aboutsummaryrefslogtreecommitdiff
path: root/util/plot_gen.py
diff options
context:
space:
mode:
Diffstat (limited to 'util/plot_gen.py')
-rwxr-xr-xutil/plot_gen.py66
1 files changed, 54 insertions, 12 deletions
diff --git a/util/plot_gen.py b/util/plot_gen.py
index 12f7089..98d8261 100755
--- a/util/plot_gen.py
+++ b/util/plot_gen.py
@@ -1,4 +1,4 @@
-#!/usr/bin/env python
+#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
#
# Script for plotting ECTester key generation results.
@@ -14,7 +14,9 @@
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
+import matplotlib.colors as colors
from operator import itemgetter
+from copy import deepcopy
import argparse
if __name__ == "__main__":
@@ -23,7 +25,9 @@ if __name__ == "__main__":
parser.add_argument("--pub", dest="pub", action="store_true", help="Show public key scatter plot.")
parser.add_argument("--priv", dest="priv", action="store_true", help="Show private key scatter plot.")
parser.add_argument("--hist", dest="hist", action="store_true", help="Show histogram.")
+ parser.add_argument("--hw-hist", dest="hw_hist", action="store_true", help="Show Hamming weight 2D histogram (private key Hamming weight and generation time).")
parser.add_argument("--skip-first", dest="skip_first", action="store_true", help="Skip first entry, as it's usually a large outlier.")
+ parser.add_argument("-t", "--title", dest="title", type=str, nargs="?", default="", help="What title to give the figure.")
parser.add_argument("file", type=str, help="The file to plot(csv).")
opts = parser.parse_args()
@@ -32,11 +36,11 @@ if __name__ == "__main__":
header = f.readline()
header_names = header.split(";")
- plots = [opts.priv, opts.pub, opts.hist]
+ plots = [opts.priv, opts.pub, opts.hist, opts.hw_hist]
n_plots = sum(plots)
if n_plots == 0:
- n_plots = 3
- plots = [True, True, True]
+ n_plots = 4
+ plots = [True, True, True, True]
hx = lambda x: int(x, 16)
data = np.genfromtxt(opts.file, delimiter=";", skip_header=1, converters={2: hx, 3: hx}, dtype=np.dtype([("index","u4"), ("time","u4"), ("pub", "O"), ("priv", "O")]))
@@ -45,16 +49,24 @@ if __name__ == "__main__":
if "nano" in header_names[1]:
unit = r"$\mu s$"
- time_data = map(lambda x: x[1]/1000, data)
+ time_data = map(lambda x: x[1]//1000, data)
else:
unit = r"ms"
time_data = map(itemgetter(1), data)
- priv_data = map(itemgetter(2), data)
- pub_data = map(itemgetter(3), data)
+ time_data = list(time_data)
+ priv_data = list(map(itemgetter(2), data))
+ pub_data = list(map(itemgetter(3), data))
plt.style.use("ggplot")
- fig = plt.figure(tight_layout=True)
- fig.suptitle(opts.file)
+ fig = plt.figure()
+ layout_kwargs = {}
+ if opts.title is None:
+ fig.suptitle(opts.file)
+ layout_kwargs["rect"] = [0, 0.02, 1, 0.98]
+ elif opts.title:
+ fig.suptitle(opts.title)
+ layout_kwargs["rect"] = [0, 0.02, 1, 0.98]
+ fig.tight_layout(**layout_kwargs)
plot_i = 1
if plots[0]:
@@ -76,18 +88,48 @@ if __name__ == "__main__":
time_max = max(time_data)
time_avg = np.average(time_data)
time_median = np.median(time_data)
- axe_hist.hist(time_data, bins=time_max/3, log=True)
+ axe_hist.hist(time_data, bins=time_max//3, log=True)
axe_hist.axvline(x=time_avg, alpha=0.7, linestyle="dotted", color="red", label="avg = {}".format(time_avg))
axe_hist.axvline(x=time_median, alpha=0.7, linestyle="dotted", color="green", label="median = {}".format(time_median))
axe_hist.set_ylabel("count\n(log)")
axe_hist.set_xlabel("time ({})".format(unit))
axe_hist.xaxis.set_major_locator(ticker.MaxNLocator())
axe_hist.legend(loc="best")
+ plot_i += 1
+
+ if plots[3]:
+ priv_bit_bins = {}
+ for i in range(len(data)):
+ skey = priv_data[i]
+ time = time_data[i]
+ skey_hw = 0
+ while skey:
+ skey_hw += 1
+ skey &= skey - 1
+ if skey_hw in priv_bit_bins:
+ priv_bit_bins[skey_hw].append(time)
+ else:
+ priv_bit_bins[skey_hw] = [time]
+ priv_bit_x = []
+ priv_bit_y = []
+ for k,v in priv_bit_bins.items():
+ priv_bit_x.extend([k] * len(v))
+ priv_bit_y.extend(v)
+ axe_priv_hist = fig.add_subplot(n_plots, 1, plot_i)
+ h, xe, ye = np.histogram2d(priv_bit_x, priv_bit_y, bins=[max(priv_bit_bins) - min(priv_bit_bins), (max(time_data) - min(time_data))//5])
+ cmap = deepcopy(plt.cm.plasma)
+ cmap.set_bad("black")
+ im = axe_priv_hist.imshow(h.T, origin="low", cmap=cmap, aspect="auto", extent=[xe[0], xe[-1], ye[0], ye[-1]], norm=colors.LogNorm())
+ axe_priv_hist.set_xlabel("private key Hamming weight")
+ axe_priv_hist.set_ylabel("time ({})".format(unit))
+ fig.colorbar(im, ax=axe_priv_hist)
- fig.text(0.01, 0.02, "Data size: {}".format(len(time_data)), size="small")
+ if plot_i > 2:
+ fig.text(0.01, 0.02, "Data size: {}".format(len(time_data)), size="small")
if opts.output is None:
plt.show()
else:
fig.set_size_inches(12, 10)
- plt.savefig(opts.output, dpi=400)
+ ext = opts.output.name.split(".")[-1]
+ plt.savefig(opts.output, format=ext, dpi=400, bbox_inches='tight')