1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
/*
* ecgen, tool for generating Elliptic curve domain parameters
* Copyright (C) 2017 J08nY
*/
#include "custom.h"
#include "io/output.h"
#include "obj/curve.h"
#include "obj/point.h"
#include "obj/subgroup.h"
#include "util/bits.h"
static size_t custom_add_primes(GEN r, GEN order, GEN **primes,
size_t nprimes) {
size_t nalloc = nprimes;
if (nprimes == 0) {
nalloc = 10;
*primes = try_calloc(sizeof(GEN) * nalloc);
}
GEN logN = ground(glog(order, BIGDEFAULTPREC));
GEN rlog = mulii(r, logN);
GEN rplog = mulii(addis(r, 1), logN);
forprime_t iter;
forprime_init(&iter, rlog, rplog);
GEN prime;
while ((prime = forprime_next(&iter))) {
long k = kronecker(order, prime);
if (k == 1) {
GEN pstar = prime;
GEN ppow = divis(subis(prime, 1), 2);
if (mod2(ppow) == 1) {
pstar = negi(prime);
} else {
pstar = gcopy(pstar);
}
(*primes)[nprimes++] = pstar;
if (nprimes == nalloc) {
nalloc *= 2;
*primes = try_realloc(*primes, sizeof(GEN) * nalloc);
}
}
}
return nprimes;
}
static custom_quadr_t custom_quadr(GEN order) {
pari_sp ltop = avma;
custom_quadr_t result = {0};
GEN r = gen_0;
GEN *Sp;
size_t nprimes = custom_add_primes(r, order, &Sp, 0);
GEN logN = ground(glog(order, BIGDEFAULTPREC));
GEN rlog2 = sqri(mulii(r, logN));
GEN i = gen_0;
while (true) {
GEN imax = int2n(nprimes);
while (cmpii(i, imax) < 0) {
// debug_log("i %Pi", i);
pari_sp btop = avma;
GEN pprod = gen_1;
bits_t *ibits = bits_from_i_len(i, nprimes);
for (size_t j = 0; j < nprimes; ++j) {
if (GET_BIT(ibits->bits, j) == 1) {
// debug_log("multiplying %Pi", Sp[j]);
pprod = mulii(pprod, Sp[j]);
}
}
bits_free(&ibits);
if (cmpii(pprod, rlog2) < 0 && equalii(modis(pprod, 8), stoi(5))) {
// debug_log("candidate D = %Pi", pprod);
GEN x;
GEN y;
cornacchia2(negi(pprod), order, &x, &y);
GEN pp1 = addii(addis(order, 1), x);
GEN pp2 = subii(addis(order, 1), x);
if (isprime(pp1)) {
result.p = pp1;
result.D = pprod;
result.t = x;
result.v = gen_0;
gerepileall(ltop, 4, &result.p, &result.t, &result.v,
&result.D);
try_free(Sp);
return result;
}
if (isprime(pp2)) {
result.p = pp2;
result.D = pprod;
result.t = x;
result.v = gen_0;
gerepileall(ltop, 4, &result.p, &result.t, &result.v,
&result.D);
try_free(Sp);
return result;
}
}
avma = btop;
i = addis(i, 1);
}
r = addis(r, 1);
nprimes = custom_add_primes(r, order, &Sp, nprimes);
}
}
curve_t *custom_curve() {
GEN order = strtoi(cfg->cm_order);
if (!isprime(order)) {
fprintf(err, "Currently, order must be prime for CM to work.\n");
return NULL;
}
custom_quadr_t quadr = custom_quadr(order);
debug_log("order = %Pi", order);
debug_log("p = %Pi, t = %Pi, v = %Pi, D = %Pi, ", quadr.p, quadr.t, quadr.v,
quadr.D);
GEN H = polclass(quadr.D, 0, 0);
debug_log("H = %Ps", H);
GEN r = FpX_roots(H, quadr.p);
debug_log("roots = %Ps", r);
GEN a = NULL;
GEN e = NULL;
GEN g = NULL;
long rlen = glength(r);
for (long i = 1; i <= rlen; ++i) {
GEN root = gel(r, i);
a = Fp_div(Fp_mul(stoi(27), root, quadr.p),
Fp_mul(stoi(4), Fp_sub(stoi(1728), root, quadr.p), quadr.p),
quadr.p);
e = ellinit(mkvec2(a, negi(a)), quadr.p, 0);
g = genrand(e);
GEN gmul = ellmul(e, g, order);
if (gequal(gmul, gtovec(gen_0))) {
debug_log("YES %Ps", e);
break;
}
}
curve_t *result = curve_new();
result->field = quadr.p;
result->a = a;
result->b = negi(a);
result->curve = e;
result->order = order;
result->generators = subgroups_new(1);
result->generators[0] = subgroup_new();
result->generators[0]->generator = point_new();
result->generators[0]->generator->point = g;
result->generators[0]->generator->order = order;
result->generators[0]->generator->cofactor = stoi(1);
result->generators[0]->npoints = 0;
result->ngens = 1;
return result;
}
|