#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Script for plotting ECTester key generation results. # # Example usage: # # > java -jar ECTesterReader.jar -g 10000 -b 192 -fp -o gen.csv # ... # > ./plot_gen.py gen.csv # ... # import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker from operator import itemgetter import argparse if __name__ == "__main__": parser = argparse.ArgumentParser(description="Plot results of ECTester key generation timing.") parser.add_argument("-o", "--output", dest="output", type=argparse.FileType("wb"), help="Write image to [file], do not display.", metavar="file") parser.add_argument("--pub", dest="pub", action="store_true", help="Show public key scatter plot.") parser.add_argument("--priv", dest="priv", action="store_true", help="Show private key scatter plot.") parser.add_argument("--hist", dest="hist", action="store_true", help="Show histogram.") parser.add_argument("--skip-first", dest="skip_first", action="store_true", help="Skip first entry, as it's usually a large outlier.") parser.add_argument("file", type=str, help="The file to plot(csv).") opts = parser.parse_args() with open(opts.file, "r") as f: header = f.readline() header_names = header.split(";") plots = [opts.priv, opts.pub, opts.hist] n_plots = sum(plots) if n_plots == 0: n_plots = 3 plots = [True, True, True] hx = lambda x: int(x, 16) data = np.genfromtxt(opts.file, delimiter=";", skip_header=1, converters={2: hx, 3: hx}, dtype=np.dtype([("index","u4"), ("time","u4"), ("pub", "O"), ("priv", "O")])) if opts.skip_first: data = data[1:] if "nano" in header_names[1]: unit = r"$\mu s$" time_data = map(lambda x: x[1]/1000, data) else: unit = r"ms" time_data = map(itemgetter(1), data) priv_data = map(itemgetter(2), data) pub_data = map(itemgetter(3), data) plt.style.use("ggplot") fig = plt.figure(tight_layout=True) fig.suptitle(opts.file) plot_i = 1 if plots[0]: axe_private = fig.add_subplot(n_plots, 1, plot_i) axe_private.scatter(time_data, priv_data, marker="x", s=10) axe_private.set_ylabel("private key value\n(big endian)") axe_private.set_xlabel("time ({})".format(unit)) plot_i += 1 if plots[1]: axe_public = fig.add_subplot(n_plots, 1, plot_i) axe_public.scatter(time_data, pub_data, marker="x", s=10) axe_public.set_ylabel("public key value\n(big endian)") axe_public.set_xlabel("time ({})".format(unit)) plot_i += 1 if plots[2]: axe_hist = fig.add_subplot(n_plots, 1, plot_i) time_max = max(time_data) time_avg = np.average(time_data) time_median = np.median(time_data) axe_hist.hist(time_data, bins=time_max/3, log=True) axe_hist.axvline(x=time_avg, alpha=0.7, linestyle="dotted", color="red", label="avg = {}".format(time_avg)) axe_hist.axvline(x=time_median, alpha=0.7, linestyle="dotted", color="green", label="median = {}".format(time_median)) axe_hist.set_ylabel("count\n(log)") axe_hist.set_xlabel("time ({})".format(unit)) axe_hist.xaxis.set_major_locator(ticker.MaxNLocator()) axe_hist.legend(loc="best") fig.text(0.01, 0.02, "Data size: {}".format(len(time_data)), size="small") if opts.output is None: plt.show() else: fig.set_size_inches(12, 10) plt.savefig(opts.output, dpi=400)