else {
pstar = gcopy(pstar);
}
if (nprimes == nalloc) {
nalloc *= 2;
*primes = try_realloc(*primes, sizeof(GEN) * nalloc);
}
(*primes)[nprimes++] = pstar;
}
}
*primes = try_realloc(*primes, sizeof(GEN) * nprimes);
return nprimes;
}
static void custom_quadr_init(custom_quadr_t *quadr, GEN order) {
quadr->D = gen_0;
quadr->p = gen_0;
quadr->t = gen_0;
quadr->order = order;
quadr->r = gen_0;
quadr->i = gen_0;
quadr->Sp = NULL;
quadr->nprimes = 0;
}
static void custom_quadr_next(custom_quadr_t *quadr) {
// Ok I get some state in r, i, Sp and nprimes.
// Here I want to check if I want to generate more primes into Sp
// Then continue with i
GEN logN = ground(glog(quadr->order, BIGDEFAULTPREC));
GEN rlog2 = sqri(mulii(addis(quadr->r, 1), logN));
// When do I want more primes? If i == imax, or nprimes == 0
GEN imax = int2n(quadr->nprimes);
if (equalii(quadr->i, imax) || quadr->nprimes == 0) {
quadr->nprimes = custom_add_primes(quadr->r, quadr->order, &(quadr->Sp),
quadr->nprimes);
imax = int2n(quadr->nprimes);
}
pari_sp btop = avma;
while (true) {
while (cmpii(quadr->i, imax) < 0) {
// debug_log("i %Pi", quadr->i);
GEN pprod = gen_1;
bits_t *ibits = bits_from_i_len(quadr->i, quadr->nprimes);
for (size_t j = 0; j < quadr->nprimes; ++j) {
if (GET_BIT(ibits->bits, j) == 1) {
// debug_log("multiplying %Pi", quadr->Sp[j]);
pprod = mulii(pprod, quadr->Sp[j]);
}
}
bits_free(&ibits);
GEN absp = absi(pprod);
long m4 = mod4(absp);
if (cmpii(absp, rlog2) < 0 && equalii(modis(pprod, 8), stoi(5)) &&
m4 != 1 && m4 != 2) {
debug_log("candidate D = %Pi", pprod);
GEN x;
GEN y;
if (!cornacchia2(absp, quadr->order, &x, &y)) {
quadr->i = gerepileupto(btop, addis(quadr->i, 1));
// debug_log("Cornacchia fail");
continue;
}
GEN pp1 = addii(addis(quadr->order, 1), x);
GEN pp2 = subii(addis(quadr->order, 1), x);
if (isprime(pp1)) {
quadr->p = pp1;
quadr->D = pprod;
quadr->t = x;
quadr->i = addis(quadr->i, 1);
debug_log("good D %Pi", pprod);
return;
}
if (isprime(pp2)) {
quadr->p = pp2;
quadr->D = pprod;
quadr->t = x;
quadr->i = addis(quadr->i, 1);
debug_log("good D %Pi", pprod);
return;
}
}
quadr->i = gerepileupto(btop, addis(quadr->i, 1));
}
quadr->r = addis(quadr->r, 1);
quadr->nprimes = custom_add_primes(quadr->r, quadr->order, &(quadr->Sp),
quadr->nprimes);
rlog2 = sqri(mulii(addis(quadr->r, 1), logN));
imax = int2n(quadr->nprimes);
btop = avma;
}
}
static void custom_quadr_free(custom_quadr_t *quadr) { try_free(quadr->Sp); }
curve_t *custom_curve() {
GEN order = strtoi(cfg->cm_order);
if (!isprime(order)) {
fprintf(err, "Currently, order must be prime for CM to work.\n");
return NULL;
}
GEN a = NULL;
GEN e = NULL;
GEN g = NULL;
custom_quadr_t quadr;
custom_quadr_init(&quadr, order);
while (true) {
custom_quadr_next(&quadr);
debug_log("order = %Pi", order);
debug_log("p = %Pi, t = %Pi, D = %Pi, ", quadr.p, quadr.t, quadr.D);
GEN H = polclass(quadr.D, 0, 0);
debug_log("H = %Ps", H);
GEN r = FpX_roots(H, quadr.p);
debug_log("roots = %Ps", r);
if (gequal(r, gtovec(gen_0))) {
continue;
}
bool has_curve = false;
long rlen = glength(r);
for (long i = 1; i <= rlen; ++i) {
GEN root = gel(r, i);
a = Fp_div(
Fp_mul(stoi(27), root, quadr.p),
Fp_mul(stoi(4), Fp_sub(stoi(1728), root, quadr.p), quadr.p),
quadr.p);
e = ellinit(mkvec2(a, negi(a)), quadr.p, 0);
pari_CATCH(e_TYPE) { continue; }
pari_TRY { checkell(e); };
pari_ENDCATCH{};
g = genrand(e);
GEN gmul = ellmul(e, g, order);
if (ell_is_inf(gmul)) {
debug_log("YES %Ps", e);
has_curve = true;
break;
}
}
if (has_curve) break;
}
custom_quadr_free(&quadr);
curve_t *result = curve_new();
result->field = quadr.p;
result->a = a;
result->b = negi(a);
result->curve = e;
result->order = order;
result->generators = subgroups_new(1);
result->generators[0] = subgroup_new();
result->generators[0]->generator = point_new();
result->generators[0]->generator->point = g;
result->generators[0]->generator->order = order;
result->generators[0]->generator->cofactor = stoi(1);
result->generators[0]->npoints = 0;
result->ngens = 1;
return result;
}
|