{ "cells": [ { "cell_type": "markdown", "id": "52a95c74-8fc0-4021-a8e9-8587ff6f1d9e", "metadata": {}, "source": [ "# Visualizing prob-maps" ] }, { "cell_type": "code", "execution_count": null, "id": "3232df80-2a65-47ce-bc77-6a64f44d2404", "metadata": {}, "outputs": [], "source": [ "import pickle\n", "import itertools\n", "import glob\n", "import gc\n", "\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "from tqdm.auto import tqdm, trange\n", "from statsmodels.stats.proportion import proportion_confint\n", "\n", "from pyecsca.ec.mult import *\n", "from pyecsca.misc.utils import TaskExecutor\n", "\n", "from common import *\n", "\n", "%matplotlib ipympl" ] }, { "cell_type": "markdown", "id": "4273bd5e-0ec6-4e5c-b63e-74cc325a8ece", "metadata": {}, "source": [ "## Setup\n", "Setup some plotting and the computations of prob-maps out of the small scalar data and divisors." ] }, { "cell_type": "code", "execution_count": null, "id": "e89e66dc-4a9b-4320-8612-a8fa9af04b69", "metadata": {}, "outputs": [], "source": [ "# Setup the ticks and colors deterministically.\n", "mult_klasses = sorted(list(set(map(lambda mult: mult.klass, all_mults))), key=lambda klass: klass.__name__)\n", "mult_kwarg_map = {klass: 0 for klass in mult_klasses}\n", "mult_cm_map = {mult: 0 for mult in all_mults}\n", "mult_colors = matplotlib.cm.tab20(range(len(mult_klasses)))\n", "mult_styles = ['-', '--', '-.', ':', (5, (10, 3)), (0, (5, 1)), (0, (3, 1, 1, 1, 1, 1)), (0, (3, 1, 1, 1)), (0, (1, 1)), (0, (3, 10, 1, 10))]\n", "mult_markers = [None, \"o\", \"+\", \"*\", \"^\", \"s\"]\n", "colors = {}\n", "styles = {}\n", "markers = {}\n", "for mult in all_mults:\n", " color = mult_colors[mult_klasses.index(mult.klass) % len(mult_colors)]\n", " style = mult_styles[mult_kwarg_map[mult.klass] % len(mult_styles)]\n", " mult_kwarg_map[mult.klass] += 1\n", " for cm in (None, \"gsr\", \"additive\", \"multiplicative\", \"euclidean\", \"bt\"):\n", " mwc = mult.with_countermeasure(cm)\n", " colors[mwc] = color\n", " styles[mwc] = style\n", " markers[mwc] = mult_markers[mult_cm_map[mult] % len(mult_markers)]\n", " mult_cm_map[mult] += 1\n", "\n", "majticks = np.arange(0, 1, 0.1)\n", "minticks = np.arange(0, 1, 0.05)" ] }, { "cell_type": "markdown", "id": "2596562f-8a6a-4a25-ae82-a6b9562d8a40", "metadata": {}, "source": [ "## Divisors\n", "The cell below contains some interesting divisors for distinguishing scalarmults." ] }, { "cell_type": "code", "execution_count": null, "id": "bab2a086-8b3d-4e76-bf5c-46ea2b617708", "metadata": {}, "outputs": [], "source": [ "from common import divisor_map\n", "for d, ds in divisor_map.items():\n", " print(f\"{d:<27}\", ds[:3], \"...\", ds[-1:])" ] }, { "cell_type": "code", "execution_count": null, "id": "638f8634-1f6e-4844-a796-096611dfbac2", "metadata": {}, "outputs": [], "source": [ "bits = 256\n", "num_workers = 28" ] }, { "cell_type": "markdown", "id": "8b008248-a0aa-41fa-933c-f325f8eec31b", "metadata": {}, "source": [ "## Configuration\n", "Select the mults you want to compute the prob-maps for here as well as a set of divisors. It is good to set `all` here, compute the prob-maps for all the divisors, save them and they continue with visualizing them on subsets of divisors." ] }, { "cell_type": "code", "execution_count": null, "id": "4d2a0f19-8275-4db8-b3fc-c930d8ba2177", "metadata": {}, "outputs": [], "source": [ "selected_mults = all_mults\n", "divisor_name = \"all\"\n", "kind = \"precomp+necessary\"\n", "showci = False\n", "selected_divisors = divisor_map[divisor_name]" ] }, { "cell_type": "code", "execution_count": null, "id": "19d986ab-5fe7-4dd6-b5b5-4e75307217d6", "metadata": {}, "outputs": [], "source": [ "# Optionally, load\n", "with open(f\"{divisor_name}_{kind}_distrs.pickle\", \"rb\") as f:\n", " distributions_mults = pickle.load(f)" ] }, { "cell_type": "markdown", "id": "ef5b7a43-74b4-4e72-a3a1-955e175f5297", "metadata": {}, "source": [ "Now, go over all the divisor sets and visualize them (without the combs) into PNGs in the graphs/ directory." ] }, { "cell_type": "code", "execution_count": null, "id": "5ccc28f6-3994-4a0d-8639-2f6df4dddd26", "metadata": {}, "outputs": [], "source": [ "for mult, probmap in distributions_mults.items():\n", " for divisor in sorted(divisor_map[divisor_name]):\n", " if divisor not in probmap.probs:\n", " print(f\"Missing {mult}, {divisor}\")\n", " if probmap.kind is not None and probmap.kind != kind:\n", " print(\"Bad kind! Did you forget to load?\")" ] }, { "cell_type": "markdown", "id": "9b6f169b-07b3-4b27-ba36-8b90418cd072", "metadata": {}, "source": [ "## Plots (nocomb)\n", "Let's visualize all the divisor groups while looking at the multipliers and countermeasures except the comb-like ones." ] }, { "cell_type": "code", "execution_count": null, "id": "906b5d78-b3a4-4cbb-8051-092d411ba735", "metadata": {}, "outputs": [], "source": [ "for divisor_name in divisor_map:\n", " plot_mults = list(filter(lambda mult: mult in distributions_mults and mult.klass not in (CombMultiplier, BGMWMultiplier), all_mults_with_ctr))\n", " print(divisor_name, \"nocomb\")\n", " plot_divisors = sorted(divisor_map[divisor_name])\n", " L = len(plot_divisors)\n", " N = len(plot_mults)\n", " x = list(range(L))\n", " \n", " fig = plt.figure(figsize=(L/4+10, 24))\n", " ax = plt.subplot(111)\n", " \n", " vals = np.zeros((N, L))\n", " n_samples = 0\n", " for i, mult in enumerate(plot_mults):\n", " probmap = distributions_mults[mult]\n", " y_values = [probmap[l] for l in plot_divisors]\n", " vals[i,] = y_values\n", " ax.plot(x, y_values,\n", " color=colors[mult],\n", " linestyle=styles[mult],\n", " marker=markers[mult],\n", " label=str(mult) if mult.countermeasure is None else \"_nolegend_\")\n", " if showci:\n", " cis = [conf_interval(p, probmap.samples) for p in y_values]\n", " ci_low = [ci[0] for ci in cis]\n", " ci_high = [ci[1] for ci in cis]\n", " ax.fill_between(x, ci_low, ci_high, color=\"black\", alpha=0.1)\n", " n_samples += probmap.samples\n", " \n", " ax.set_title(f\"{divisor_name} ({kind})\\nSamples: \" + str(n_samples//N))\n", " \n", " #var = np.var(vals, axis=0)\n", " #ax.plot(x, var / np.max(var), label=\"cross-mult variance (normalized)\", ls=\"--\", lw=2, color=\"black\")\n", " \n", " ax.set_xlabel(\"divisors\")\n", " ax.set_ylabel(\"error probability\")\n", " ax.set_yticks(majticks)\n", " ax.set_yticks(minticks, minor=True)\n", " ax.set_xticks(x, plot_divisors, rotation=90)\n", " \n", " ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n", " ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n", " ax.grid(axis=\"x\", alpha=0.7)\n", " plt.tight_layout()\n", " box = ax.get_position()\n", " ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])\n", " \n", " ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))\n", "\n", " fig.savefig(f\"graphs/{kind}-kind/{divisor_name}-nocomb{'+ci' if showci else ''}.pdf\");\n", " plt.close()" ] }, { "cell_type": "markdown", "id": "4068e7d0-addb-45d0-ba87-e572d4c82fbd", "metadata": {}, "source": [ "## Plots (allmults)\n", "Now, lets also do plots with allmults for all divisor groups." ] }, { "cell_type": "code", "execution_count": null, "id": "9b9aa7a8-0d9d-4ce3-a936-8ced2948f562", "metadata": {}, "outputs": [], "source": [ "for divisor_name in divisor_map:\n", " plot_mults = list(filter(lambda mult: mult in distributions_mults, all_mults_with_ctr))\n", " print(divisor_name, \"allmults\")\n", " plot_divisors = sorted(divisor_map[divisor_name])\n", " L = len(plot_divisors)\n", " N = len(plot_mults)\n", " x = list(range(L))\n", " \n", " fig = plt.figure(figsize=(L/4+10, 26))\n", " ax = plt.subplot(111)\n", " \n", " vals = np.zeros((N, L))\n", " n_samples = 0\n", " for i, mult in enumerate(plot_mults):\n", " probmap = distributions_mults[mult]\n", " y_values = [probmap[l] for l in plot_divisors]\n", " vals[i,] = y_values\n", " ax.plot(x, y_values,\n", " color=colors[mult],\n", " linestyle=styles[mult],\n", " marker=markers[mult],\n", " label=str(mult) if mult.countermeasure is None else \"_nolegend_\")\n", " if showci:\n", " cis = [conf_interval(p, probmap.samples) for p in y_values]\n", " ci_low = [ci[0] for ci in cis]\n", " ci_high = [ci[1] for ci in cis]\n", " ax.fill_between(x, ci_low, ci_high, color=\"black\", alpha=0.1)\n", " n_samples += probmap.samples\n", " \n", " ax.set_title(f\"{divisor_name} ({kind})\\nSamples(avg): \" + str(n_samples//N))\n", " \n", " #var = np.var(vals, axis=0)\n", " #ax.plot(x, var / np.max(var), label=\"cross-mult variance (normalized)\", ls=\"--\", lw=2, color=\"black\")\n", " \n", " ax.set_xlabel(\"divisors\")\n", " ax.set_ylabel(\"error probability\")\n", " ax.set_yticks(majticks)\n", " ax.set_yticks(minticks, minor=True)\n", " ax.set_xticks(x, plot_divisors, rotation=90)\n", " \n", " ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n", " ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n", " ax.grid(axis=\"x\", alpha=0.7)\n", " plt.tight_layout()\n", " box = ax.get_position()\n", " ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])\n", " \n", " ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))\n", "\n", " fig.savefig(f\"graphs/{kind}-kind/{divisor_name}-allmults{'+ci' if showci else ''}.pdf\")\n", " plt.close()" ] }, { "cell_type": "markdown", "id": "df2e236a-4540-4677-a7f1-563c4cc37a3e", "metadata": {}, "source": [ "## Interactive plot\n", "Below you can choose a concrete divisor set and visualize it with all the mults, or just some to your liking." ] }, { "cell_type": "code", "execution_count": null, "id": "b464865d-b169-446e-a9e7-0cead699aee1", "metadata": {}, "outputs": [], "source": [ "#divisor_name = \"powers_of_2_large\"\n", "divisor_name = \"feature\"\n", "plot_mults = list(filter(lambda mult: mult in distributions_mults, all_mults_with_ctr))\n", "#plot_divisors = (61, 65, 111, 165, 1536, 12288) \n", "plot_divisors = (55, 65, 165, 248, 3072)\n", "L = len(plot_divisors)\n", "N = len(plot_mults)\n", "x = list(range(L))\n", "\n", "fig = plt.figure(figsize=(L/4+15, 24))\n", "ax = plt.subplot(111)\n", "\n", "vals = np.zeros((N, L))\n", "n_samples = 0\n", "for i, mult in enumerate(plot_mults):\n", " probmap = distributions_mults[mult]\n", " y_values = [probmap[l] for l in plot_divisors]\n", " vals[i,] = y_values\n", " ax.plot(x, y_values,\n", " color=colors[mult],\n", " linestyle=styles[mult],\n", " marker=markers[mult],\n", " label=str(mult) if mult.countermeasure is None else \"_nolegend_\")\n", " if showci:\n", " cis = [conf_interval(p, probmap.samples) for p in y_values]\n", " ci_low = [ci[0] for ci in cis]\n", " ci_high = [ci[1] for ci in cis]\n", " ax.fill_between(x, ci_low, ci_high, color=\"black\", alpha=0.1)\n", " n_samples += probmap.samples\n", "\n", "ax.set_title(f\"{divisor_name} ({kind})\\nSamples(avg): \" + str(n_samples//N))\n", "\n", "#var = np.var(vals, axis=0)\n", "#ax.plot(x, var / np.max(var), label=\"cross-mult variance (normalized)\", ls=\"--\", lw=2, color=\"black\")\n", "\n", "ax.set_xlabel(\"divisors\")\n", "ax.set_ylabel(\"error probability\")\n", "ax.set_yticks(majticks)\n", "ax.set_yticks(minticks, minor=True)\n", "ax.set_xticks(x, plot_divisors, rotation=90)\n", "\n", "ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n", "ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n", "ax.grid(axis=\"x\", alpha=0.7)\n", "plt.tight_layout()\n", "box = ax.get_position()\n", "ax.set_position([box.x0, box.y0, box.width * 0.7, box.height])\n", "\n", "# Put a legend to the right of the current axis\n", "ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "d68f0bfc-cdf1-4891-b0e5-0b6d1b02ded7", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 5 }