aboutsummaryrefslogtreecommitdiff
path: root/util/plot_dsa.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'util/plot_dsa.ipynb')
-rw-r--r--util/plot_dsa.ipynb613
1 files changed, 613 insertions, 0 deletions
diff --git a/util/plot_dsa.ipynb b/util/plot_dsa.ipynb
new file mode 100644
index 0000000..dbfb38b
--- /dev/null
+++ b/util/plot_dsa.ipynb
@@ -0,0 +1,613 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Analysis of key generation data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:00:25.518989Z",
+ "start_time": "2019-03-17T23:00:24.501601Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ " %matplotlib notebook \n",
+ "import numpy as np\n",
+ "from scipy.stats import describe\n",
+ "from scipy.stats import norm as norm_dist\n",
+ "from scipy.stats.mstats import mquantiles\n",
+ "from math import log, sqrt\n",
+ "import matplotlib.pyplot as plt\n",
+ "from matplotlib import ticker, colors, gridspec\n",
+ "from copy import deepcopy\n",
+ "from utils import plot_hist, moving_average, hw\n",
+ "from binascii import unhexlify\n",
+ "from IPython.display import display, HTML\n",
+ "from ipywidgets import interact, interactive, fixed, interact_manual\n",
+ "import ipywidgets as widgets\n",
+ "import tabulate"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Settings\n",
+ "Enter your input below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:06:29.704432Z",
+ "start_time": "2019-03-17T23:06:29.694540Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# File name with output from ECTesterReader or ECTesterStandalone signatures.\n",
+ "fname = \"filename.csv\"\n",
+ "\n",
+ "# The amount of entries skipped from the beginning of the file, as they are usually outliers.\n",
+ "skip_first = 10\n",
+ "\n",
+ "# Whether to plot things in logarithmic scale or not.\n",
+ "log_scale = False\n",
+ "\n",
+ "# Whether to trim the time data outside the 1 - 99 percentile range (adjust below). Quite useful.\n",
+ "trim = True\n",
+ "\n",
+ "# How much to trim? Either a number in [0,1] signifying a quantile, or an absolute value signifying a threshold\n",
+ "trim_low = 0.01\n",
+ "trim_high = 0.99\n",
+ "\n",
+ "# Graphical (matplotlib) style name\n",
+ "style = \"ggplot\"\n",
+ "\n",
+ "# Color map to use, and what color to assign to \"bad\" values (necessary for log_scale)\n",
+ "color_map = plt.cm.plasma\n",
+ "color_map_bad = \"black\"\n",
+ "\n",
+ "# What function to use to calculate number of histogram bins of time\n",
+ "# one of \"sqrt\", \"sturges\", \"rice\", \"scott\" and \"fd\" or a number specifying the number of bins\n",
+ "hist_size = \"sturges\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Data processing"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:06:30.551732Z",
+ "start_time": "2019-03-17T23:06:30.545202Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Setup plot style\n",
+ "\n",
+ "plt.style.use(style)\n",
+ "\n",
+ "cmap = deepcopy(color_map)\n",
+ "cmap.set_bad(color_map_bad)\n",
+ "\n",
+ "# Normalization, linear or log.\n",
+ "if log_scale:\n",
+ " norm = colors.LogNorm()\n",
+ "else:\n",
+ " norm = colors.Normalize()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:00:38.023486Z",
+ "start_time": "2019-03-17T23:00:27.178465Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Read the header line.\n",
+ "\n",
+ "with open(fname, \"r\") as f:\n",
+ " header = f.readline()\n",
+ "header_names = header.split(\";\")\n",
+ "if len(header_names) != 9:\n",
+ " print(\"Bad data?\")\n",
+ " exit(1)\n",
+ "\n",
+ "# Load the data\n",
+ "\n",
+ "hx = lambda x: int(x, 16)\n",
+ "data = np.genfromtxt(fname, delimiter=\";\", skip_header=1, converters={3: unhexlify, 4: unhexlify,\n",
+ " 5: hx, 6: unhexlify, 7: hx,\n",
+ " 8: lambda b: bool(int(b))},\n",
+ " dtype=np.dtype([(\"index\", \"u4\"), (\"sign_time\", \"u4\"), (\"verify_time\", \"u4\"),\n",
+ " (\"data\", \"O\"), (\"pub\", \"O\"), (\"priv\", \"O\"), (\"signature\", \"O\"),\n",
+ " (\"nonce\", \"O\"), (\"valid\", \"b\")]))\n",
+ "\n",
+ " \n",
+ "sign_unit = \"ms\"\n",
+ "verify_unit = \"ms\"\n",
+ "# Setup the datatrimmed = False"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:00:38.465677Z",
+ "start_time": "2019-03-17T23:00:38.025692Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Setup the data\n",
+ "\n",
+ "# Skip first (outliers?)\n",
+ "\n",
+ "data = data[skip_first:]\n",
+ "\n",
+ "# If in nanoseconds, scale to microseconds\n",
+ "if header_names[1].endswith(\"[nano]\") and sign_unit == \"ms\":\n",
+ " sign_unit = r\"$\\mu s$\"\n",
+ " np.floor_divide(data[\"sign_time\"], 1000, out=data[\"sign_time\"])\n",
+ "\n",
+ "if header_names[2].endswith(\"[nano]\") and verify_unit == \"ms\":\n",
+ " verify_unit = r\"$\\mu s$\"\n",
+ " np.floor_divide(data[\"verify_time\"], 1000, out=data[\"verify_time\"])\n",
+ "\n",
+ "# Trim times\n",
+ "quant_low_bound = trim_low if 0 <= trim_low <= 1 else 0.01\n",
+ "quant_high_bound = trim_high if 0 <= trim_high <= 1 else 0.95\n",
+ "quantiles_sign = mquantiles(data[\"sign_time\"], prob=(quant_low_bound, 0.25, 0.5, 0.75, quant_high_bound))\n",
+ "if trim:\n",
+ " low_bound = quantiles_sign[0] if 0 <= trim_low <= 1 else trim_low\n",
+ " high_bound = quantiles_sign[4] if 0 <= trim_high <= 1 else trim_high\n",
+ " data_trimmed = data[np.logical_and(data[\"sign_time\"] >= low_bound,\n",
+ " data[\"sign_time\"] <= high_bound)]\n",
+ " quantiles_sign_trim = mquantiles(data_trimmed[\"sign_time\"], prob=(quant_low_bound, 0.25, 0.5, 0.75, quant_high_bound))\n",
+ "else:\n",
+ " low_bound = None\n",
+ " high_bound = None\n",
+ " data_trimmed = data\n",
+ " quantiles_sign_trim = quantiles_sign\n",
+ "\n",
+ "description_sign = describe(data[\"sign_time\"])\n",
+ "description_sign_trim = describe(data_trimmed[\"sign_time\"])\n",
+ "\n",
+ "max_sign_time = description_sign.minmax[1]\n",
+ "min_sign_time = description_sign.minmax[0]\n",
+ "bit_size = len(bin(max(data[\"priv\"]))) - 2\n",
+ "byte_size = (bit_size + 7) // 8\n",
+ "bit_size = byte_size * 8\n",
+ "\n",
+ "if hist_size == \"sqrt\":\n",
+ " hist_size_func = lambda n, xmin, xmax, var, xlower, xupper: int(sqrt(n)) + 1\n",
+ "elif hist_size == \"sturges\":\n",
+ " hist_size_func = lambda n, xmin, xmax, var, xlower, xupper: int(log(n, 2)) + 1\n",
+ "elif hist_size == \"rice\":\n",
+ " hist_size_func = lambda n, xmin, xmax, var, xlower, xupper: int(2 * n**(1/3))\n",
+ "elif hist_size == \"scott\":\n",
+ " hist_size_func = lambda n, xmin, xmax, var, xlower, xupper: (xmax - xmin) // int((3.5 * sqrt(var)) / (n**(1/3)))\n",
+ "elif hist_size == \"fd\":\n",
+ " hist_size_func = lambda n, xmin, xmax, var, xlower, xupper: (xmax - xmin) // int(2 * (xupper - xlower) / (n**(1/3)))\n",
+ "else:\n",
+ " hist_size_func = lambda n, xmin, xmax, var, xlower, xupper: hist_size\n",
+ "\n",
+ "hist_size_sign_time = hist_size_func(description_sign.nobs, min_sign_time, max_sign_time, description_sign.variance, quantiles_sign[1], quantiles_sign[3])\n",
+ "hist_size_sign_time_trim = hist_size_func(description_sign_trim.nobs, description_sign_trim.minmax[0], description_sign_trim.minmax[1], description_sign_trim.variance, quantiles_sign_trim[1], quantiles_sign_trim[3])\n",
+ "\n",
+ "if hist_size_sign_time < 30:\n",
+ " hist_size_sign_time = max_sign_time - min_sign_time\n",
+ "if hist_size_sign_time_trim < 30:\n",
+ " hist_size_sign_time_trim = description_sign_trim.minmax[1] - description_sign_trim.minmax[0]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Analysis"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Summary"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:00:39.540701Z",
+ "start_time": "2019-03-17T23:00:39.511019Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "display(\"Raw\")\n",
+ "desc = [(\"N\", \"min, max\", \"mean\", \"variance\", \"skewness\", \"kurtosis\"),\n",
+ " description_sign]\n",
+ "display(HTML(tabulate.tabulate(desc, tablefmt=\"html\")))\n",
+ "display(\"Trimmed\")\n",
+ "desc = [(\"N\", \"min, max\", \"mean\", \"variance\", \"skewness\", \"kurtosis\"),\n",
+ " description_sign_trim]\n",
+ "display(HTML(tabulate.tabulate(desc, tablefmt=\"html\")))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Selected quantiles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:00:40.974497Z",
+ "start_time": "2019-03-17T23:00:40.953755Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "tbl = [(quant_low_bound, \"0.25\", \"0.5\", \"0.75\", quant_high_bound),\n",
+ " list(map(lambda x: \"{} {}\".format(x, sign_unit), quantiles_sign))]\n",
+ "display(HTML(tabulate.tabulate(tbl, tablefmt=\"html\")))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Info"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:00:41.961541Z",
+ "start_time": "2019-03-17T23:00:41.949385Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "display(\"Bitsize:\", bit_size)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plots"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Nonce MSB vs signature time heatmap"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:06:34.030472Z",
+ "start_time": "2019-03-17T23:06:33.761991Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_nonce = plt.figure(figsize=(10.5, 8), dpi=90)\n",
+ "axe_nonce = fig_nonce.add_subplot(1, 1, 1)\n",
+ "nonce_msb = np.array(list(map(lambda x: x >> (bit_size - 8), data_trimmed[\"nonce\"])), dtype=np.dtype(\"u1\"))\n",
+ "max_msb = max(nonce_msb)\n",
+ "min_msb = min(nonce_msb)\n",
+ "heatmap, xedges, yedges = np.histogram2d(nonce_msb, data_trimmed[\"sign_time\"],\n",
+ " bins=[max_msb - min_msb + 1, hist_size_sign_time_trim])\n",
+ "extent = [min_msb, max_msb, yedges[0], yedges[-1]]\n",
+ "im = axe_nonce.imshow(heatmap.T, extent=extent, aspect=\"auto\", cmap=cmap, origin=\"low\",\n",
+ " interpolation=\"nearest\", norm=norm)\n",
+ "axe_nonce.set_xlabel(\"nonce key MSB value\")\n",
+ "axe_nonce.set_ylabel(\"signature time ({})\".format(sign_unit))\n",
+ "fig_nonce.colorbar(im, ax=axe_nonce)\n",
+ "\n",
+ "del nonce_msb"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Nonce Hamming Weight vs signature time heatmap"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:05:26.804859Z",
+ "start_time": "2019-03-17T23:05:18.214110Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_nonce_hist = plt.figure(figsize=(10.5, 12), dpi=90)\n",
+ "gs = gridspec.GridSpec(2, 1, height_ratios=[2.5, 1])\n",
+ "axe_nonce_hist = fig_nonce_hist.add_subplot(gs[0])\n",
+ "axe_nonce_hist_hw = fig_nonce_hist.add_subplot(gs[1], sharex = axe_nonce_hist)\n",
+ "nonce_hw = np.array(list(map(hw, data_trimmed[\"nonce\"])), dtype=np.dtype(\"u2\"))\n",
+ "h, xe, ye = np.histogram2d(nonce_hw, data_trimmed[\"sign_time\"], bins=[max(nonce_hw) - min(nonce_hw), hist_size_sign_time_trim])\n",
+ "im = axe_nonce_hist.imshow(h.T, origin=\"low\", cmap=cmap, aspect=\"auto\", extent=[xe[0], xe[-1], ye[0], ye[-1]], norm=norm)\n",
+ "axe_nonce_hist.axvline(x=bit_size//2, alpha=0.7, linestyle=\"dotted\", color=\"white\", label=str(bit_size//2) + \" bits\")\n",
+ "axe_nonce_hist.set_xlabel(\"nonce Hamming weight\")\n",
+ "axe_nonce_hist.set_ylabel(\"signature time ({})\".format(sign_unit))\n",
+ "axe_nonce_hist.legend(loc=\"best\")\n",
+ "\n",
+ "plot_hist(axe_nonce_hist_hw, nonce_hw, \"nonce Hamming weight\", log_scale, True, True)\n",
+ "\n",
+ "param = norm_dist.fit(nonce_hw)\n",
+ "pdf_range = np.arange(min(nonce_hw), max(nonce_hw))\n",
+ "norm_pdf = norm_dist.pdf(pdf_range, *param[:-2], loc=param[-2], scale=param[-1]) * description_sign_trim.nobs\n",
+ "axe_nonce_hist_hw.plot(pdf_range, norm_pdf, label=\"fitted normal distribution\")\n",
+ "axe_nonce_hist_hw.legend(loc=\"best\")\n",
+ "fig_nonce_hist.colorbar(im, ax=[axe_nonce_hist, axe_nonce_hist_hw])\n",
+ "\n",
+ "display(HTML(\"<b>Nonce Hamming weight fitted with normal distribution:</b>\"))\n",
+ "display(HTML(tabulate.tabulate([(\"Mean\", \"Variance\"), param], tablefmt=\"html\")))\n",
+ "\n",
+ "del nonce_hw"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Signature time histogram"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:05:32.395983Z",
+ "start_time": "2019-03-17T23:05:32.068823Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_sig_hist = plt.figure(figsize=(10.5, 8), dpi=90)\n",
+ "axe_hist_full = fig_sig_hist.add_subplot(2, 1, 1)\n",
+ "axe_hist_trim = fig_sig_hist.add_subplot(2, 1, 2)\n",
+ "plot_hist(axe_hist_full, data[\"sign_time\"], \"signature time ({})\".format(sign_unit), log_scale, hist_size_sign_time);\n",
+ "plot_hist(axe_hist_trim, data_trimmed[\"sign_time\"], \"signature time ({})\".format(sign_unit), log_scale, hist_size_sign_time_trim);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Verification time histogram"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:05:33.358613Z",
+ "start_time": "2019-03-17T23:05:32.963791Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_vrfy_hist = plt.figure(figsize=(10.5, 5), dpi=90)\n",
+ "axe_hist_full = fig_vrfy_hist.add_subplot(1, 1, 1)\n",
+ "plot_hist(axe_hist_full, data[\"verify_time\"], \"verification time ({})\".format(verify_unit), log_scale, hist_size_sign_time);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Moving averages of signature and verification times"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:05:33.971385Z",
+ "start_time": "2019-03-17T23:05:33.732857Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_avg = plt.figure(figsize=(10.5, 8), dpi=90)\n",
+ "axe_sign_avg = fig_avg.add_subplot(2, 1, 1)\n",
+ "axe_vrfy_avg = fig_avg.add_subplot(2, 1, 2, sharex=axe_sign_avg)\n",
+ "avg_sign_100 = moving_average(data[\"sign_time\"], 100)\n",
+ "avg_sign_1000 = moving_average(data[\"sign_time\"], 1000)\n",
+ "axe_sign_avg.plot(avg_sign_100, label=\"window = 100\")\n",
+ "axe_sign_avg.plot(avg_sign_1000, label=\"window = 1000\")\n",
+ "if low_bound is not None:\n",
+ " axe_sign_avg.axhline(y=low_bound, alpha=0.7, linestyle=\"dotted\", color=\"green\", label=\"Low trim bound = {}\".format(low_bound))\n",
+ "if high_bound is not None:\n",
+ " axe_sign_avg.axhline(y=high_bound, alpha=0.7, linestyle=\"dotted\", color=\"orange\", label=\"Hight trim bound = {}\".format(high_bound))\n",
+ "axe_sign_avg.set_ylabel(\"signature time ({})\".format(sign_unit))\n",
+ "axe_sign_avg.set_xlabel(\"index\")\n",
+ "axe_sign_avg.legend(loc=\"best\")\n",
+ "\n",
+ "avg_vrfy_100 = moving_average(data[\"verify_time\"], 100)\n",
+ "avg_vrfy_1000 = moving_average(data[\"verify_time\"], 1000)\n",
+ "axe_vrfy_avg.plot(avg_vrfy_100, label=\"window = 100\")\n",
+ "axe_vrfy_avg.plot(avg_vrfy_1000, label=\"window = 1000\")\n",
+ "axe_vrfy_avg.set_ylabel(\"verification time ({})\".format(verify_unit))\n",
+ "axe_vrfy_avg.set_xlabel(\"index\")\n",
+ "axe_vrfy_avg.legend(loc=\"best\")\n",
+ "\n",
+ "del avg_sign_100, avg_sign_1000, avg_vrfy_100, avg_vrfy_1000"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Nonce MSB and LSB histograms"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:05:36.256032Z",
+ "start_time": "2019-03-17T23:05:35.302194Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_nonce_hists = plt.figure(figsize=(10.5, 8), dpi=90)\n",
+ "nonce_msb = np.array(list(map(lambda x: x >> (bit_size - 8), data[\"nonce\"])), dtype=np.dtype(\"u1\"))\n",
+ "nonce_lsb = np.array(list(map(lambda x: x & 0xff, data[\"nonce\"])), dtype=np.dtype(\"u1\"))\n",
+ "axe_msb_n_hist = fig_nonce_hists.add_subplot(2, 1, 1)\n",
+ "axe_lsb_n_hist = fig_nonce_hists.add_subplot(2, 1, 2)\n",
+ "plot_hist(axe_msb_n_hist, nonce_msb, \"nonce MSB\", log_scale, False, False)\n",
+ "plot_hist(axe_lsb_n_hist, nonce_lsb, \"nonce LSB\", log_scale, False, False)\n",
+ "\n",
+ "del nonce_msb, nonce_lsb"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Nonce bit length histogram"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-17T23:05:45.320760Z",
+ "start_time": "2019-03-17T23:05:44.951189Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_bl = plt.figure(figsize=(10.5, 12), dpi=90)\n",
+ "gs = gridspec.GridSpec(2, 1, height_ratios=[2.5, 1])\n",
+ "axe_bl_heat = fig_bl.add_subplot(gs[0])\n",
+ "axe_bl_hist = fig_bl.add_subplot(gs[1], sharex=axe_bl_heat)\n",
+ "bl_data = np.array(list(map(lambda x: x.bit_length(), data_trimmed[\"nonce\"])), dtype=np.dtype(\"u2\"))\n",
+ "\n",
+ "h, xe, ye = np.histogram2d(bl_data, data_trimmed[\"sign_time\"], bins=[max(bl_data) - min(bl_data), hist_size_sign_time_trim])\n",
+ "im = axe_bl_heat.imshow(h.T, origin=\"low\", cmap=cmap, aspect=\"auto\", extent=[xe[0], xe[-1], ye[0], ye[-1]], norm=norm)\n",
+ "axe_bl_heat.set_xlabel(\"nonce bit length\")\n",
+ "axe_bl_heat.set_ylabel(\"signature time ({})\".format(sign_unit))\n",
+ "\n",
+ "plot_hist(axe_bl_hist, bl_data, \"nonce bit length\", log_scale, align=\"right\")\n",
+ "fig_bl.colorbar(im, ax=[axe_bl_heat, axe_bl_hist])\n",
+ "\n",
+ "del bl_data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "@webio": {
+ "lastCommId": "2218f80b2f784436bce6ffed5d971ea3",
+ "lastKernelId": "1c06331a-17dd-4743-9e31-832000e597c8"
+ },
+ "hide_input": false,
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.2"
+ },
+ "latex_envs": {
+ "LaTeX_envs_menu_present": true,
+ "autoclose": false,
+ "autocomplete": true,
+ "bibliofile": "biblio.bib",
+ "cite_by": "apalike",
+ "current_citInitial": 1,
+ "eqLabelWithNumbers": true,
+ "eqNumInitial": 1,
+ "hotkeys": {
+ "equation": "Ctrl-E",
+ "itemize": "Ctrl-I"
+ },
+ "labels_anchors": false,
+ "latex_user_defs": false,
+ "report_style_numbering": false,
+ "user_envs_cfg": false
+ },
+ "toc": {
+ "base_numbering": 1,
+ "nav_menu": {},
+ "number_sections": true,
+ "sideBar": true,
+ "skip_h1_title": false,
+ "title_cell": "Table of Contents",
+ "title_sidebar": "Contents",
+ "toc_cell": false,
+ "toc_position": {},
+ "toc_section_display": true,
+ "toc_window_display": false
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}