aboutsummaryrefslogtreecommitdiff
path: root/analysis/plot_dh.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'analysis/plot_dh.ipynb')
-rw-r--r--analysis/plot_dh.ipynb668
1 files changed, 668 insertions, 0 deletions
diff --git a/analysis/plot_dh.ipynb b/analysis/plot_dh.ipynb
new file mode 100644
index 0000000..f43d631
--- /dev/null
+++ b/analysis/plot_dh.ipynb
@@ -0,0 +1,668 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Analysis of key agreement data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T13:35:38.954375Z",
+ "start_time": "2019-03-19T13:35:38.578219Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib notebook\n",
+ "import numpy as np\n",
+ "from scipy.stats import describe\n",
+ "from scipy.stats import norm as norm_dist\n",
+ "from scipy.stats.mstats import mquantiles\n",
+ "from math import log, sqrt\n",
+ "import matplotlib.pyplot as plt\n",
+ "from matplotlib import ticker, colors, gridspec\n",
+ "from copy import deepcopy\n",
+ "from utils import plot_hist, moving_average, hw, time_scale, hist_size_func\n",
+ "from binascii import unhexlify\n",
+ "from IPython.display import display, HTML\n",
+ "from ipywidgets import interact, interactive, fixed, interact_manual\n",
+ "import ipywidgets as widgets\n",
+ "import tabulate"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Settings\n",
+ "Enter your input below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:43:15.121139Z",
+ "start_time": "2019-03-19T12:43:15.117537Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# File name with output from ECTesterReader or ECTesterStandalone ECDH.\n",
+ "fname = \"filename.csv\"\n",
+ "\n",
+ "# The time unit used in displaying the plots. One of \"milli\", \"micro\", \"nano\".\n",
+ "# WARNING: Using nano might lead to very large plots/histograms and to the\n",
+ "# notebook to freeze or run out of memory, as well as bad visualization\n",
+ "# quality, due to noise and low density.\n",
+ "time_unit = \"milli\"\n",
+ "# A number which will be used to divide the time into sub-units, e.g. for 5, time will be in fifths of units\n",
+ "scaling_factor = 1\n",
+ "\n",
+ "# The amount of entries skipped from the beginning of the file, as they are usually outliers.\n",
+ "skip_first = 10\n",
+ "\n",
+ "# Whether to plot things in logarithmic scale or not.\n",
+ "log_scale = False\n",
+ "\n",
+ "# Whether to trim the time data outside the 1 - 99 percentile range (adjust below). Quite useful.\n",
+ "trim = True\n",
+ "\n",
+ "# How much to trim? Either a number in [0,1] signifying a quantile, or an absolute value signifying a threshold\n",
+ "trim_low = 0.01\n",
+ "trim_high = 0.99\n",
+ "\n",
+ "# Graphical (matplotlib) style name\n",
+ "style = \"ggplot\"\n",
+ "\n",
+ "# Color map to use, and what color to assign to \"bad\" values (necessary for log_scale)\n",
+ "color_map = plt.cm.viridis\n",
+ "color_map_bad = \"black\"\n",
+ "\n",
+ "# What function to use to calculate number of histogram bins of time\n",
+ "# one of \"sqrt\", \"sturges\", \"rice\", \"scott\" and \"fd\" or a number specifying the number of bins\n",
+ "hist_size = \"sturges\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Data processing"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:43:16.687260Z",
+ "start_time": "2019-03-19T12:43:16.031604Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Setup plot style\n",
+ "\n",
+ "plt.style.use(style)\n",
+ "\n",
+ "cmap = deepcopy(color_map)\n",
+ "cmap.set_bad(color_map_bad)\n",
+ "\n",
+ "# Normalization, linear or log.\n",
+ "if log_scale:\n",
+ " norm = colors.LogNorm()\n",
+ "else:\n",
+ " norm = colors.Normalize()\n",
+ "\n",
+ "# Read the header line.\n",
+ "\n",
+ "with open(fname, \"r\") as f:\n",
+ " header = f.readline()\n",
+ "header_names = header.split(\";\")\n",
+ "if len(header_names) != 5:\n",
+ " print(\"Bad data?\")\n",
+ " exit(1)\n",
+ "\n",
+ "# Load the data\n",
+ "\n",
+ "hx = lambda x: int(x, 16)\n",
+ "data = np.genfromtxt(fname, delimiter=\";\", skip_header=1, converters={2: unhexlify, 3: hx, 4: hx},\n",
+ " dtype=np.dtype([(\"index\", \"u4\"), (\"time\", \"u4\"), (\"pub\", \"O\"), (\"priv\", \"O\"), (\"secret\", \"O\")]))\n",
+ "\n",
+ "# Skip first (outliers?)\n",
+ "\n",
+ "data = data[skip_first:]\n",
+ "\n",
+ "# Setup the data\n",
+ "\n",
+ "orig_time_unit = header_names[1].split(\"[\")[1][:-1]\n",
+ "time_disp_unit = time_scale(data[\"time\"], orig_time_unit, time_unit, scaling_factor)\n",
+ "\n",
+ "# Trim times\n",
+ "quant_low_bound = trim_low if 0 <= trim_low <= 1 else 0.01\n",
+ "quant_high_bound = trim_high if 0 <= trim_high <= 1 else 0.95\n",
+ "quantiles = mquantiles(data[\"time\"], prob=(quant_low_bound, 0.25, 0.5, 0.75, quant_high_bound))\n",
+ "if trim:\n",
+ " low_bound = quantiles[0] if 0 <= trim_low <= 1 else trim_low\n",
+ " high_bound = quantiles[4] if 0 <= trim_high <= 1 else trim_high\n",
+ " data_trimmed = data[np.logical_and(data[\"time\"] >= low_bound,\n",
+ " data[\"time\"] <= high_bound)]\n",
+ " quantiles_trim = mquantiles(data_trimmed[\"time\"], prob=(quant_low_bound, 0.25, 0.5, 0.75, quant_high_bound))\n",
+ "else:\n",
+ " low_bound = None\n",
+ " high_bound = None\n",
+ " data_trimmed = data\n",
+ " quantiles_trim = quantiles_gen\n",
+ "\n",
+ "description = describe(data[\"time\"])\n",
+ "description_trim = describe(data_trimmed[\"time\"])\n",
+ "\n",
+ "max_time = description.minmax[1]\n",
+ "min_time = description.minmax[0]\n",
+ "bit_size = len(bin(max(data[\"priv\"]))) - 2\n",
+ "byte_size = (bit_size + 7) // 8\n",
+ "bit_size = byte_size * 8\n",
+ "\n",
+ "hist_size_time = hist_size_func(hist_size)(description.nobs, min_time, max_time, description.variance, quantiles[1], quantiles[3])\n",
+ "hist_size_time_trim = hist_size_func(hist_size)(description_trim.nobs, description_trim.minmax[0], description_trim.minmax[1], description_trim.variance, quantiles_trim[1], quantiles_trim[3])\n",
+ "\n",
+ "if hist_size_time < 30:\n",
+ " hist_size_time = max_time - min_time\n",
+ "if hist_size_time_trim < 30:\n",
+ " hist_size_time_trim = description_trim.minmax[1] - description_trim.minmax[0]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Analysis"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Summary"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:43:17.706648Z",
+ "start_time": "2019-03-19T12:43:17.695215Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "display(\"Raw\")\n",
+ "desc = [(\"N\", \"min, max\", \"mean\", \"variance\", \"skewness\", \"kurtosis\"),\n",
+ " description]\n",
+ "display(HTML(tabulate.tabulate(desc, tablefmt=\"html\")))\n",
+ "display(\"Trimmed\")\n",
+ "desc = [(\"N\", \"min, max\", \"mean\", \"variance\", \"skewness\", \"kurtosis\"),\n",
+ " description_trim]\n",
+ "display(HTML(tabulate.tabulate(desc, tablefmt=\"html\")))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Selected quantiles"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:43:19.507884Z",
+ "start_time": "2019-03-19T12:43:19.502941Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "tbl = [(quant_low_bound, \"0.25\", \"0.5\", \"0.75\", quant_high_bound),\n",
+ " list(map(lambda x: \"{} {}\".format(x, time_disp_unit), quantiles))]\n",
+ "display(HTML(tabulate.tabulate(tbl, tablefmt=\"html\")))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Info"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:43:20.963153Z",
+ "start_time": "2019-03-19T12:43:20.956502Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "display(\"Bitsize: {}\".format(bit_size))\n",
+ "display(\"Histogram time bins: {}\".format(hist_size_time))\n",
+ "display(\"Histogram time bins(trimmed): {}\".format(hist_size_time_trim))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plots"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Private key MSB vs time heatmap\n",
+ "The heatmap should show uncorrelated variables."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:43:22.063050Z",
+ "start_time": "2019-03-19T12:43:21.967845Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_private = plt.figure(figsize=(10.5, 8), dpi=90)\n",
+ "axe_private = fig_private.add_subplot(1, 1, 1, title=\"Private key MSB vs key agreement time\")\n",
+ "priv_msb = np.array(list(map(lambda x: x >> (bit_size - 8), data_trimmed[\"priv\"])), dtype=np.dtype(\"u1\"))\n",
+ "max_msb = max(priv_msb)\n",
+ "min_msb = min(priv_msb)\n",
+ "heatmap, xedges, yedges = np.histogram2d(priv_msb, data_trimmed[\"time\"],\n",
+ " bins=[max_msb - min_msb + 1, hist_size_time_trim])\n",
+ "extent = [min_msb, max_msb, yedges[0], yedges[-1]]\n",
+ "im = axe_private.imshow(heatmap.T, extent=extent, aspect=\"auto\", cmap=cmap, origin=\"low\",\n",
+ " interpolation=\"nearest\", norm=norm)\n",
+ "axe_private.set_xlabel(\"private key MSB value\")\n",
+ "axe_private.set_ylabel(\"key agreement time ({})\".format(time_disp_unit))\n",
+ "fig_private.colorbar(im, ax=axe_private)\n",
+ "\n",
+ "fig_private.tight_layout()\n",
+ "del priv_msb"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Private key Hamming Weight vs time heatmap\n",
+ "The heatmap should show uncorrelated variables.\n",
+ "\n",
+ "Also contains a private key Hamming Weight histogram, which should be binomially distributed."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:47:12.436692Z",
+ "start_time": "2019-03-19T12:47:11.310271Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_priv_hist = plt.figure(figsize=(10.5, 12), dpi=90)\n",
+ "gs = gridspec.GridSpec(2, 1, height_ratios=[2.5, 1])\n",
+ "axe_priv_hist = fig_priv_hist.add_subplot(gs[0], title=\"Private key Hamming weight vs key agreement time\")\n",
+ "axe_priv_hist_hw = fig_priv_hist.add_subplot(gs[1], sharex=axe_priv_hist, title=\"Private key Hamming weight\")\n",
+ "priv_hw = np.array(list(map(hw, data_trimmed[\"priv\"])), dtype=np.dtype(\"u2\"))\n",
+ "h, xe, ye = np.histogram2d(priv_hw, data_trimmed[\"time\"], bins=[max(priv_hw) - min(priv_hw), hist_size_time_trim])\n",
+ "im = axe_priv_hist.imshow(h.T, origin=\"low\", cmap=cmap, aspect=\"auto\", extent=[xe[0], xe[-1], ye[0], ye[-1]], norm=norm)\n",
+ "axe_priv_hist.axvline(x=bit_size//2, alpha=0.7, linestyle=\"dotted\", color=\"white\", label=str(bit_size//2) + \" bits\")\n",
+ "axe_priv_hist.set_xlabel(\"private key Hamming weight\")\n",
+ "axe_priv_hist.set_ylabel(\"key agreement time ({})\".format(time_disp_unit))\n",
+ "axe_priv_hist.legend(loc=\"best\")\n",
+ "\n",
+ "plot_hist(axe_priv_hist_hw, priv_hw, \"private key Hamming weight\", log_scale, None)\n",
+ "\n",
+ "param = norm_dist.fit(priv_hw)\n",
+ "pdf_range = np.arange(min(priv_hw), max(priv_hw))\n",
+ "norm_pdf = norm_dist.pdf(pdf_range, *param[:-2], loc=param[-2], scale=param[-1]) * description_trim.nobs\n",
+ "axe_priv_hist_hw.plot(pdf_range, norm_pdf, label=\"fitted normal distribution\")\n",
+ "axe_priv_hist_hw.legend(loc=\"best\")\n",
+ "\n",
+ "fig_priv_hist.tight_layout()\n",
+ "fig_priv_hist.colorbar(im, ax=[axe_priv_hist, axe_priv_hist_hw])\n",
+ "\n",
+ "display(HTML(\"<b>Private key Hamming weight fitted with normal distribution:</b>\"))\n",
+ "display(HTML(tabulate.tabulate([(\"Mean\", \"Variance\"), param], tablefmt=\"html\")))\n",
+ "\n",
+ "del priv_hw"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Key agreement time histogram"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:47:20.496134Z",
+ "start_time": "2019-03-19T12:47:20.360405Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_ka_hist = plt.figure(figsize=(10.5, 8), dpi=90)\n",
+ "axe_hist_full = fig_ka_hist.add_subplot(2, 1, 1)\n",
+ "axe_hist_trim = fig_ka_hist.add_subplot(2, 1, 2)\n",
+ "plot_hist(axe_hist_full, data[\"time\"], \"key agreement time ({})\".format(time_disp_unit), log_scale, hist_size_time);\n",
+ "plot_hist(axe_hist_trim, data_trimmed[\"time\"], \"key agreement time ({})\".format(time_disp_unit), log_scale, hist_size_time_trim);\n",
+ "\n",
+ "fig_ka_hist.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Moving averages of key agreement time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:47:21.706585Z",
+ "start_time": "2019-03-19T12:47:21.658363Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_avg = plt.figure(figsize=(10.5, 7), dpi=90)\n",
+ "axe_avg = fig_avg.add_subplot(1, 1, 1, title=\"Moving average of key agreement time\")\n",
+ "avg_100 = moving_average(data[\"time\"], 100)\n",
+ "avg_1000 = moving_average(data[\"time\"], 1000)\n",
+ "axe_avg.plot(avg_100, label=\"window = 100\")\n",
+ "axe_avg.plot(avg_1000, label=\"window = 1000\")\n",
+ "if low_bound is not None:\n",
+ " axe_avg.axhline(y=low_bound, alpha=0.7, linestyle=\"dotted\", color=\"green\", label=\"Low trim bound = {}\".format(low_bound))\n",
+ "if high_bound is not None:\n",
+ " axe_avg.axhline(y=high_bound, alpha=0.7, linestyle=\"dotted\", color=\"orange\", label=\"Hight trim bound = {}\".format(high_bound))\n",
+ "axe_avg.set_ylabel(\"key agreement time ({})\".format(time_disp_unit))\n",
+ "axe_avg.set_xlabel(\"index\")\n",
+ "axe_avg.legend(loc=\"best\")\n",
+ "\n",
+ "fig_avg.tight_layout()\n",
+ "del avg_100, avg_1000"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Private key MSB and LSB histograms\n",
+ "Expected to be uniform over [0, 255]."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:47:32.875112Z",
+ "start_time": "2019-03-19T12:47:32.542216Z"
+ },
+ "hide_input": false
+ },
+ "outputs": [],
+ "source": [
+ "fig_priv_hists = plt.figure(figsize=(10.5, 8), dpi=90)\n",
+ "priv_msb = np.array(list(map(lambda x: x >> (bit_size - 8), data[\"priv\"])), dtype=np.dtype(\"u1\"))\n",
+ "priv_lsb = np.array(list(map(lambda x: x & 0xff, data[\"priv\"])), dtype=np.dtype(\"u1\"))\n",
+ "axe_msb_s_hist = fig_priv_hists.add_subplot(2, 1, 1, title=\"Private key MSB\")\n",
+ "axe_lsb_s_hist = fig_priv_hists.add_subplot(2, 1, 2, title=\"Private key LSB\")\n",
+ "msb_h = plot_hist(axe_msb_s_hist, priv_msb, \"private key MSB\", log_scale, False, False)\n",
+ "lsb_h = plot_hist(axe_lsb_s_hist, priv_lsb, \"private key LSB\", log_scale, False, False)\n",
+ "\n",
+ "fig_priv_hists.tight_layout()\n",
+ "del priv_msb, priv_lsb"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Private key bit length vs time heatmap\n",
+ "Also contains private key bit length histogram, which is expected to be axis flipped geometric distribution with $p = \\frac{1}{2}$ peaking at the bit size of the order of the curve."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:47:34.638019Z",
+ "start_time": "2019-03-19T12:47:34.479903Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "fig_bl = plt.figure(figsize=(10.5, 12), dpi=90)\n",
+ "gs = gridspec.GridSpec(2, 1, height_ratios=[2.5, 1])\n",
+ "axe_bl_heat = fig_bl.add_subplot(gs[0], title=\"Private key bit length vs keygen time\")\n",
+ "axe_bl_hist = fig_bl.add_subplot(gs[1], sharex=axe_bl_heat, title=\"Private key bit length\")\n",
+ "bl_data = np.array(list(map(lambda x: x.bit_length(), data_trimmed[\"priv\"])), dtype=np.dtype(\"u2\"))\n",
+ "\n",
+ "h, xe, ye = np.histogram2d(bl_data, data_trimmed[\"time\"], bins=[max(bl_data) - min(bl_data), hist_size_time_trim])\n",
+ "im = axe_bl_heat.imshow(h.T, origin=\"low\", cmap=cmap, aspect=\"auto\", extent=[xe[0], xe[-1], ye[0], ye[-1]], norm=norm)\n",
+ "axe_bl_heat.set_xlabel(\"private key bit length\")\n",
+ "axe_bl_heat.set_ylabel(\"key agreement time ({})\".format(time_disp_unit))\n",
+ "\n",
+ "plot_hist(axe_bl_hist, bl_data, \"Private key bit length\", log_scale, align=\"right\")\n",
+ "\n",
+ "fig_bl.tight_layout()\n",
+ "fig_bl.colorbar(im, ax=[axe_bl_heat, axe_bl_hist])\n",
+ "\n",
+ "del bl_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Private key bit length histogram given time\n",
+ "Interactively shows the histogram of private key bit length given a selected time range centered around `center` of width `width`. Ideally, the means of these conditional distributions are equal, while the variances can vary."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "fig_bl_time = plt.figure(figsize=(10.5, 5), dpi=90)\n",
+ "axe_bl_time = fig_bl_time.add_subplot(111)\n",
+ "axe_bl_time.set_autoscalex_on(False)\n",
+ "def f(center, width):\n",
+ " lower_bnd = center - width/2\n",
+ " upper_bnd = center + width/2\n",
+ " values = data_trimmed[np.logical_and(data_trimmed[\"time\"] <= upper_bnd,\n",
+ " data_trimmed[\"time\"] >= lower_bnd)]\n",
+ " axe_bl_time.clear()\n",
+ " axe_bl_time.set_title(\"Private key bit length, given key agreement time $\\in ({}, {})$ {}\".format(int(lower_bnd), int(upper_bnd), time_disp_unit))\n",
+ " bl_data = np.array(list(map(lambda x: x.bit_length(), values[\"priv\"])), dtype=np.dtype(\"u2\"))\n",
+ " plot_hist(axe_bl_time, bl_data, \"private key bit length\", bins=11, range=(bit_size-10, bit_size+1), align=\"left\")\n",
+ " axe_bl_time.set_xlim((bit_size-10, bit_size))\n",
+ " fig_bl_time.tight_layout()\n",
+ "\n",
+ "center_w = widgets.IntSlider(min=min(data_trimmed[\"time\"]),\n",
+ " max=max(data_trimmed[\"time\"]),\n",
+ " step=1,\n",
+ " value=description_trim.mean,\n",
+ " continuous_update=False,\n",
+ " description=\"center {}\".format(time_disp_unit))\n",
+ "width_w = widgets.IntSlider(min=1, max=100, continuous_update=False,\n",
+ " description=\"width {}\".format(time_disp_unit))\n",
+ "w = interactive(f, center=center_w,\n",
+ " width=width_w)\n",
+ "display(w)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Validation\n",
+ "Perform some tests on the produced data and compare to expected results.\n",
+ "\n",
+ "This requires some information about the used curve, enter it below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-18T18:36:15.492599Z",
+ "start_time": "2019-03-18T18:36:12.008827Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "p_str = input(\"The prime specifying the finite field:\")\n",
+ "p = int(p_str, 16) if p_str.startswith(\"0x\") else int(p_str)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "r_str = input(\"The order of the curve:\")\n",
+ "r = int(r_str, 16) if r_str.startswith(\"0x\") else int(r_str)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "All of the following tests should pass (e.g. be true), given a large enough sample."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "max_priv = max(data[\"priv\"])\n",
+ "un = len(np.unique(data[\"priv\"])) != 1\n",
+ "if un:\n",
+ " print(\"Private keys are smaller than order:\\t\\t\\t\" + str(max_priv < r))\n",
+ " print(\"Private keys are larger than prime(if order > prime):\\t\" + str(r <= p or max_priv > p))\n",
+ " print(\"Private keys reach full bit length of order:\\t\\t\" + str(max_priv.bit_length() == r.bit_length()))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2019-03-19T12:53:48.777395Z",
+ "start_time": "2019-03-19T12:53:48.766190Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "if un:\n",
+ " print(\"Private key bit length (min, max):\" + str(min(data[\"priv\"]).bit_length()) + \", \" + str(max(data[\"priv\"]).bit_length()))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "@webio": {
+ "lastCommId": "709d7f1e9dab427486f950933d243d24",
+ "lastKernelId": "cf0cea00-5a1b-4e6e-b81a-40a069517c67"
+ },
+ "hide_input": false,
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.4"
+ },
+ "latex_envs": {
+ "LaTeX_envs_menu_present": true,
+ "autoclose": false,
+ "autocomplete": true,
+ "bibliofile": "biblio.bib",
+ "cite_by": "apalike",
+ "current_citInitial": 1,
+ "eqLabelWithNumbers": true,
+ "eqNumInitial": 1,
+ "hotkeys": {
+ "equation": "Ctrl-E",
+ "itemize": "Ctrl-I"
+ },
+ "labels_anchors": false,
+ "latex_user_defs": false,
+ "report_style_numbering": false,
+ "user_envs_cfg": false
+ },
+ "toc": {
+ "base_numbering": 1,
+ "nav_menu": {},
+ "number_sections": true,
+ "sideBar": true,
+ "skip_h1_title": false,
+ "title_cell": "Table of Contents",
+ "title_sidebar": "Contents",
+ "toc_cell": false,
+ "toc_position": {},
+ "toc_section_display": true,
+ "toc_window_display": false
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}