1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
#
# Script for plotting ECTester key generation results.
#
# Example usage:
#
# > java -jar ECTesterReader.jar -g 10000 -b 192 -fp -o gen.csv
# ...
# > ./plot_gen.py gen.csv
# ...
#
import numpy as np
from scipy.stats import entropy
import matplotlib.pyplot as plt
from matplotlib import ticker, colors
from copy import deepcopy
import argparse
from utils import hw, moving_average, plot_hist, miller_correction
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Plot results of ECTester key generation timing.")
parser.add_argument("-o", "--output", dest="output", type=argparse.FileType("wb"), help="Write image to [file], do not display.", metavar="file")
parser.add_argument("--priv", dest="priv", action="store_true", help="Show private key MSB heatmap plot.")
parser.add_argument("--entropy", dest="entropy", action="store_true", help="Show estimated entropy of private key MSB conditioned on time of generation.")
parser.add_argument("--hist", dest="hist", action="store_true", help="Show keygen time histogram.")
parser.add_argument("--export-hist", dest="export_hist", action="store_true", help="Show export time histogram.")
parser.add_argument("--avg", dest="avg", action="store_true", help="Show moving average of keygen time.")
parser.add_argument("--hw-hist", dest="hw_hist", action="store_true", help="Show Hamming weight heatmap (private key Hamming weight and keygen time).")
parser.add_argument("--log", dest="log", action="store_true", help="Use logarithmic scale.")
parser.add_argument("--skip-first", dest="skip_first", nargs="?", const=1, type=int, help="Skip first entry, as it's usually a large outlier.")
parser.add_argument("-t", "--title", dest="title", type=str, nargs="?", default="", help="What title to give the figure.")
parser.add_argument("file", type=str, help="The file to plot(csv).")
opts = parser.parse_args()
with open(opts.file, "r") as f:
header = f.readline()
header_names = header.split(";")
if len(header_names) not in (4, 5):
print("Bad data?")
exit(1)
plots = [opts.priv, opts.hist, opts.export_hist, opts.avg, opts.hw_hist]
n_plots = sum(plots)
if n_plots == 0:
plots = [True for _ in range(5)]
if len(header_names) == 4:
n_plots = 4
plots[2] = False
else:
n_plots = 5
if plots[2] and len(header_names) != 5:
n_plots = n_plots - 1
if n_plots == 0:
print("Nothing to plot.")
exit(1)
plots[2] = False
hx = lambda x: int(x, 16)
if len(header_names) == 4:
data = np.genfromtxt(opts.file, delimiter=";", skip_header=1, converters={2: hx, 3: hx}, dtype=np.dtype([("index", "u4"), ("gen_time", "u4"), ("pub", "O"), ("priv", "O")]))
else:
data = np.genfromtxt(opts.file, delimiter=";", skip_header=1, converters={3: hx, 4: hx}, dtype=np.dtype([("index", "u4"), ("gen_time", "u4"), ("export_time", "u4"), ("pub", "O"), ("priv", "O")]))
if opts.skip_first:
data = data[opts.skip_first:]
gen_time_data = data["gen_time"]
export_time_data = None
if "export_time" in data.dtype.names:
export_time_data = data["export_time"]
pub_data = data["pub"]
priv_data = data["priv"]
gen_unit = "ms"
if header_names[1].endswith("[nano]"):
gen_unit = r"$\mu s$"
np.floor_divide(gen_time_data, 1000, out=gen_time_data)
export_unit = "ms"
if len(header_names) == 5 and header_names[2].endswith("[nano]"):
export_unit = r"$\mu s$"
np.floor_divide(export_time_data, 1000, out=export_time_data)
plt.style.use("ggplot")
fig = plt.figure()
layout_kwargs = {}
if opts.title is None:
fig.suptitle(opts.file)
layout_kwargs["rect"] = [0, 0.02, 1, 0.98]
elif opts.title:
fig.suptitle(opts.title)
layout_kwargs["rect"] = [0, 0.02, 1, 0.98]
fig.tight_layout(**layout_kwargs)
max_gen_time = max(gen_time_data)
min_gen_time = min(gen_time_data)
bit_size = len(bin(max(priv_data))) - 2
sorted_data = np.sort(data, order="gen_time")
cmap = deepcopy(plt.cm.plasma)
cmap.set_bad("black")
norm = colors.Normalize()
if opts.log:
norm = colors.LogNorm()
plot_i = 1
if plots[0]:
axe_private = fig.add_subplot(n_plots, 1, plot_i)
priv_msb = np.array(list(map(lambda x: x >> (bit_size - 8), priv_data)), dtype=np.dtype("u1"))
max_msb = max(priv_msb)
min_msb = min(priv_msb)
heatmap, xedges, yedges = np.histogram2d(priv_msb, gen_time_data, bins=[max_msb - min_msb, max_gen_time - min_gen_time])
extent = [min_msb, max_msb, yedges[0], yedges[-1]]
axe_private.imshow(heatmap.T, extent=extent, aspect="auto", cmap=cmap, origin="low", interpolation="nearest", norm=norm)
axe_private.set_xlabel("private key MSB value")
axe_private.set_ylabel("keygen time ({})".format(gen_unit))
plot_i += 1
if plots[1]:
axe_hist = fig.add_subplot(n_plots, 1, plot_i)
plot_hist(axe_hist, gen_time_data, "keygen time ({})".format(gen_unit), opts.log)
plot_i += 1
if plots[2]:
axe_hist = fig.add_subplot(n_plots, 1, plot_i)
plot_hist(axe_hist, export_time_data, "export time ({})".format(export_unit), opts.log)
plot_i += 1
if plots[3]:
axe_avg = fig.add_subplot(n_plots, 1, plot_i)
#if len(header_names) == 5:
# axe_other = axe_avg.twinx()
# axe_other.plot(moving_average(export_time_data, 100), color="green", alpha=0.6, label="export, window = 100")
# axe_other.plot(moving_average(export_time_data, 1000), color="yellow", alpha=0.6, label="export, window = 1000")
# axe_other.legend(loc="lower right")
axe_avg.plot(moving_average(gen_time_data, 100), label="window = 100")
axe_avg.plot(moving_average(gen_time_data, 1000), label="window = 1000")
axe_avg.set_ylabel("keygen time ({})".format(gen_unit))
axe_avg.set_xlabel("index")
axe_avg.legend(loc="best")
plot_i += 1
if plots[4]:
axe_priv_hist = fig.add_subplot(n_plots, 1, plot_i)
priv_hw = np.array(list(map(hw, priv_data)), dtype=np.dtype("u2"))
h, xe, ye = np.histogram2d(priv_hw, gen_time_data, bins=[max(priv_hw) - min(priv_hw), max_gen_time - min_gen_time])
im = axe_priv_hist.imshow(h.T, origin="low", cmap=cmap, aspect="auto", extent=[xe[0], xe[-1], ye[0], ye[-1]], norm=norm)
axe_priv_hist.axvline(x=bit_size//2, alpha=0.7, linestyle="dotted", color="white", label=str(bit_size//2) + " bits")
axe_priv_hist.set_xlabel("private key Hamming weight")
axe_priv_hist.set_ylabel("keygen time ({})".format(gen_unit))
axe_priv_hist.legend(loc="best")
fig.colorbar(im, ax=axe_priv_hist)
fig.text(0.01, 0.02, "Data size: {}".format(len(gen_time_data)), size="small")
if opts.entropy:
i = 0
entropies = {}
while i < len(data):
time_val = sorted_data["gen_time"][i]
j = i
msbs = [0 for _ in range(256)]
while j < len(data) and sorted_data["gen_time"][j] == time_val:
msbs[(sorted_data["priv"][j] >> (bit_size - 8)) & 0xff] += 1
j += 1
if j - 100 > i:
entropies[time_val] = miller_correction(entropy(msbs, base=2), j - i, 256)
i = j
entropy = sum(entropies.values())/len(entropies)
fig.text(0.01, 0.04, "Entropy of privkey MSB(estimated): {:.2f} b".format(entropy), size="small")
if opts.output is None:
plt.show()
else:
fig.set_size_inches(12, 10)
ext = opts.output.name.split(".")[-1]
plt.savefig(opts.output, format=ext, dpi=400, bbox_inches='tight')
|