blob: f0df3ede2ad800deadcf5acb19c959bba37ba620 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
from dataclasses import dataclass
import hashlib
def hash_divisors(divisors: set[int]) -> bytes:
return hashlib.blake2b(str(sorted(divisors)).encode(), digest_size=8).digest()
@dataclass
class ProbMap:
"""
A ProbMap is a mapping from integers (base point order q) to floats (error probability for some scalar
multiplication implementation, i.e. Config). The probability map is constructed for a given set of
`divisors` (the base point orders q). Probability maps can be narrowed or merged. A narrowing restricts
the probability map to a smaller set of `divisors`. A merging takes another probability map using the
same divisor set and updates the probabilities to a weighted average of the two probability maps
(the weight is the number of samples).
"""
probs: dict[int, float]
divisors_hash: bytes
samples: int
def __len__(self):
return len(self.probs)
def __iter__(self):
yield from self.probs
def __getitem__(self, i):
return self.probs[i] if i in self.probs else 0.0
def __contains__(self, item):
return item in self.probs
def keys(self):
return self.probs.keys()
def values(self):
return self.probs.values()
def items(self):
return self.probs.items()
def narrow(self, divisors: set[int]):
"""Narrow the probability map to the new set of divisors (must be a subset of the current set)."""
divisors_hash = hash_divisors(divisors)
if self.divisors_hash == divisors_hash:
# Already narrow.
return
for kdel in set(self.probs.keys()).difference(divisors):
del self.probs[kdel]
self.divisors_hash = divisors_hash
def merge(self, other: "ProbMap") -> None:
"""Merge the `other` probability map into this one (must share the divisor set)."""
if self.divisors_hash != other.divisors_hash:
raise ValueError(
"Merging can only work on probmaps created for same divisors."
)
new_keys = set(self.keys()).union(other.keys())
result = {}
for key in new_keys:
sk = self[key]
ok = other[key]
result[key] = (sk * self.samples + ok * other.samples) / (
self.samples + other.samples
)
self.probs = result
self.samples += other.samples
|