diff options
| -rw-r--r-- | epare/distinguish.ipynb | 5661 |
1 files changed, 5487 insertions, 174 deletions
diff --git a/epare/distinguish.ipynb b/epare/distinguish.ipynb index 9d06f36..e55e828 100644 --- a/epare/distinguish.ipynb +++ b/epare/distinguish.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "bc1528b8-61cd-4219-993f-e3f1ac79e801", "metadata": {}, "outputs": [], @@ -28,8 +28,8 @@ "from scipy.stats import binom, entropy\n", "from scipy.spatial import distance\n", "from tqdm.auto import tqdm, trange\n", - "from statsmodels.stats.proportion import proportion_confint\n", "from anytree import PreOrderIter, Walker\n", + "from matplotlib import pyplot as plt\n", "\n", "from pyecsca.ec.mult import *\n", "from pyecsca.misc.utils import TaskExecutor, silent\n", @@ -39,57 +39,6 @@ ] }, { - "cell_type": "code", - "execution_count": null, - "id": "b3814d6d-af42-4b9a-bbf2-6dbbdddd92d4", - "metadata": {}, - "outputs": [], - "source": [ - "def conf_interval(p: float, samples: int, alpha: float = 0.05) -> tuple[float, float]:\n", - " return proportion_confint(round(p*samples), samples, alpha, method=\"wilson\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f0eac736-be48-4925-accf-1ca8ff6aa065", - "metadata": {}, - "outputs": [], - "source": [ - "def powers_of(k, max_power=20):\n", - " return [k**i for i in range(1, max_power)]\n", - "\n", - "def prod_combine(one, other):\n", - " return [a * b for a, b in itertools.product(one, other)]\n", - "\n", - "small_primes = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199]\n", - "medium_primes = [211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397]\n", - "large_primes = [401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]\n", - "all_integers = list(range(1, 400))\n", - "all_even = list(range(2, 400, 2))\n", - "all_odd = list(range(1, 400, 2))\n", - "all_primes = small_primes + medium_primes + large_primes\n", - "\n", - "divisor_map = {\n", - " \"small_primes\": small_primes,\n", - " \"medium_primes\": medium_primes,\n", - " \"large_primes\": large_primes,\n", - " \"all_primes\": all_primes,\n", - " \"all_integers\": all_integers,\n", - " \"all_even\": all_even,\n", - " \"all_odd\": all_odd,\n", - " \"powers_of_2\": powers_of(2),\n", - " \"powers_of_2_large\": powers_of(2, 256),\n", - " \"powers_of_2_large_3\": [i * 3 for i in powers_of(2, 256)],\n", - " \"powers_of_2_large_p1\": [i + 1 for i in powers_of(2, 256)],\n", - " \"powers_of_2_large_m1\": [i - 1 for i in powers_of(2, 256)],\n", - " \"powers_of_2_large_pmautobus\": sorted(set([i + j for i in powers_of(2, 256) for j in range(-5,5) if i+j > 0])),\n", - " \"powers_of_3\": powers_of(3),\n", - "}\n", - "divisor_map[\"all\"] = list(sorted(set().union(*[v for v in divisor_map.values()])))" - ] - }, - { "cell_type": "markdown", "id": "4868c083-8073-453d-b508-704fcb6d6f2a", "metadata": {}, @@ -100,19 +49,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "ccb00342-3c48-49c9-bedf-2341e5eae3a2", "metadata": {}, "outputs": [], "source": [ "divisor_name = \"all\"\n", "kind = \"all\"\n", - "allfeats = divisor_map[divisor_name]" + "allfeats = list(filter(lambda feat: feat not in (1,2,3,4,5), divisor_map[divisor_name]))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "3dbac9be-d098-479a-8ca2-f531f6668f7c", "metadata": {}, "outputs": [], @@ -130,12 +79,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "38c81e38-a37c-4e58-ac9e-927d14dad458", "metadata": {}, "outputs": [], "source": [ - "nmults = len(distributions_mults.keys())\n", + "allmults = list(distributions_mults.keys())\n", + "nmults = len(allmults)\n", "nallfeats = len(allfeats)" ] }, @@ -157,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "2307bf7c-4fac-489d-8527-7ddbf536a148", "metadata": {}, "outputs": [], @@ -168,13 +118,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "0b85fad7-392f-4701-9329-d75d39736bbb", "metadata": {}, "outputs": [], "source": [ "# Now go over all divisors, cluster based on overlapping CI for given n?\n", - "io_map = {mult:{} for mult in distributions_mults.keys()}\n", + "io_map = {mult:{} for mult in allmults}\n", "for divisor in allfeats:\n", " prev_ci_low = None\n", " prev_ci_high = None\n", @@ -217,17 +167,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "06104104-b612-40e9-bc1d-646356a13381", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total configs: 378, (6_048 bytes)\n", + "Rows: 378, (9_722_292 bytes)\n", + "Inputs: 3215\n", + "Codomain: 11998\n", + "None in codomain: False\n" + ] + } + ], "source": [ "print(dmap.describe())" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "eb8672ca-b76b-411d-b514-2387b555f184", "metadata": {}, "outputs": [], @@ -238,44 +200,617 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "ccba09b0-31c3-450b-af30-efaa64329743", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total configs: 378, (14_344 bytes)\n", + "Rows: 347, (8_924_972 bytes)\n", + "Inputs: 3215\n", + "Codomain: 11998\n", + "None in codomain: False\n" + ] + } + ], "source": [ "print(dmap.describe())" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "id": "5735e7d4-149c-4184-96f7-dcfd6017fbad", "metadata": {}, "outputs": [], "source": [ "# build a tree\n", "with silent():\n", - " tree = Tree.build(set(distributions_mults.keys()), dmap)" + " tree = Tree.build(set(allmults), dmap)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "id": "d41093df-32c4-450d-922d-5ad042539397", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dmaps: 1\n", + "Total cfgs: 378\n", + "Height: 7\n", + "Size: 533\n", + "Leaves: 347\n", + "Precise: False\n", + "Leaf sizes: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5]\n", + "Leaf depths: [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7]\n", + "Average leaf depth: 4.118\n", + "Average leaf size: 1.089\n", + "Random walk leaf depth: 2.642\n", + "Random walk leaf size: 1.041\n", + "Mean result depth: 4.153\n", + "Mean result size: 1.270\n" + ] + } + ], "source": [ "print(tree.describe())" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "de577429-d87c-4967-be17-75cbb378860c", "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "378\n", + "├── 1\n", + "├── 10\n", + "│ ├── 1\n", + "│ ├── 1\n", + "│ ├── 1\n", + "│ ├── 1\n", + "│ ├── 4\n", + "│ │ ├── 1\n", + "│ │ └── 3\n", + "│ │ ├── 1\n", + "│ │ └── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 1\n", + "│ └── 1\n", + "├── 10\n", + "│ ├── 1\n", + "│ ├── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 4\n", + "│ │ ├── 1\n", + "│ │ └── 3\n", + "│ │ ├── 1\n", + "│ │ └── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ └── 3\n", + "│ ├── 1\n", + "│ ├── 1\n", + "│ └── 1\n", + "├── 49\n", + "│ ├── 1\n", + "│ ├── 13\n", + "│ │ ├── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 10\n", + "│ │ ├── 1\n", + "│ │ ├── 4\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ └── 4\n", + "│ │ ├── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 1\n", + "│ ├── 11\n", + "│ │ ├── 5\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 5\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 4\n", + "│ │ └── 1\n", + "│ ├── 4\n", + "│ │ ├── 1\n", + "│ │ └── 3\n", + "│ ├── 8\n", + "│ │ ├── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 3\n", + "│ │ ├── 1\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 1\n", + "│ └── 1\n", + "├── 20\n", + "│ ├── 4\n", + "│ │ ├── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 1\n", + "│ ├── 1\n", + "│ ├── 1\n", + "│ ├── 3\n", + "│ │ ├── 1\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 1\n", + "│ ├── 1\n", + "│ ├── 5\n", + "│ │ ├── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 1\n", + "│ ├── 1\n", + "│ └── 1\n", + "├── 53\n", + "│ ├── 20\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 4\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 5\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 3\n", + "│ │ ├── 1\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 19\n", + "│ │ ├── 6\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 7\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 3\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 3\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 3\n", + "│ │ ├── 1\n", + "│ │ └── 2\n", + "│ ├── 5\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ └── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 7\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ └── 2\n", + "│ └── 2\n", + "│ ├── 1\n", + "│ └── 1\n", + "├── 134\n", + "│ ├── 23\n", + "│ │ ├── 5\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 6\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 1\n", + "│ │ └── 6\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 6\n", + "│ │ ├── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ └── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 7\n", + "│ │ ├── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 1\n", + "│ ├── 24\n", + "│ │ ├── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 7\n", + "│ │ │ ├── 2\n", + "│ │ │ └── 5\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 4\n", + "│ │ ├── 2\n", + "│ │ ├── 7\n", + "│ │ │ ├── 4\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 5\n", + "│ │ ├── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 2\n", + "│ │ └── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 46\n", + "│ │ ├── 11\n", + "│ │ │ ├── 3\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ ├── 3\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ ├── 4\n", + "│ │ │ │ ├── 2\n", + "│ │ │ │ │ ├── 1\n", + "│ │ │ │ │ └── 1\n", + "│ │ │ │ └── 2\n", + "│ │ │ └── 1\n", + "│ │ ├── 8\n", + "│ │ │ ├── 5\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 4\n", + "│ │ │ └── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 2\n", + "│ │ ├── 1\n", + "│ │ ├── 10\n", + "│ │ │ ├── 3\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 2\n", + "│ │ │ └── 7\n", + "│ │ │ ├── 5\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 9\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 4\n", + "│ │ │ │ ├── 2\n", + "│ │ │ │ │ ├── 1\n", + "│ │ │ │ │ └── 1\n", + "│ │ │ │ └── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 2\n", + "│ │ └── 7\n", + "│ │ ├── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 1\n", + "│ ├── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 6\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 1\n", + "│ ├── 12\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 1\n", + "│ ├── 1\n", + "│ ├── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 1\n", + "│ └── 2\n", + "│ ├── 1\n", + "│ └── 1\n", + "├── 97\n", + "│ ├── 27\n", + "│ │ ├── 7\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ ├── 7\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 4\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 1\n", + "│ ├── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 11\n", + "│ │ ├── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 4\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 4\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 6\n", + "│ │ ├── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 3\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 1\n", + "│ ├── 13\n", + "│ │ ├── 8\n", + "│ │ │ ├── 4\n", + "│ │ │ │ ├── 2\n", + "│ │ │ │ └── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 4\n", + "│ │ │ ├── 3\n", + "│ │ │ │ ├── 2\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 4\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 1\n", + "│ ├── 27\n", + "│ │ ├── 11\n", + "│ │ │ ├── 4\n", + "│ │ │ │ ├── 2\n", + "│ │ │ │ │ ├── 1\n", + "│ │ │ │ │ └── 1\n", + "│ │ │ │ └── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ ├── 5\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 4\n", + "│ │ │ └── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 9\n", + "│ │ │ ├── 4\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 3\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 5\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ ├── 2\n", + "│ │ │ │ ├── 1\n", + "│ │ │ │ └── 1\n", + "│ │ │ └── 1\n", + "│ │ ├── 6\n", + "│ │ │ ├── 3\n", + "│ │ │ └── 3\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 2\n", + "│ │ │ ├── 1\n", + "│ │ │ └── 1\n", + "│ │ └── 1\n", + "│ ├── 1\n", + "│ ├── 1\n", + "│ ├── 1\n", + "│ ├── 3\n", + "│ │ ├── 1\n", + "│ │ └── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ └── 5\n", + "│ ├── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ ├── 2\n", + "│ │ ├── 1\n", + "│ │ └── 1\n", + "│ └── 1\n", + "└── 4\n", + " ├── 1\n", + " ├── 1\n", + " ├── 1\n", + " └── 1\n" + ] + } + ], "source": [ "print(tree.render_basic())" ] @@ -302,7 +837,7 @@ " successes = 0\n", " pathiness = 0\n", " for i in range(simulations):\n", - " true_mult = random.choice(list(distributions_mults.keys()))\n", + " true_mult = random.choice(allmults)\n", " probmap = distributions_mults[true_mult]\n", " node = tree.root\n", " while True:\n", @@ -365,121 +900,1851 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "beb5720a-f793-4ad9-ad27-1bd943bb325b", + "execution_count": 86, + "id": "cc1a9956-bc8c-47cf-b6ec-093c6cf85c7d", "metadata": { - "scrolled": true + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[3]\n", + "[[-0.53851648 -0.2236068 -0. -0.50990195]\n", + " [-0.14142136 -0.42426407 -0.51961524 -0.80622577]]\n", + "[3]\n", + "[[1.04188836e-27 1.24861430e-05 9.99987514e-01 1.14579810e-34]]\n", + "1.0\n", + "1.0\n", + "1.0\n", + "1.0\n" + ] + } + ], "source": [ - "feats_in_tree = Counter()\n", - "for node in PreOrderIter(tree.root):\n", - " if node.is_leaf:\n", - " continue\n", - " feats_in_tree[node.dmap_input] += 1\n", - "feats_in_tree = set(feats_in_tree.keys())" + "from sklearn.base import BaseEstimator, ClassifierMixin\n", + "from sklearn.utils.validation import validate_data, check_is_fitted\n", + "from sklearn.utils.multiclass import unique_labels\n", + "from scipy.special import logsumexp\n", + "from sklearn.metrics import euclidean_distances, top_k_accuracy_score, make_scorer, accuracy_score\n", + "\n", + "\n", + "class EuclidClassifier(ClassifierMixin, BaseEstimator):\n", + " def __init__(self, *, nattack=100):\n", + " self.nattack = nattack\n", + "\n", + " def fit(self, X, y):\n", + " X, y = validate_data(self, X, y)\n", + " if not np.logical_and(X >= 0, X <= 1).all():\n", + " raise TypeError(\"Expects valid probabilities in X.\")\n", + " self.classes_ = unique_labels(y)\n", + " if len(self.classes_) != len(y):\n", + " raise ValueError(\"Expects only one sample per class containing the binomial probabilities.\")\n", + " self.X_ = X\n", + " self.y_ = y\n", + " return self\n", + "\n", + " def decision_function(self, X):\n", + " check_is_fitted(self)\n", + " X = validate_data(self, X, reset=False)\n", + " distances = euclidean_distances(X / self.nattack, self.X_)\n", + " return -distances\n", + "\n", + " def predict(self, X):\n", + " check_is_fitted(self)\n", + " X = validate_data(self, X, reset=False)\n", + " distances = euclidean_distances(X / self.nattack, self.X_)\n", + " closest = np.argmin(distances, axis=1)\n", + " return self.classes_[closest]\n", + "\n", + "\n", + "class BayesClassifier(ClassifierMixin, BaseEstimator):\n", + " def __init__(self, *, nattack=100):\n", + " self.nattack = nattack\n", + "\n", + " def fit(self, X, y):\n", + " # X has (nmults = nsamples, nfeats)\n", + " X, y = validate_data(self, X, y)\n", + " if not np.logical_and(X >= 0, X <= 1).all():\n", + " raise TypeError(\"Expects valid probabilities in X.\")\n", + " self.classes_ = unique_labels(y)\n", + " if len(self.classes_) != len(y):\n", + " raise ValueError(\"Expects only one sample per class containing the binomial probabilities.\")\n", + " self.X_ = X\n", + " self.y_ = y\n", + " return self\n", + "\n", + " def decision_function(self, X):\n", + " check_is_fitted(self)\n", + " X = validate_data(self, X, reset=False)\n", + " # We have a uniform prior, so we can ignore it.\n", + " probas = np.zeros((len(X), len(self.classes_)))\n", + " for i, row in enumerate(X):\n", + " p = binom(self.nattack, self.X_).logpmf(row)\n", + " s = np.sum(p, axis=1)\n", + " log_prob_x = logsumexp(s)\n", + " res = np.exp(s - log_prob_x)\n", + " probas[i, ] = res\n", + " return probas\n", + "\n", + " def predict_proba(self, X):\n", + " return self.decision_function(X)\n", + "\n", + " def predict(self, X):\n", + " check_is_fitted(self)\n", + " X = validate_data(self, X, reset=False)\n", + " # We have a uniform prior, so we can ignore it.\n", + " results = np.empty(len(X), dtype=self.classes_.dtype)\n", + " for i, row in enumerate(X):\n", + " p = binom(self.nattack, self.X_).logpmf(row)\n", + " s = np.sum(p, axis=1)\n", + " most_likely = np.argmax(s)\n", + " results[i] = self.classes_[most_likely]\n", + " return results\n", + "\n", + "\n", + "def to_sklearn(mults_map: dict[MultIdent, ProbMap], feats: list[int]):\n", + " nfeats = len(feats)\n", + " nmults = len(mults_map)\n", + " classes = np.arange(nmults, dtype=np.uint32)\n", + " probs = np.zeros((nmults, nfeats), dtype=np.float64)\n", + " for i, divisor in enumerate(feats):\n", + " for j, probmap in enumerate(mults_map.values()):\n", + " probs[j, i] = probmap[divisor]\n", + " return probs, classes\n", + "\n", + "\n", + "def evaluate_classifier(nattack: int,\n", + " simulations: int,\n", + " X,\n", + " y,\n", + " classifier,\n", + " scorer):\n", + " #X, y = to_sklearn(mults, feats)\n", + " nmults, nfeats = X.shape\n", + " classifier.set_params(nattack=nattack)\n", + " classifier.fit(X, y)\n", + "\n", + " X_samp = np.zeros((simulations, nfeats), dtype=np.uint32)\n", + " y_samp = np.zeros(simulations, dtype=np.uint32)\n", + "\n", + " for i in range(simulations):\n", + " if i < nmults and simulations >= nmults:\n", + " j = i\n", + " else:\n", + " j = random.randrange(nmults)\n", + " X_samp[i] = binom(nattack, X[j]).rvs()\n", + " y_samp[i] = j\n", + "\n", + " return scorer(classifier, X_samp, y_samp)\n", + "\n", + "\n", + "def average_rank_score(y_true, y_pred, labels=None):\n", + " y_true = np.asarray(y_true)\n", + " y_pred = np.asarray(y_pred)\n", + " \n", + " n_samples, n_classes = y_pred.shape\n", + " if labels is not None:\n", + " labels = np.asarray(labels)\n", + " if len(labels) != n_classes:\n", + " raise ValueError()\n", + " label_indexes = np.searchsorted(labels, y_true)\n", + " indexes = np.where(labels[label_indexes] == y_true, label_indexes, -1)\n", + " else:\n", + " indexes = y_true\n", + " true_scores = y_pred[np.arange(n_samples), indexes]\n", + " \n", + " counts_higher = np.sum(y_pred > true_scores[:, None], axis=1)\n", + " \n", + " ranks = counts_higher + 1\n", + " \n", + " return ranks.mean()\n", + "\n", + "X = np.array([[0.7, 0.7, 0.1], [0.3, 0.7, 0.1], [0.2, 0.5, 0.1], [0.1, 0.1, 0.4]])\n", + "y = np.array([1, 2, 3, 4])\n", + "\n", + "euc = EuclidClassifier(nattack=100).fit(X, y)\n", + "label = euc.predict(np.array([20, 50, 10]).reshape(1, -1))\n", + "dec = euc.decision_function(np.array([[20, 50, 10], [70, 60, 20]]))\n", + "print(label)\n", + "print(dec)\n", + "\n", + "clf = BayesClassifier(nattack=100).fit(X, y)\n", + "label = clf.predict(np.array([20, 50, 10]).reshape(1, -1))\n", + "ps = clf.predict_proba(np.array([20, 50, 10]).reshape(1, -1))\n", + "print(label)\n", + "print(ps)\n", + "\n", + "\n", + "acc = top_k_accuracy_score(np.array([3, 1]),\n", + " euc.decision_function(np.array([[20, 50, 10], [70, 60, 20]])),\n", + " labels = [1, 2, 3, 4],\n", + " k=1)\n", + "print(acc)\n", + "acc = top_k_accuracy_score(np.array([3, 1]),\n", + " clf.predict_proba(np.array([[20, 50, 10], [70, 60, 20]])),\n", + " labels = [1, 2, 3, 4],\n", + " k=1)\n", + "print(acc)\n", + "\n", + "avg = average_rank_score(np.array([2, 0]),\n", + " euc.decision_function(np.array([[20, 50, 10], [70, 60, 20]])))\n", + "print(avg)\n", + "avg = average_rank_score(np.array([3, 1]),\n", + " euc.decision_function(np.array([[20, 50, 10], [70, 60, 20]])),\n", + " labels = [1, 2, 3, 4])\n", + "print(avg)\n", + "\n", + "accuracy_scorer = make_scorer(\n", + " top_k_accuracy_score,\n", + " greater_is_better=True,\n", + " response_method=(\"decision_function\", \"predict_proba\"),\n", + ")\n", + "\n", + "#accuracy_scorer.__str__ = lambda self: \"Accuracy\"\n", + "\n", + "top_5_scorer = make_scorer(\n", + " top_k_accuracy_score,\n", + " greater_is_better=True,\n", + " response_method=(\"decision_function\", \"predict_proba\"),\n", + " k=5\n", + ")\n", + "\n", + "#top_5_scorer.__str__ = lambda self: \"Top-5 accuracy\"\n", + "\n", + "top_10_scorer = make_scorer(\n", + " top_k_accuracy_score,\n", + " greater_is_better=True,\n", + " response_method=(\"decision_function\", \"predict_proba\"),\n", + " k=10\n", + ")\n", + "\n", + "#top_10_scorer.__str__ = lambda self: \"Top-10 accuracy\"\n", + "\n", + "avg_rank_scorer = make_scorer(\n", + " average_rank_score,\n", + " greater_is_better=False,\n", + " response_method=(\"decision_function\", \"predict_proba\"),\n", + ")\n", + "\n", + "#avg_rank_scorer.__str__ = lambda self: \"Average rank\"" ] }, { "cell_type": "code", - "execution_count": null, - "id": "fa49b67c-0a52-443e-904c-98f0a3d7febf", + "execution_count": 82, + "id": "a9fae775-797f-4efe-ac28-d83a8c905372", "metadata": {}, "outputs": [], "source": [ - "def bayes(nattack: int, feat_vector: list[int], feats, probmap):\n", - " bayes.reverse = True\n", - " log_likelihood = 0.0\n", - " for sampled, divisor in zip(feat_vector, feats):\n", - " other_p = probmap[divisor]\n", - " log_prob = binom(nattack, other_p).logpmf(sampled)\n", - " log_likelihood += log_prob\n", - " return log_likelihood\n", + "class FeatureSelector:\n", + " def __init__(self,\n", + " allfeats: list[int],\n", + " mults: dict[MultIdent, ProbMap],\n", + " num_workers: int):\n", + " self.allfeats = allfeats\n", + " self.mults = mults\n", + " self.num_workers = num_workers\n", "\n", - "def euclid(nattack: int, feat_vector: list[int], feats, probmap):\n", - " euclid.reverse = False\n", - " other_vector = np.zeros(nfeats)\n", - " for i, divisor in enumerate(feats):\n", - " other_vector[i] = probmap[divisor]\n", - " return distance.euclidean(feat_vector, other_vector)\n", + " def prepare(self, nattack: int):\n", + " self.nattack = nattack\n", "\n", - "# TODO: Adjust scorers to penalize/reject when sampled prob of a feature is != 1.0 but the mult has that feature at 1.0 proba.\n", + " def select(self, nfeats: int, startwith: list[int] = None) -> list[int]:\n", + " pass\n", "\n", - "def one_simulation(nattack, true_mult, mults, feats, scorer,):\n", - " probmap = mults[true_mult]\n", - " feat_vector = []\n", - " for divisor in feats:\n", - " prob = probmap[divisor]\n", - " sampled = binom(nattack, prob).rvs()\n", - " feat_vector.append(sampled)\n", - " scoring = []\n", - " for other_mult, other_probmap in mults.items():\n", - " score = scorer(nattack, feat_vector, feats, other_probmap)\n", - " scoring.append((score, other_mult))\n", - " scoring.sort(key=lambda item: item[0], reverse=scorer.reverse)\n", - " for i, (sim, other) in enumerate(scoring):\n", - " if other == true_mult:\n", - " return i\n", + "class FeaturesByClassification(FeatureSelector):\n", + " def __init__(self,\n", + " allfeats: list[int],\n", + " mults: dict[MultIdent, ProbMap],\n", + " num_workers: int,\n", + " simulations: int,\n", + " classifier,\n", + " scorer):\n", + " super().__init__(allfeats, mults, num_workers)\n", + " self.simulations = simulations\n", + " self.classifier = classifier\n", + " self.scorer = scorer\n", "\n", - "def many_simulations(nattack, mults, feats, scorer, simulations):\n", - " successes = {k:0 for k in range(1, 11)}\n", - " mean_pos = 0\n", - " mults_l = list(mults)\n", - " for i in range(simulations):\n", - " if len(mults) <= simulations:\n", - " true_mult = mults_l[i]\n", + "class RandomFeatures(FeaturesByClassification):\n", + "\n", + " def __init__(self,\n", + " allfeats: list[int],\n", + " mults: dict[MultIdent, ProbMap],\n", + " num_workers: int,\n", + " simulations: int,\n", + " classifier,\n", + " scorer,\n", + " retries: int):\n", + " super().__init__(allfeats, mults, num_workers, simulations, classifier, scorer)\n", + " self.retries = retries\n", + " \n", + " def _select_random(self, nfeats: int, startwith: list[int] = None) -> list[int]:\n", + " if startwith is None:\n", + " startwith = []\n", + " toselect = nfeats - len(startwith)\n", + " if toselect > 0:\n", + " available_feats = list(filter(lambda feat: feat not in startwith, self.allfeats))\n", + " selected = random.sample(available_feats, toselect)\n", + " return startwith + selected\n", + " elif toselect < 0:\n", + " return random.sample(startwith, nfeats)\n", " else:\n", - " true_mult = random.choice(mults_l)\n", - " pos = one_simulation(nattack, true_mult, mults, feats, scorer)\n", - " mean_pos += pos\n", - " for k in range(1, 11):\n", - " if pos + 1 <= k:\n", - " successes[k] += 1\n", - " mean_pos /= simulations\n", - " for i in successes.keys():\n", - " successes[i] /= simulations\n", - " return mean_pos, successes\n", + " return startwith\n", "\n", - "def find_features_random(feat_subset, nfeat_range, nattack_range, num_workers, feat_retries, simulations, scorer):\n", - " for nfeats in nfeat_range:\n", - " for nattack in nattack_range:\n", + " def select(self, nfeats: int, startwith: list[int] = None) -> tuple[list[int], float]:\n", + " with TaskExecutor(max_workers=self.num_workers) as pool:\n", + " feat_map = []\n", + " for i in range(self.retries):\n", + " feats = self._select_random(nfeats, startwith)\n", + " X, y = to_sklearn(self.mults, feats)\n", + " feat_map.append(feats)\n", + " pool.submit_task(i,\n", + " evaluate_classifier,\n", + " self.nattack, self.simulations,\n", + " X, y, self.classifier, self.scorer)\n", + " best_score = None\n", " best_feats = None\n", - " best_feats_mean_pos = None\n", - " best_successes = None\n", - " with TaskExecutor(max_workers=num_workers) as pool:\n", - " for retry in range(feat_retries):\n", - " feats = random.sample(sorted(feat_subset), nfeats)\n", - " pool.submit_task(retry,\n", - " many_simulations,\n", - " nattack, distributions_mults, feats, scorer, simulations)\n", - " for i, future in tqdm(pool.as_completed(), leave=False, desc=\"Retries\", total=feat_retries, smoothing=0):\n", - " mean_pos, successes = future.result()\n", - " #print(f\"{nfeats} {nattack}({i}): mean pos {mean_pos:.2f} top1: {successes[1]:.2f}, top5: {successes[5]:.2f}, top10: {successes[10]:.2f}\")\n", - " if best_feats is None or best_feats_mean_pos > mean_pos:\n", - " best_feats = feats\n", - " best_feats_mean_pos = mean_pos\n", - " best_successes = successes\n", - " \n", - " print(f\"Best results for {nfeats} feats at {nattack} samples out of {retries} random feat subsets.\")\n", - " print(f\"Features: {best_feats}\")\n", - " print(f\"mean_pos: {best_feats_mean_pos:.2f}\")\n", - " print(f\"top1: {best_successes[1]:.2f}, top2: {best_successes[2]:.2f}, top5: {best_successes[5]:.2f}, top10: {best_successes[10]:.2f}\")" + " for i, future in tqdm(pool.as_completed(), total=len(pool.tasks), desc=\"retries\", leave=False):\n", + " score = future.result()\n", + " #print(i, feat_map[i], score)\n", + " if best_score is None or score > best_score:\n", + " best_score = score\n", + " best_feats = feat_map[i]\n", + " return best_feats, best_score\n", + "\n", + "\n", + "class GreedyFeatures(FeaturesByClassification):\n", + "\n", + " def select(self, nfeats: int, startwith: list[int] = None) -> tuple[list[int], float]:\n", + " if startwith is None:\n", + " startwith = []\n", + " toselect = nfeats - len(startwith)\n", + " if toselect < 0:\n", + " raise ValueError(\"No features to select.\")\n", + " available_feats = list(filter(lambda feat: feat not in startwith, self.allfeats))\n", + " current = list(startwith)\n", + " with TaskExecutor(max_workers=self.num_workers) as pool:\n", + " while toselect > 0:\n", + " for feat in available_feats:\n", + " feats = current + [feat]\n", + " X, y = to_sklearn(self.mults, feats)\n", + " pool.submit_task(feat,\n", + " evaluate_classifier,\n", + " self.nattack, self.simulations,\n", + " X, y, self.classifier, self.scorer)\n", + " best_score = None\n", + " best_feat = None\n", + " for feat, future in tqdm(pool.as_completed(), total=len(pool.tasks), leave=False):\n", + " score = future.result()\n", + " if best_score is None or score > best_score:\n", + " best_score = score\n", + " best_feat = feat\n", + " current.append(best_feat)\n", + " toselect -= 1\n", + " return current, best_score\n", + "\n", + "\n", + "def feature_search(feat_range, nattack_range, selector, restarts=False):\n", + " if isinstance(feat_range, int):\n", + " feat_range = [feat_range]\n", + " if isinstance(nattack_range, int):\n", + " nattack_range = [nattack_range]\n", + " results = {}\n", + " for nattack in tqdm(nattack_range, desc=\"nattack\", smoothing=0):\n", + " selector.prepare(nattack)\n", + " feats = []\n", + " for nfeats in tqdm(feat_range, desc=\"nfeats\", leave=False):\n", + " feats, score = selector.select(nfeats, [] if restarts else feats)\n", + " results[(nattack, nfeats)] = feats\n", + " print(f\"{nattack},{nfeats}: {feats}, {score}\")\n", + " return results" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "id": "f1c0bebe-c519-4241-a163-63613b929db2", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_performance(classifier, scorer, simulations, feature_map, mults):\n", + " scores = {}\n", + " for (nattack, nfeats), feats in tqdm(feature_map.items(), desc=\"Evaluating\", leave=False):\n", + " X, y = to_sklearn(mults, feats)\n", + " score = evaluate_classifier(nattack, simulations, X, y, classifier, scorer)\n", + " scores[(nattack, nfeats)] = score\n", + "\n", + " x_coords = [k[0] for k in scores.keys()]\n", + " y_coords = [k[1] for k in scores.keys()]\n", + " \n", + " x_unique = sorted(set(x_coords))\n", + " y_unique = sorted(set(y_coords))\n", + "\n", + " heatmap_data = np.zeros((len(y_unique), len(x_unique)))\n", + " \n", + " for (x, y), score in scores.items():\n", + " x_index = x_unique.index(x)\n", + " y_index = y_unique.index(y)\n", + " heatmap_data[y_index, x_index] = score\n", + "\n", + " x_mesh, y_mesh = np.meshgrid(x_unique, y_unique)\n", + " \n", + " plt.pcolormesh(x_mesh, y_mesh, heatmap_data, cmap='viridis', shading='auto')\n", + " plt.colorbar(label='Score')\n", + "\n", + " for i in range(len(y_unique)):\n", + " for j in range(len(x_unique)):\n", + " plt.text(x_unique[j], y_unique[i], f'{heatmap_data[i, j]:.2f}', ha='center', va='center', color='white' if heatmap_data[i, j] < 0.4 else \"black\")\n", + " \n", + " x_contour, y_contour = np.meshgrid(np.linspace(min(x_unique), max(x_unique), 100), \n", + " np.linspace(min(y_unique), max(y_unique), 100))\n", + " z_contour = x_contour * y_contour\n", + " \n", + " contour = plt.contour(x_contour, y_contour, z_contour, levels=[100, 200, 300, 400, 500], colors='white', zorder=4)\n", + " plt.clabel(contour, inline=True, fontsize=8)\n", + " \n", + " plt.xticks(ticks=x_unique, labels=x_unique)\n", + " plt.yticks(ticks=y_unique, labels=y_unique)\n", + " plt.xlabel('nattack')\n", + " plt.ylabel('nfeats')\n", + " plt.title(f'{scorer._score_func.__name__}{scorer._kwargs} ({classifier.__class__.__name__})')\n", + " plt.show()" ] }, { "cell_type": "code", "execution_count": null, + "id": "beb5720a-f793-4ad9-ad27-1bd943bb325b", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "feats_in_tree = Counter()\n", + "for node in PreOrderIter(tree.root):\n", + " if node.is_leaf:\n", + " continue\n", + " feats_in_tree[node.dmap_input] += 1\n", + "feats_in_tree = set(feats_in_tree.keys())" + ] + }, + { + "cell_type": "code", + "execution_count": 72, "id": "6e3260c9-c0fa-4828-a749-4d34499abacf", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2726629e5a434a43a05103635da433eb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nattack: 0%| | 0/6 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a1e37aa3924448c49242009769c5a035", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fb92eb9f9dd04431ac18a67a4c4ae8b1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,1: [3072], 0.142\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "468c2325ab454a008e071363b3e55cf2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,2: [1536, 165], 0.414\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "798be7eddf8b4de8a1ca978bfaebe65b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,3: [3072, 157, 248], 0.604\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "86db938edf9544b3a232513aba64cd86", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,4: [1024, 165, 248, 221360928884514619392], 0.708\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ee20d5be4fb54d67b8805dfac59afbf6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,5: [178, 3072, 248, 196, 173], 0.772\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "41eac078e13d4d8ba498f3994dbe8ef8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,6: [59, 276, 99, 12288, 296, 21711016731996786641919559689128982722488122124807605757398297001483711807488], 0.802\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "47191dcb74e744c28e8eb82e89ae66c1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,7: [85, 1536, 79, 109, 165, 588478287692501321609605258425718726509595822918503235584, 296], 0.878\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "543a910524a54abca5535f36c324b7c4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,8: [109, 1536, 103, 296, 224, 325, 276, 65], 0.858\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9831f21b34654f1fbf7761d435aa341c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,9: [162, 77, 128, 325, 216, 59, 101, 1536, 85], 0.884\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a601832ab1a44f0caaec6cdb5265bf7f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,10: [85, 55, 173, 196, 77, 315, 33, 1536, 20, 512], 0.902\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "29285c9ccaf54342b49422bcd4ba1925", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "73043ff30aaa4945ba2016e7615a6c20", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,1: [12288], 0.172\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dae98681aa07485caa0da421933d0614", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,2: [173, 3072], 0.534\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b17e1bcdde2b485da0bf300744cfba4f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,3: [248, 65, 1536], 0.764\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ebc0c64eb6a34e5d8246c9442d3f0824", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,4: [173, 1536, 2048, 165], 0.844\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "537db09cee3949739dc8257756a2111e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,5: [1536, 1176956575385002643219210516851437453019191645837006471168, 325, 142, 53], 0.88\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fb34706c3e84425f94a05a3ca94d8151", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,6: [346, 325, 12288, 196, 79, 1536], 0.912\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e3f0ebc74de64fae8b9147f406f15044", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,7: [111, 131, 109, 102, 216, 196, 1024], 0.94\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b5400cf9f0a74c47aeef16b99e87ad9d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,8: [131, 81, 2048, 72, 103, 165, 142, 3072], 0.96\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2536ac3fcfa748dead02c464e0ebe2cc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,9: [346, 12288, 41, 165, 336, 588478287692501321609605258425718726509595822918503235584, 196, 173, 768], 0.962\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "566883fa53ee4cec9625634b95935bae", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,10: [221360928884514619392, 57, 173, 138, 105, 12288, 165, 2048, 125, 79], 0.978\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0b8e240467044b5fbe314fa9437d48f8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "79717bc0f4b54bcaa24619013cd9ef5d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,1: [1536], 0.214\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "390bea0cf3114e39b005b8764b57fbeb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,2: [65, 3072], 0.62\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "94e6a7053c6446239d11503f6c2a1c59", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,3: [768, 248, 101], 0.85\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6eeb8d1296354a799457088cfc7982ec", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,4: [1536, 155, 248, 109], 0.932\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7c05a2a9e5ee4c3fa71c6023cff02e33", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,5: [111, 173, 101, 248, 1536], 0.948\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "676622776c804da4bc04fb9e2dca930b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,6: [134, 75, 157, 221360928884514619392, 196, 2048], 0.958\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0ca671a509074fbeb3c2753f13badcf1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,7: [1536, 228, 1176956575385002643219210516851437453019191645837006471168, 329, 43, 512, 144], 0.966\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bf6716bb9d3842ef840d918a7267fddc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,8: [178, 75, 512, 165, 72, 138, 1536, 56668397794435742564352], 0.978\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "81889370928848109f505e1c5e70214d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,9: [134, 3072, 21711016731996786641919559689128982722488122124807605757398297001483711807488, 105, 85, 224, 55, 329, 111], 0.988\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "084eece555354002bad498c578ece254", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,10: [101, 123, 162, 343, 276, 1536, 56668397794435742564352, 35, 240, 315], 0.986\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "86264fc285d44b2a9008010170ccdb9e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7a4ffbee851d4c45a199004a513c072e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,1: [1536], 0.236\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b3fd0b7473c2497aa1fb18a438c7dbf6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,2: [3072, 123], 0.744\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ac983a73aea947ed9f62d255aaa7d591", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,3: [768, 109, 212], 0.868\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d7d89279f6714e5c920fa4d3279f37f7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,4: [20, 248, 3072, 125], 0.912\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a869bdeb10324f33b21a51f7dc0b231f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,5: [53, 101, 228, 3072, 165], 0.968\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1353e3e19d0d42028d7bca1b8370f94a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,6: [768, 173688133855974293135356477513031861779904976998460846059186376011869694459904, 329, 59, 296, 384], 0.98\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ec09210404eb43d28f44a06a242e756d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,7: [173, 228, 57, 134, 109, 221360928884514619392, 1024], 0.984\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4ced197ddd114f809db705a88beecf2e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,8: [1024, 101, 165, 3072, 178, 157, 79, 53], 0.994\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6acb1788370a4f7e9f66936401bf85d8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,9: [81, 768, 173688133855974293135356477513031861779904976998460846059186376011869694459904, 103, 196, 343, 248, 160, 72], 0.99\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c9558a4cbd864c04bbfac0783f20e453", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,10: [315, 75, 320, 27, 125, 178, 39, 3072, 342, 84], 0.998\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "81754206460f46759d1c1c7eb8e5bd1c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e6eef992961f41188d3a7b5e511a7adc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,1: [12288], 0.25\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b4f8608e66014064879c0914a756b8ff", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,2: [81, 3072], 0.744\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4db6837e71fa439285da10b48ef846e5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,3: [1536, 105, 196], 0.892\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6240d446ad484b678f0931f89743ea4b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,4: [248, 162, 75, 3072], 0.954\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6c418522baee48b0966e057c0f4b8d2a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,5: [157, 1536, 248, 1176956575385002643219210516851437453019191645837006471168, 102], 0.972\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f8c92af6f36949efae3b71164ba13156", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,6: [196608, 102, 2048, 248, 157, 101], 0.988\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "105d396456dd44808d51c7a51766bf90", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,7: [80, 172, 33, 105, 325, 1536, 103], 0.994\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eb4beb27e02645c58ed350db8efb3f44", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,8: [228, 342, 512, 142, 3072, 89, 248, 160], 0.998\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b7a1c15310bd4fdd9a9096c043e1b49a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,9: [320, 10, 111, 2048, 212, 346, 55, 165, 178], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "49663d3b303a49a2bafb13448e5cf34c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,10: [155, 57, 142, 256, 157, 1536, 27, 320, 6, 123], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4b40407fd5d34599a51684620b33cd87", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "69f387842e6047e9a64194813200c730", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,1: [3072], 0.3\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1c7792defe5844f5b4c78ebf5cf9b80f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,2: [1536, 109], 0.808\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b26f9ab3bdd14c07a35ff2da3f33043a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,3: [178, 315, 3072], 0.908\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6c52a0689fb243f7a2891464619eb2ae", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,4: [43, 155, 296, 1536], 0.97\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "34efddb2f66941dc9f047d9b7872577f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,5: [103, 4194306, 1536, 342, 228], 0.98\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f5bd682a97f547ee8fcc5472357747e2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,6: [1176956575385002643219210516851437453019191645837006471168, 95, 3072, 75, 59, 248], 0.994\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e19f5c1a351848d491436d028abc2bba", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,7: [20, 212, 157, 99, 1536, 105, 59], 0.996\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1a83bd4d91574d1e89f2b3f61bd2e8a0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,8: [53, 103, 228, 57, 768, 172, 85, 157], 0.998\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "11517745e31741d08a8cb6b969a63b61", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,9: [384, 64, 346, 35, 123, 342, 1536, 11, 109], 0.998\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e969f401054045038f6a39559a06364d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,10: [103, 12288, 212, 20, 248, 343, 240, 33, 342, 25], 1.0\n" + ] + } + ], "source": [ "simulations = 500\n", - "retries = 200\n", - "nfeats = trange(1, 11, leave=False, desc=\"nfeats\")\n", - "nattack = trange(50, 350, 50, leave=False, desc=\"nattack\")\n", + "retries = 500\n", + "nattack = range(50, 350, 50)\n", + "nfeats = range(1, 11)\n", "num_workers = 30\n", "\n", - "selected_random_euclid = find_features_random(feats_in_tree, nfeats, nattack, num_workers, retries, simulations, euclid)" + "euclid_classifier = EuclidClassifier()\n", + "tree_random_subsets = RandomFeatures(sorted(feats_in_tree), distributions_mults, num_workers,\n", + " simulations, euclid_classifier, top_5_scorer, retries)\n", + "\n", + "tre = feature_search(nfeats, nattack, tree_random_subsets, restarts=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "0b6a1a5b-82dd-44d4-82dc-83b16ac5bc82", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a0ec40907ca6452d8f7419a143d06466", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Evaluating: 0%| | 0/60 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAHHCAYAAACY6dMIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4VMXXgN/dzZZsek9oSQid0HvvRCkCijSpCmKh8/MTpEgREFSqKII0KVYQkI5UQXoHkQ4JpIeUTd1k935/hGxYsgmQBLKReZ/nPg/cPXfumZO59545c2ZGJkmShEAgEAgEAkExQF7UCggEAoFAIBA8LcJxEQgEAoFAUGwQjotAIBAIBIJig3BcBAKBQCAQFBuE4yIQCAQCgaDYIBwXgUAgEAgExQbhuAgEAoFAICg2CMdFIBAIBAJBsUE4LgKBQCAQCIoNwnGxImQyGcOGDStqNQT/IWJjY+nduzeenp4oFAru3LmTp/zAgQOxt7d/Mco9BXfu3EGhUODh4UGvXr2Ii4t75jKMRiOBgYHMmDGj8BV8RlatWoVMJjP7O7Rs2ZKWLVs+8doDBw4gk8k4cOBAvu59584dZDIZq1atytf1hYGfnx8DBw40O3f9+nXat2+Pk5MTMpmMTZs2WbRTYdCrVy969OhRqGUKXjwvtePy999/M2XKlHy9DAWC4sC8efP46aefeO211/j+++/x8PAw/Zb1IcvPh7Bly5Y5PkDPgkwms3h8/vnnZnIeHh4sX76cXr168fPPPzN37txnvtePP/5ISEiIWacg68OY23Hs2LF8160oOHDgAK+//jre3t6oVCo8PT3p3LkzGzduLGrVnsiAAQO4ePEiM2bMYM2aNdStW/e53evjjz9mw4YNnD9//rndQ/D8sSlqBYqSv//+m6lTpzJw4ECcnZ2LWh2BoNA5c+YM7u7uLFu2DJlMVtTqmNGuXTv69+9vdq5WrVpm/7ezs2PgwIEMHDiQXbt2ce7cuWe+zxdffEGvXr1wcnLK8du0adPw9/fPcb5cuXLPfJ/8snv37gJd/+mnnzJt2jTKly/P0KFD8fX1JSYmhu3bt/PGG2+wbt06+vTpU0jaFoyrV68il2f3l1NSUjh69CgTJkwwcyz79etHr169UKvVhXr/WrVqUbduXb766it++OGHQi1b8OJ4qR0XQdFjNBrR6/VoNJqiVsVqSUpKws7OLt/Xenp6Wp3TAlChQgX69u371PLe3t7odLpnusfZs2c5f/48X331lcXfX3311efaw38aVCpVvq/97bffmDZtGt27d2f9+vUolUrTbx999BG7du0iPT29MNQsFB53RKKiogBydBwVCgUKhaLQ7vvoM9SjRw8+/fRTvvnmG6saFhU8PS/tUNGUKVP46KOPAPD39zeFiLPGVDMyMpg+fToBAQGo1Wr8/Pz45JNPSEtLMyvHz8+PTp06sXv3bmrWrIlGo6FKlSqFFqL97LPPkMvlLFq06Kmv2bx5Mx07dqREiRKo1WoCAgKYPn06BoMhh+zx48fp0KEDLi4u2NnZUb16dRYsWGAm8++//9KjRw88PDywtbWlYsWKTJgwwfT7wIED8fPzy1H2lClTcnwws/J41q1bR9WqVVGr1ezcuROAL7/8ksaNG+Pm5oatrS116tTht99+s1jHtWvXUr9+fbRaLS4uLjRv3tzUcx0wYADu7u4WX9jt27enYsWKeRvwEcLDwxk0aBClSpVCrVbj4+NDly5dcoy979ixgxYtWuDg4ICjoyP16tVj/fr1ZjK//vorderUwdbWFnd3d/r27cv9+/fNZLJyTG7evEmHDh1wcHDgrbfeAjKdvPnz51O1alU0Gg1eXl4MHTqU2NjYXPWXJKnATsu5c+fw8PCgZcuWJCYm5ioXHBzMv//++0xlp6SkkJqa+lSycrmcZ93MftOmTahUKpo3b/5M12WRW15JbvkiT3pWLGEpx+XevXt07doVOzs7PD09GT16dI53D8CkSZNwdXVlxYoVZk5LFkFBQXTq1CnXe1+4cIGBAwdStmxZNBoN3t7evP3228TExJjJ6XQ6Ro0ahZ+fH2q1Gk9PT9q1a8eZM2dMMtevX+eNN97A29sbjUZDqVKl6NWrF/Hx8SaZR3NcpkyZgq+vL5DpZMlkMtN7JLcclx07dtCsWTPs7OxwcHCgY8eOXL582Uwmr2cIMiN9SUlJ7NmzJ1e7CKyblzbi8vrrr3Pt2jV+/PFH5s2bh7u7O4ApB2Dw4MGsXr2a7t27M3bsWI4fP86sWbO4cuUKv//+u1lZ169fp2fPnrz33nsMGDCAlStX8uabb7Jz507atWuXbx0nTpzIzJkz+e677xgyZMhTX7dq1Srs7e0ZM2YM9vb27Nu3j8mTJ5OQkMAXX3xhktuzZw+dOnXCx8eHkSNH4u3tzZUrV9i6dSsjR44EMl9szZo1Q6lU8u677+Ln58fNmzf5448/8p3suG/fPn755ReGDRuGu7u76WW1YMECXnvtNd566y30ej0//fQTb775Jlu3bqVjx46m66dOncqUKVNo3Lgx06ZNQ6VScfz4cfbt20f79u3p168fP/zwA7t27TJ7aYeHh7Nv3z4+/fTTp9b1jTfe4PLlywwfPhw/Pz8iIyPZs2cPwcHBZi/Zt99+m6pVqzJ+/HicnZ05e/YsO3fuNIXoV61axaBBg6hXrx6zZs0iIiKCBQsWcOTIEc6ePWvW48zIyCAoKIimTZvy5ZdfotVqARg6dKipnBEjRnD79m2+/vprzp49y5EjRyx+uIxGo1lo/lk5efIkQUFB1K1bl82bN2Nra5urbP/+/Tl48OBTOxerVq3im2++QZIkKleuzMSJE/Mc0pDJZBad77z4+++/CQwMtGgbgPj4eKKjo3Pcx83N7ZnuA4X3rKSkpNCmTRuCg4MZMWIEJUqUYM2aNezbt89M7vr16/z777+8/fbbODg4PLO+kPkOuHXrFoMGDcLb25vLly+zdOlSLl++zLFjx0xO73vvvcdvv/3GsGHDqFKlCjExMRw+fJgrV65Qu3Zt9Ho9QUFBpKWlMXz4cLy9vbl//z5bt24lLi7O4jDd66+/jrOzM6NHj6Z379506NAhzwjImjVrGDBgAEFBQcyePZvk5GS+/fZbmjZtytmzZ806T7k9QwBVqlTB1taWI0eO0K1bt3zZTVDESC8xX3zxhQRIt2/fNjt/7tw5CZAGDx5sdv5///ufBEj79u0znfP19ZUAacOGDaZz8fHxko+Pj1SrVq1n0geQPvzwQ0mSJGns2LGSXC6XVq1a9Yy1kqTk5OQc54YOHSpptVopNTVVkiRJysjIkPz9/SVfX18pNjbWTNZoNJr+3bx5c8nBwUG6e/durjIDBgyQfH19c9zz008/lR5vYoAkl8uly5cvP1FvvV4vBQYGSq1btzadu379uiSXy6Vu3bpJBoPBok4Gg0EqVaqU1LNnT7Pf586dK8lkMunWrVs57m2J2NhYCZC++OKLXGXi4uIkBwcHqUGDBlJKSopFffR6veTp6SkFBgaayWzdulUCpMmTJ5vODRgwQAKkcePGmZX1119/SYC0bt06s/M7d+60eD6LgIAAqVmzZk9V36z729nZSZIkSYcPH5YcHR2ljh07mtpNXrRo0SLH3zs3GjduLM2fP1/avHmz9O2330qBgYESIH3zzTe5XtOlSxepXLlyT1eRh5QqVUp64403cpxfuXKlBFg81Gq1SW7//v0SIO3fv9/s+tu3b0uAtHLlStO5p3lWsu776DunRYsWUosWLUz/nz9/vgRIv/zyi+lcUlKSVK5cOTNdNm/eLAHSvHnznsoWlnS29K748ccfJUA6dOiQ6ZyTk5Pp3WSJs2fPSoD066+/5qmDr6+vNGDAgBw6Pf6MPW4nnU4nOTs7S0OGDDGTCw8Pl5ycnMzO5/YMPUqFChWkV199NU9dBdbLSztUlBfbt28HYMyYMWbnx44dC8C2bdvMzpcoUcLMc3d0dKR///6cPXuW8PDwZ7q3JEkMGzaMBQsWsHbtWgYMGPDM+j/aK9bpdERHR9OsWTOSk5NNofyzZ89y+/ZtRo0alWN8OauXFRUVxaFDh3j77bcpU6aMRZn80KJFC6pUqZKn3rGxscTHx9OsWTOzcPSmTZswGo1Mnjw5RyQhSye5XM5bb73Fli1bzHIi1q1bR+PGjS0mY1rC1tYWlUrFgQMHch2O2bNnDzqdjnHjxuXI08nS59SpU0RGRvLBBx+YyXTs2JFKlSrlaE8A77//vtn/f/31V5ycnGjXrh3R0dGmo06dOtjb27N//36TbHp6OiEhISxcuJCbN2/Stm3bp6rvo+zfv5+goCDatGnDxo0bnypJ8sCBA08dbTly5AgjR47ktdde47333uP06dMEBgbyySefkJKSYvGaFi1acOPGDb7++mtCQkKeKncjJiYGFxeXXH9fvHgxe/bsMTt27NjxVHV4lMJ8VrZv346Pjw/du3c3ndNqtbz77rtmcgkJCQD5jraA+TOXmppKdHQ0DRs2BDB77pydnTl+/DihoaEWy8mKqOzatYvk5OR865Mbe/bsIS4ujt69e5u1f4VCQYMGDczafxaPP0OP4uLikiPSJig+CMfFAnfv3kUul+eYWeDt7Y2zszN37941O1+uXLkcL6cKFSoAPPM6BD/88AOLFy9m0aJF9O7d+9mVBy5fvky3bt1wcnLC0dERDw8PUxJk1njzzZs3AQgMDMy1nFu3bj1RJj/k5jhs3bqVhg0botFocHV1xcPDg2+//dZsjPzmzZvI5XKLjs+j9O/fn5SUFNOw3tWrVzl9+jT9+vV7aj3VajWzZ89mx44deHl50bx5c+bMmWPmjD6NHbPai6XcmkqVKuVoTzY2NpQqVcrs3PXr14mPj8fT0xMPDw+zIzExkcjISJPskSNHKFOmDCNHjqRLly5PzLF4nNTUVDp27EitWrX45ZdfCpQ8+rSoVCqGDRtGXFwcp0+ftigzcuRI3nzzTYYPH06ZMmU4cuTIU5WdlzNVv3592rZta3a0atXqmfUvzGfl7t27Ft8pj7cfR0dHgGdOWH6UBw8eMHLkSLy8vLC1tcXDw8P0fD763M2ZM4dLly5RunRp6tevz5QpU0x1hsxnesyYMXz//fe4u7sTFBTE4sWLzcooCNevXwegdevWOdr/7t27zdo/WH6GHkUqhNwvQdEhHJc8KIqG3aRJE7y8vPj666958ODBM18fFxdHixYtOH/+PNOmTeOPP/5gz549zJ49G8jMeShscrNTbvkIlvIk/vrrL1577TU0Gg3ffPMN27dvZ8+ePfTp0+eZEzIhcxy7Tp06rF27FshM5lWpVM+8+NSoUaO4du0as2bNQqPRMGnSJCpXrszZs2efWaenRa1W54gmGY1GPD09c0QHso5p06aZZGvUqMGWLVv44IMP2Lx58zMldmfdv2PHjhw/ftyUOP0iKF26NECu7X7lypX8+uuvDBs2jC1btlCjRo0nlunm5pZn8vKTeNa2/SKpVKkSABcvXsx3GT169GDZsmW89957bNy4kd27d5v+5o++K3r06MGtW7dYtGgRJUqU4IsvvqBq1apm0amvvvqKCxcumKJmI0aMoGrVqty7dy/f+mWRpcuaNWsstv/NmzebyVt6hh4lNjbWlNcoKH681I5Lbi8lX19fjEajycvPIiIigri4OFMmfBY3btzI8XG9du0agMXZNnlRrlw5du/eTWhoKK+88soz96YOHDhATEwMq1atYuTIkXTq1Im2bdvmCJcHBAQAcOnSpVzLKlu27BNlIDPsamkRv8cjCXmxYcMGNBoNu3bt4u233+bVV1+1OMQREBCA0Wjkn3/+eWKZ/fv3Z9++fYSFhbF+/Xo6duyY57BBbgQEBDB27Fh2797NpUuX0Ov1pum1T2PHrPZy9erVHL9dvXo1R3vKTYeYmBiaNGmSI0LQtm1bs4+4i4sLnTt3ZvHixfj6+rJhw4Znqq9MJmPdunW0adOGN998M98rtT4rWT34RxfJe5QtW7bg7+/PokWL6Ny581P9LStVqsTt27fzrVPWPR5v34+37ad9Vp4GX19fbt68meOd8nj7qVChAhUrVmTz5s15zvbKjdjYWPbu3cu4ceOYOnUq3bp1o127dqa6PI6Pjw8ffPABmzZt4vbt27i5ueVIOq5WrRoTJ07k0KFD/PXXX9y/f58lS5Y8s26Pk/WceXp6Wmz/T7PycBYZGRmEhIRQuXLlAuslKBpeascla17/4y+lDh06ADB//nyz81mrdj46wwUgNDTUbKZRQkICP/zwAzVr1sTb2/uZ9apevTrbt2/nypUrdO7cOdcxf0tkrX3w6EtPr9fzzTffmMnVrl0bf39/5s+fn6P+Wdd6eHjQvHlzVqxYQXBwsEUZyHypxMfHc+HCBdO5sLCwHLOvnqT347NG7ty5w6ZNm8zkunbtilwuZ9q0aTmiR4+/6Hv37o1MJmPkyJHcunXrmdYMAUhOTs4xVTcgIAAHBwfT1NT27dvj4ODArFmzcshm6VO3bl08PT1ZsmSJ2ZTWHTt2cOXKlRztyRI9evTAYDAwffr0HL9lZGTkuvpzmTJl8rUytEqlYuPGjdSrV4/OnTtz4sSJJ17ztNOhs9bueBSdTsf8+fNxd3enTp06Fq9LSEjIM/xviUaNGnHp0iWLU4mfBl9fXxQKBYcOHTI7//jz9LTPytPQoUMHQkNDzZYCSE5OZunSpTlkp06dSkxMDIMHDyYjIyPH77t372br1q0W72PpXQE533sGgyHHkI+npyclSpQw2TUhISHH/atVq4ZcLs+37R8lKCgIR0dHZs6caTG3yVKbyo1//vmH1NRUGjduXGC9BEXDSzsdGjC9ICdMmECvXr1QKpV07tyZGjVqMGDAAJYuXWoaejlx4gSrV6+ma9euOcbAK1SowDvvvMPJkyfx8vJixYoVREREsHLlynzr1rBhQzZv3kyHDh3o3r07mzZtynVK56M0btwYFxcXBgwYwIgRI5DJZKxZsybHy0kul/Ptt9/SuXNnatasyaBBg/Dx8eHff//l8uXL7Nq1C4CFCxfStGlTateuzbvvvou/vz937txh27ZtplVMe/Xqxccff0y3bt0YMWKEaZpihQoVzBL88qJjx47MnTuXV155hT59+hAZGcnixYspV66cmUNUrlw5JkyYwPTp02nWrBmvv/46arWakydPUqJECWbNmmWS9fDw4JVXXuHXX3/F2dn5qRyER7l27Rpt2rShR48eVKlSBRsbG37//XciIiLo1asXkJlnMG/ePAYPHky9evXo06cPLi4unD9/nuTkZFavXo1SqWT27NkMGjSIFi1a0Lt3b9N0aD8/P0aPHv1EXVq0aMHQoUOZNWsW586do3379iiVSq5fv86vv/7KggULzJI5s8jP2idZ2NrasnXrVlq3bs2rr77KwYMH88zheNrp0IsXL2bTpk107tyZMmXKEBYWZvrgr1mzJtecGkmSnnlqd5cuXZg+fToHDx6kffv2OX7fsWOHRWercePGlC1bFicnJ958800WLVqETCYjICCArVu35sipgKd7Vp6GIUOG8PXXX9O/f39Onz6Nj48Pa9asMZvSm0XPnj1Ny+WfPXuW3r17m1bO3blzJ3v37s2xnlAWjo6Opryt9PR0SpYsye7du3NEqHQ6HaVKlaJ79+7UqFEDe3t7/vzzT06ePGmKPO7bt49hw4bx5ptvUqFCBTIyMlizZg0KhYI33njjqeueG46Ojnz77bf069eP2rVr06tXLzw8PAgODmbbtm00adKEr7/++qnK2rNnD1qttkBLVQiKmBc9jcnamD59ulSyZElJLpebTb9LT0+Xpk6dKvn7+0tKpVIqXbq0NH78+BzTQn19faWOHTtKu3btkqpXry6p1WqpUqVKT5wWaAkemQ6dxebNmyUbGxupZ8+eOab/5saRI0ekhg0bSra2tlKJEiWk//u//5N27dplcVrn4cOHpXbt2kkODg6SnZ2dVL16dWnRokVmMpcuXZK6desmOTs7SxqNRqpYsaI0adIkM5ndu3dLgYGBkkqlkipWrCitXbs21+nQuU2rXL58uVS+fHmTDVeuXGmxDEmSpBUrVki1atWS1Gq15OLiIrVo0ULas2dPDrlffvlFAqR33333aUxnRnR0tPThhx9KlSpVkuzs7CQnJyepQYMGZtNUs9iyZYvUuHFjydbWVnJ0dJTq168v/fjjj2YyP//8s0lnV1dX6a233pLu3btnJvPodGRLLF26VKpTp45ka2srOTg4SNWqVZP+7//+TwoNDbUo37p1aykgIOCp62zp/tHR0VKVKlUkb29v6fr167le+7TToXfv3i21a9dO8vb2lpRKpeTs7Cy1b99e2rt3b57X1a9fX2rTps3TVeQRqlevLr3zzjtm5/KaDs1jU4ajoqKkN954Q9JqtZKLi4s0dOhQ6dKlSznkJOnJz8rTTIeWJEm6e/eu9Nprr0larVZyd3eXRo4caZr6/vgzLEmStHfvXqlLly6Sp6enZGNjI3l4eEidO3eWNm/ebJKxNB363r17Jn2dnJykN998UwoNDZUA6dNPP5UkSZLS0tKkjz76SKpRo4bpPVGjRg2zqeu3bt2S3n77bSkgIEDSaDSSq6ur1KpVK+nPP/800zO/06Gz2L9/vxQUFCQ5OTlJGo1GCggIkAYOHCidOnXKJPOkZ6hBgwZS3759c/1dYP3IJCmf3TEBkJnDEhgYmGs4VlC0bN68ma5du3Lo0CGaNWtW1Oq8cPr378/69evZvHkzderUwdPTs0AL0r1ojEYjUVFRXLlyhQ4dOvDmm2+yevXqZypjzZo1fPjhhwQHB4s9yV5yzp07R+3atTlz5gw1a9YsanUE+aT4vMEEgnywbNkyypYtS9OmTYtalSLh/fffx97e3rRC8uP5F9ZOcHAw3t7etGrVCpVKlefaHLnx1ltvUaZMGRYvXvwcNBQUJz7//HO6d+8unJZizkud4/KieNIidLa2thaXxH6cqKioPKdhqlQqXF1dn1m//yI//fQTFy5cYNu2bSxYsCDHDLL4+PgnJj3nJ7Ha2mjUqBHh4eH8888/xMXFFbs6eXt7s3fvXpycnEx7ND0rcrm8UGb7CIo/P/30U1GrICgExFBRAXmaoaInrQczYMCAHJu15XavvKYYt2jR4oVNXbV2ZDIZ9vb29OzZkyVLlmBjY+6jDxw48IlDDuLREAgEAutDOC4vgD///DPP30uUKPHElWAhc0XUvKIELi4uuU4lFZjzzz//5Lp8eRb5WSpfIBAIBM8X4bgIBAKBQCAoNojkXIFAIBAIBMWG/3xyrtFoJDQ0FAcHB7GplkAgEAjyRJIkdDodJUqUeK5LB6SmpqLX6wtcjkqlylfSenHmP++4hIaGmjZvEwgEAoHgaQgJCXnmLSaeltTUVPx97QmPLPhmnd7e3ty+ffulcl7+846Lg4MDACsOV0RrryhibYqWmuqYolbBKnCVvzwPeF6kSTn3tnkZ0cotbzHwMiJHRKUTEo341r5j+nY8D/R6PeGRBu6e9sPRIf9RnQSdEd86d9Dr9cJx+S+RNTyktVegdXi5HRcHtUhpAnAsRivHPk/SJGEHAK1oDybkIu3RxItILbB3kGHvkP/7GF9SR/M/77gIBAKBQGCNGCQjhgLM6zVIxsJTphghHBeBQCAQCIoAIxJG8u+5FOTa4oyICwoEAoFAICg2iIiLQCAQCARFgBEjBRnsKdjVxRfhuAgEAoFAUAQYJAlDARavL8i1xRkxVCQQCAQCgaDYICIuAoFAIBAUASI5N38Ix0UgEAgEgiLAiIRBOC7PjBgqEggEAoFAUGwQEReBQCAQCIoAMVSUP0TEJR9sWxPD4Ob/8kblS/zv9RtcO5+cp/zmldG83/Yq3atc4u0m//L9Z6Ho07KnsSUnGlg2PZR3mv1L9yqX+L/uN7l+Ie8yrYVVq5Jo0DCSsgFhdOoUzdmzue92mp4uMW+ejsZNMuXbtoti//7UHHJhYQaGD4+lamA4AQFhtGkTxfnzBd9F9XmyZGUCFeqH4OR/h2YdQzl5Ni1X2fR0iRlzY6ncKFO+Xtv77N5v/vfWJRr53+QYytcLxrnsHVp2DuXUudzLtBaWrdJRrUEonmVDaN0pgtNPsMPsefHUaJwp36RtOH/uTzGTMRgkPpsTT7WGoXgF3KNG41DmzItHsvLZFN+sjKdcvbvY+92icYd7nDibs51nkZ4u8dncB1RsmClfu00Iu/blbA9jJkUTUPcuDv63aNb5HifP5V6mtfDNyjjK1ruN1u8GjToEP9EO0+fGUL7hHbR+N6jV5i479yWZyegSjYyeFIV/3dvY+d+gaeeQYmGH3MiaVVSQ42WkSB2XQ4cO0blzZ0qUKIFMJmPTpk1mv0uSxOTJk/Hx8cHW1pa2bdty/fr1olH2IX9tjWP5zDB6jfBk3pZy+FXS8OnA28RFW96w7uCWOH6YE06vEV4s3l2B4Z+X5PC2eNZ8GW6S+Xr8fc4dSWT0V6VZuL08NZvZM6nfbWLC019UtfLF5i0pTJ2WwJjR9uzc4U6VKja81fcB0dGWdzydM0fH2rXJTJ/myP59HvTrp2Xw4FguXcquZ1ycka7dYrBRyli7xpX9+z2YPNkRJyfr9bF/3ZzI/02NYcIYZ47tKkG1Kio69wknMhc7TJkdy/K1OuZ95sbZAyUZ0s+BHu9Ecu5i9kf+/bHR7D2UwopFHpzeW5I2LWzp0DOM+2HWuzHihs3JfDI1jo/HOHJopzeBVZR0eyuKqFzsMH1OPCvXJvHFdBeO7/dhUD973hocw/lL2U7qvMU6lv+QyJefuXDigDdTP3Fmwbc6vluR+KKq9cz8sjmRj6ZEM3GsCyd2laJ6FRUde4cRmcs7YvLsByxbk8D8Ge5cOFiad/s70v2dcM4+0h6Gjo1k76FkVi3y5Oy+0rRroeWVHtbdHn7erGPslGgmjXXl1K7SVK+i5tXe93O1w6TZMSxdE8+CGR5cOujLu/2deOOdMM5ezHZMhoyN4M9Dyaxe5M35fWVo10JL+x73rdoOgsKnSL8GSUlJ1KhRg8WLF1v8fc6cOSxcuJAlS5Zw/Phx7OzsCAoKIjW16DzszSuiad/ThbbdXSlTXsMHn5VEbSvnz98eWJS/ciaJynW0tHjNGa9SKmo1c6BZZ2eunc/sWaalGvl7VzwDP/YmsL4dJfzU9BnphY+vih3rrHs352VLk+jTW0vPnloqVFDy+edO2Gpk/PRTikX5DRtTGD7cnjZtNPj62jCgvx2tW2v47rvsj9A33yRSooSceXOdqVVLRZkyNrRoocbPz3pHNRcuTeDtPg4M6OVA5Qoqvp7thtZWxuofdRbl129I5P+GO/NKGy1lfZW8O8CRV1rbMv+7eABSUoz8vj2JmRNdadbQlgB/JZP+50KAn5KlPyS8yKo9E4uX6RjQx56+Pe2pVEHJ/M9d0NrKWfNTkkX5nzckMXa4A+3b2OLva8PgAfa0a63h6++y7XbiVBodgmwJamuLb2kbunbS0qqFhtPnrDcCN/+7ON55y5GBvRypUlHFN3M80NrKWJVLe1j3m46PR7jwahs7yvoqeW+AE6+21jJvSRyQ2R42bkti1iQ3mjWypZy/ksn/cyXAz4bvVse/wJo9G/O/i2XwW44M6uVElYpqvp3jidZWxsofLbfhtb8lMH6EKx0e2uH9Ac682lrLXDM7JPL5JHeaN7KlnL+KT//nRjk/JUtWx724ihUixkI4XkaK1HF59dVX+eyzz+jWrVuO3yRJYv78+UycOJEuXbpQvXp1fvjhB0JDQ3NEZl4U6XojNy6lULOxvemcXC6jRmN7/j1reWincm07bl5KMQ0nhQfrOX1AR52WmVumGzIkjAZQqcz/FCqNnH9OW+9wkV4vceFiOs2aqU3n5HIZTZupOX3G8kclLU1CrTbfzVSjgRMnsyMuu/ekUb26ineHxlK9RgTtg6JYt8667XDmQhqtm9mazsnlMlo1s+X4acvDJGl6S3aQ8feJTPkMAxgM5Cljbej1Eucu6Gn5WHto2VTNydzskJazjrYaGcceqWP9umoOHU7lxs3MNnLxsp5jJ9Jo10rzHGpRcLLaQ5tmWtM5uVxG62a2HDttucOVppfQWPxbZ8pntYfHZWw1co6csM5hEr1e4rQFO7RppuVoHnbI2R7kHDmR2RHK3Q4yq7XDkzA8nFVUkONlxGrj77dv3yY8PJy2bduazjk5OdGgQQOOHj1aJDolxBowGsDZ3bz37+xuQ1yU5VBli9ec6TPKi3E9b9Gt4kXebXWVwAZ29PjAEwCtvYJKtbT8vDiSmIh0DAaJ/ZtiuXo2mdhI6x0qevDAiMEA7h7mTcjDXU5UpOV+QMsWapYuS+LWrQyMRolDh9LYviOVyMjsoYTg4AzWrEnC31/B+nWu9O9nx+TJ8fzyq3U6L9EPDBgM4OmhMDvv5a4gIsryEEnbFrYsXBrPjVvpGI0Sfx5MYfP2ZMIjM9uQg72chnXUzJofR2h4BgaDxPoNiRw/nUZ4hOUyi5qYh+3B093cDh4eCiKiLLeHNi01LF6q4+ZDO+w7lMof21MIf6Q9jBnmwOtdtNRtEY6bbwjNgiJ4f7ADPV63e671yS+5tgcPG7N6PUr7lloWfBfH9Vv6h+0hmU3bkwh7tD3UVTNjXqypPaz7Tcex06m5llnUZNnBy4IdIiItvyvbt9Qy/xE77DmYxO/bEwl7WEcHezmN6mqYMe+ByQ5rf0vg6OlUk62KGwap4MfLiNU6LuHhmTkgXl5eZue9vLxMv1kiLS2NhIQEs6MouXQ8maQ7jdi89wsWbq3K+G/KcGq/jp8WRZhkRn9VCkmCQY0zE363ro6hWWdnZHJZHiUXP6ZNc8TfX0GLllH4+YczYWI8PXtqebSaRiMEBioZP86RwEAlfftq6dNHy5o11um45IevprtRzl9J9eb3cPC9w+gJMfTvaY/8EUMsX+SBJEHZ2iE4+t3hm+Xx9Ohqh9xqn9hnZ/Y0ZwL8ldRtEY673z0+mhDLWz3tzOyw8Y8Uft2YzPeL3Ti004sl811ZtETH+l8sDz8VR+ZOc6ecv5LAZiFoy9xi5IRoBvRyMLPDqkVeSBL41rqLne8tvl4eT8+u9vyXXhHzp3lQzl9JlWZ30ZS5wYgJUQzs5WjW5lc/tEPpWrex9b3B18vj6NXV4T9lB8GTsd7EgXwya9Yspk6d+lzKdnRRIFeQIxE3LjoDZw/Lplw7N4xjB07iYOfCwXvHKF3+KqkpRhZPuE+PDz2Ry2X4+KqZ9WNZUpONJCcacPVUMmd4MN6lVc+lHoWBq6schQKiH+tNR0Ub8fC0/HV1c1OwYrkrqakSsbFGvL3lzJypo4xvtu08PRVUKG9uy3Llbdi+3TpDwe6uChQKiHwsuhIRbcjR28zCw03Bryu9SE01EhNrpIS3gokzYvEvk13vAD8lf270ISnZSILOiI+XDX2HRuLva52PrNvD9vB4QnJUlAEvD8vtwd1NwfoV7qSmSjyINeDjreDTmfH4lcm22+TpcYwe5kD3LplDDlUrqwi5l8HcrxPo08P6oi65toeoDLw9c2kP7go2rPIxaw+fzHhA2cfaw77fS5q1hz5Dw/H3VT7X+uSXLDs8HnWMiMrAy9NyG/Zwt+H3VSXM7DB+Rgxly2TXMcBPxf7fS5nZodfQMKu1w5MoaJ6KyHGxMry9vQGIiIgwOx8REWH6zRLjx48nPj7edISEhBSaTkqVnHKBtpz/O7u3ZzRKXDiaSKVaWovXpKUYuXvvHwAcVRUBTD2px2eyabRyXD2VJMYbOPuXjvptHQtN98JGpZJRvZqSw4ez8xGMRonDh9OoUztvh0ujkeHjoyAjA7ZvT6V9++y8iHp1ldy8Ze4Y3rploGQpyy/9okalklG7upr9h7MdK6NR4sDhFBrUUedxJWg0ckr62JCRAb9vT6JTUM42ZKeV4+NlQ2ycgT0HUyzKWAMqlYya1VUcfKw9HDycRr0n2kFGiYd22LI9hQ7ts/OFklMkZDLz7rRcIcNopW/srPaw73B2hNBolNh/OIWGdfLOyzFrD9sS6RyU0zF7tD3sPpBiUcYaUKlk1LFgh32HU2j0DHbYuC2R155oh2ReC7K3UJL1Y0SGoQCHkZcz1GSd3TfA398fb29v9u7dS82aNQFISEjg+PHjvP/++7lep1arUavzflEWhC5vuzP/o3uUq2ZLhRq2bFkZQ2qykTbdXQCYNzYEV28lAz7KdK7qtXHk4N7TBFZsgo2+HGcP61g3L4L6rR1RKDIb3ZlDOiQJSpZVE3Y3jVWfh1MyQE3bh2VaK0PetWP06Diq11BSq6aSZd8nk5Ii0bNn5odnxMg4fLzljB+f6YCdOaMnPNxA1apKwsONfDVXh1GCD97PfukMGWJHl64xLFyUSOdOGs6dS2fdumTmzHYqkjo+DSPedWTwqGhq11BRr5aaRcsSSEqW6N8rMwH77RFRlPBW8NknrgCcOJNKaLiB6lVVhIYb+OyrWIxGGPtBdh33HEhGkqB8gJKbtzP4ZPoDKpZTMqCnQ5HU8Wn4cIgD74+OoVZ1FXVqqfhmmY6kFCN9e2Z+eIaOiMHHR8GU8c4AnDqTRmi4gWpVVYSFG5j1VTxGo8TID7Id9lfbafhqYQKlSyqoVFHJhUt6Fi/V0beXdX6wAUYNdebtkZHUqaGmXk0NC5fFk5QsMeBhexg4PIKS3jbMmOAGwPEzqYSGZVAjUE1oWAbTHraH/33obCpz9/7M9lChnJKbt9P5eHoMFcspGdjLetvDqKEuDBoZQZ0aGurX1LBgWSxJyUYG9sr8+w4YHk5JbxtmTnAHMu1wPyyDmoFq7odlMO2rGIxGiY8+zH4P7tqfhCRBxXIqbtzW8/H0aCqVUzGol/V28gSFT5E6LomJidy4ccP0/9u3b3Pu3DlcXV0pU6YMo0aN4rPPPqN8+fL4+/szadIkSpQoQdeuXYtM52adnIl/kMH6+RHERmdQtrKGKSv9cXHPDFVGhaUjeySO1fNDTyJP38787VopFo27T/02DvQdmx01StYZ+OHLCKLD03FwUtDoFUf6jfXGRmnd3nSX12x5EGPkyy8TiYoyULWKkrVrXPF4OEQSet9gNj6dliYx54tEgoMz0GpltG6tYeECZ7M1WmrWVPH99y58PkvH/Pk6SpdWMHWKI6+/bvv47a2GN7vYEx1jZNoXsUREGahRVc2WdV6moaKQ+xlmdkhNk5gyO5bbwRnYa2UEtdGyYqEHzk7ZUaX4BCOTZsVyPywDV2cFXTtomTrOFaUVt4k3umiJeWBg5pfxRERlOiQb13qYElXvhRpy2OGzOfHcCc7ATiunfWsNSxe64fxIe5jzmQsz5sQz9pNYomKMeHvJGdTXno9HW++HqkcXe6JiDEydE0t4VAY1qqrZut4Hr4fDyZntIfvvmJYq8ensB9x62B5eaaNl1SJP8/agMzJxZgz3HraHbh3tmG7l7aFnFweiYwxMmRNDeJSBmlVVbF9f8jE7ZMunphqZPDuGW8Hp2GtlvNrGjtWLvHPYYYLJDnJe72jPZ+PcrNoOeWGUMo+CXP8yIpOKcAnKAwcO0KpVqxznBwwYwKpVq5AkiU8//ZSlS5cSFxdH06ZN+eabb6hQocJT3yMhIQEnJyd+OlcFrUPRDDc4qarQvNRPpBkesPtuyyLRAaCOOrrI7m1NuMmtcyrtiyZNKp4zMQobrdx6c8leNHLrzR54YSToDLhUuEV8fDyOjs/HQc76Lh2/7I29Q/5tnqgz0qBq+HPV1Rop0ohLy5Yt81y6WyaTMW3aNKZNm/YCtSp8dOk3kSQDaoUraoUHaYaoolZJIBAIBIJiiXCvXwBGKY3E9MzhIqeHCboCgUAgeLkpSGJu1vEyIhyXF0R82lUAHNXCcREIBAIBGCVZgY+XEeG4vCAS9A8dFxFxEQgEAoEg31jtdOj/GvH6fwFwUlUqYk0EAoFAYA0UdLjnZR0qEo7LCyIh7RoAdsoyKGRaDNJ/Zwl7gUAgEDw7BuQYCjDwYZ07VT1/xFDRC0JvfEBKRgQymRxH1dNP5xYIBALBfxOpgPktkshxETxvEtIeDhepxXCRQCAQCAT5QTguL5B4/RVA5LkIBAKBQEyHzi8ix+UFEp/20HFRVy5iTQQCgUBQ1BgkOQapADkuL+mS/yLi8gLJmlnkoCqHnOK5DbtAIBAIBEWJcFxeICkZYegNschlShxU5YpaHYFAIBAUIUZkGJEX4Hg5h4qE4/KCyR4uqlLEmggEAoGgKCmqHJfFixfj5+eHRqOhQYMGnDhxIlfZ9PR0pk2bRkBAABqNhho1arBz5878VrlQeGlyXILT3bDVF311S6TcxUPbGIVNLe7qD77QewcoY17o/ayX1KJWwCoQvZZMtIjdobNIk9KLWoUiJ00yFrUKz5Wff/6ZMWPGsGTJEho0aMD8+fMJCgri6tWreHp65pCfOHEia9euZdmyZVSqVIldu3bRrVs3/v77b2rVqlUENRDvrhdOZGrmQnQeGrGWi0AgELzMZCXnFuR4VubOncuQIUMYNGgQVapUYcmSJWi1WlasWGFRfs2aNXzyySd06NCBsmXL8v7779OhQwe++uqrglY/3wjH5QUT9dBxcVeXRf7yBLwEAoFA8BiZOS4FO54FvV7P6dOnadu2remcXC6nbdu2HD161OI1aWlpaDQas3O2trYcPnz42StcSAjH5QWTkB5GqiEBhVyFm9q/qNURCAQCQTEnISHB7EhLS7MoFx0djcFgwMvLy+y8l5cX4eHhFq8JCgpi7ty5XL9+HaPRyJ49e9i4cSNhYWGFXo+nRTguRUDWcJGnrdgpWiAQCF5WjA/3KsrvYXz4CS9dujROTk6mY9asWYWm44IFCyhfvjyVKlVCpVIxbNgwBg0ahFxedO6DGKsoAqJSr1HGri6emopcZmtRqyMQCASCIqDgC9BlrkAXEhKCo6Oj6bxarbYo7+7ujkKhICIiwux8REQE3t7eFq/x8PBg06ZNpKamEhMTQ4kSJRg3bhxly5bNt94FRURcioCIlKsAeGpExEUgEAheVgq2hkt2xMXR0dHsyM1xUalU1KlTh71792brYDSyd+9eGjVqlKeuGo2GkiVLkpGRwYYNG+jSpUvhGeIZERGXIiAyNXMFXTe1PwqZCoOkL2KNBAKBQPAyMGbMGAYMGEDdunWpX78+8+fPJykpiUGDBgHQv39/SpYsaRpuOn78OPfv36dmzZrcv3+fKVOmYDQa+b//+78iq4NwXIqAxIwokjIeYGfjioemPOEpl4taJYFAIBC8YAySDIOU/9Vv83Ntz549iYqKYvLkyYSHh1OzZk127txpStgNDg42y19JTU1l4sSJ3Lp1C3t7ezp06MCaNWtwdnbOt94FRTguRURkyr/4OzTGU1NROC4CgUDwEpKVZJv/6/O3y+KwYcMYNmyYxd8OHDhg9v8WLVrwzz//5Os+zwuR41JERDwcLvLSVCpiTQQCgUAgKD6IiEsRkZXn4mVbuYg1EQgEAkFRYJTkGAswq8go5S/iUtwRjksRkTWzyFlVEo3ckVRjQhFrJBAIBIIXSVENFRV3xFBRPji07h6ftjnK6BoH+bLnKe5cyNvp2L86hOmvHmNMzYNMavU3G2ZdJzEljjh9CADBfzozvPJ+s2N6h+MvoioFZv3qJNo1jqBW+VB6vRbFhXO5z5BKT5f4Zr6OV5pmyncLiuSvA7lveLhssY6qZUKZNSX+eaheqKxalUSDhpGUDQijU6dozp7N2w7z5ulo3CRTvm27KPbvz2mHsDADw4fHUjUwnICAMNq0ieL8eeuegbZyVRL1GkbiFxBGh6eww9x5Oho2yZRv0y6KfbnY4cPhsVQJDMc/IIxWbaI4Z+V2+GZlPOXq3cXe7xaNO9zjxNnc23l6usRncx9QsWGmfO02Iezal2wmo0s0MmZSNAF17+Lgf4tmne9x8pz1bxa6ZGUCleqH4OJ/h+YdQzl51vKKrpBph5lz46ja6B4u/ndo0PY+u/eb28FgkJg6J5bKDe7hWvYuVRvdY9a8OKSXNPLwsmL1jotOp2PUqFH4+vpia2tL48aNOXnyZJHpc3p7BL/PvsGrH/rxfxvqUrKiPd8MOY8uxvKL9NTWCLbMvcWrH/ozYVt9+nxWiTM7Ivlj3i3CUzKHiyr61cSnnB0zDjU2HaPXFc2um8/Cji0pzJkezwejHPh1mwcVKysZ2jeGmGiDRfmFX+j4dV0Sn0xzYsufnvTsa8fIIQ+4cinnjrQXz+v5dX0yFSpbf1Bw85YUpk5LYMxoe3bucKdKFRve6vuA6FzsMGeOjrVrk5k+zZH9+zzo10/L4MGxXHrEDnFxRrp2i8FGKWPtGlf27/dg8mRHnJys95HdvCWFKdMSGDvanl0P7dA7DzvMnqNjzdpkZkxz5OA+D/r30/LO4FguPmaH17rFoFTKWLfGlYP7Pfh0siPOVmyHXzYn8tGUaCaOdeHErlJUr6KiY+8wIqMzLMpPnv2AZWsSmD/DnQsHS/Nuf0e6vxPO2YvZH/mhYyPZeyiZVYs8ObuvNO1aaHmlRxj3wyyXaQ38tjmJcVMf8MkYZ/7eVYJqVVR06RNBZC7tYersWJav1fHVZ66cOVCSd/o50OudKM49YoevFsfz/Wodc2e4cvZgCT6b4MK8b+L5drnuRVWrUDGSPbMoP8d/ex/r3LHep/8hgwcPZs+ePaxZs4aLFy/Svn172rZty/3794tEn/2rQ2j0Zgkavu6DTzk7ek6piEoj5+hGy/s23DobT9najtTt5IVbSVsqN3GlTkcv7l7UEZGSmald0bcmchsZjh5q02HvonqR1coXq79PpHtvLd16aClXQcmns5zQ2MrY+HOyRfk/NiYzZJgDzVtrKO1rQ69+djRrrWHVskQzuaQkIx+PiGXq585W/aHOYtnSJPr01tKzp5YKFZR8/rkTthoZP/2UYlF+w8YUhg+3p00bDb6+Ngzob0fr1hq++y7bDt98k0iJEnLmzXWmVi0VZcrY0KKFGj8/63XkvluaxFu9tfTqqaViBSVzHtrhx1zs8NvGFEZYsMOSR+yw+KEd5j9ih5ZWbof538XxzluODOzlSJWKKr6Z44HWVsaqHy1/XNf9puPjES682saOsr5K3hvgxKuttcxbEgdASoqRjduSmDXJjWaNbCnnr2Ty/1wJ8LPhu9XWG41cuDSeQX0c6N/LgcoVVCya7YatrYwfcrHD+g1JfDTciVfaaPH3VfLuAEeCWtuy8LvsiPaxU2l0DNLyalstvqWVdOtkR5sWtpw6l3skx5oprAXoXjasutYpKSls2LCBOXPm0Lx5c8qVK8eUKVMoV64c33777QvXJ0NvJORyIhUbuZjOyeUyKjZy5c45y8NFZWs5EXI50TScFB2Swj+HYqjS3JXwLMfFrybRwSlMaH6EKe2Osvqjf3gQat1hYL1e4p+L6TRqmr1Co1wuo2FTNefP5IygZF3z+IKOGo2MMyfNo1WfTYyneWsNjZpZXv3RmtDrJS5cTKdZM3M7NG2m5vQZy1G4tDQJtdp8/QWNBk6czLbb7j1pVK+u4t2hsVSvEUH7oCjWrbPsEFoDudmhWR520D+FHXbtSaNGdRVDhsYSWCOCdkFRrLVyO5y5kEabZlrTOblcRutmthw7bfmZTtNLaHLYQcbfJzLlMwxgMJBDxlYj58gJ63xP6PUSZy/oadUse1fhTDtoOH7aspOht2AH20fsANCwrpoDh1O4fjOzjVy4rOfoiVTat7Z9DrUQWCvW220BMjIyMBgMVrOldlJcOkaDhKObeTTEwU1JxO0ki9fU7eRFYmw68/ueQZLAmCHRtGcJgob6EZN2iwxjGg52zoz55hUk50gSotLYsfgO8/ue4ZM/6qOxs84/UdwDIwYDuLkrzM67ucu5fdPyh6pJCw2rlyVRt4Ga0r4Kjh1O488dqRiM2ePT27ekcOVSOj//4fFc9S8sHjy0g7uHeR/Aw13OzRuWw/gtW6hZuiyJBg1U+PkpOHxYz/YdqRgfifsGB2ewZk0GQ4bYMWK4K+fOpTN5cjxKFfR4U2ux3KIkyw4eFuxwIw87fLcsiYYP7fBXLnb4YU0G7z5ih0mT41FZqR2iHxgwGMDTw/y58PKw4eoNy5Gn9i21LPgujmYNNQT4Kdn3VwqbtieZngsHezkN66qZMS+WSuVVeHko+On3RI6dTqWcv/K51yk/ZNnB6zE7eLoruHrDcsembQtbFi1NoGlDDWX9bNj/VyqbtyebvR/+N8wJnc5Izeb3USgyHbop45zp9br9c63P86LgexVZdezhuWHVtXZwcKBRo0ZMnz6d0NBQDAYDa9eu5ejRo7luqZ2WlpZji++i5PqJWHYvvUuPSRX4eENdBi8M5PKhGHZ+cwcjBiJTM2cXtW7fjJIV7anc1I33vqtOii6Dszsii1T3wmb8FEd8/W3o1CqSmgFhzJgcT9cetsgfdrLCQg18PiWe2QtdUGvyv5qktTNtmiP+/gpatIzCzz+cCRPj6dlTa7IDgNEIgYFKxo9zJDBQSd++Wvr00bJmjfVGG56VLDs0axlFmYd26GXBDtUClXwyzpFqgUr69dXyVh8tP/yH7DB3mjvl/JUENgtBW+YWIydEM6CXA/JHDLFqkReSBL617mLne4uvl8fTs6u9ma2KO19MdyXA34aaze/j5HuXMRNi6NfT3swOG7Yk8dPGJFYtdufvXSVYtsCdBUsSWPtLYh4lWy9GZAU+Xkas2nEBWLNmDZIkUbJkSdRqNQsXLqR37965bqk9a9Yss+29S5cuXWi62DkrkStkJDyWiKuLScfR3fKwxtaFt6n/mheN3yxBiQr21GjnQedRZdm97C5Go0R4yhUAvDXZ67loHZV4+mmJCrbcQ7MGnF3lKBTkSMSNiTbi/lgvKwtXNwWLvnfl1L8+7Dnqxdb9nmi1ckqVyYwq/XNRT0y0kTc7RFHdP5Tq/qGcPKZn3cokqvuHYjBY38wB14d2iI4yT5OLijbi4Wm5jbq5KVix3JXr17w5fsyTQwc9sNPKKOObHV3z9FRQobx5tK1ceRtC71tObCxqsuwQZcEOnrnYwd1Nwarlrty85s3JY5789ZR2KF/ehvtWagd3VwUKBURGmesXEZWBt6fl58LDXcGGVT7E3/Tn5klfLv1VGns7OWXLZNc7wE/Jvt9LEnfTn9unfTm6oxQZGRL+vtYZccmyQ8RjdoiMNuSIwmTh4abgl5VeRN8ow78nSnHur5LY28nwf8QOn0yPZewwJ97sak9gZRV9utszbIgjXy6Ke57VeW5kRVwKcryMWH2tAwICOHjwIImJiYSEhHDixAnS09Nz3VJ7/PjxxMfHm46QkJBC08VGJad0VXuuHYs1nTMaJa4di8WvpqPFa9JTDMhk5l6xTPHw/xKmPBdv26qm39OSMogOScHRw3pzPFQqGVWqKTl2JNuJMxoljh9Jo0btvF+mao0ML28FGRmwZ0cKrdtnDgU2bKJm0x4PNuzMPqpWV9Kpqy0bdnqgUFhf70KlklG9mpLDh7PH7Y1GicOH06hTO+8Ea41Gho9Pph22b0+lffvsv3e9ukpu3jIfYrl1y0DJUpZf+kVNYdlh2/ZUgh6xQ/26Sm48ZoebtwyUsmI71K6uZt/h7IiQ0Six/3AKDeto8rgSNBo5JX1syMiA37cl0jnILoeMnVaOj5cNsXEGdh9IsShjDahUMmpVV3HgcHZ+SqYdUmlQJ+/32qN22LQ9mY5B2UOCKakSj/dZFQowWl+fRvAcsc4ECgvY2dlhZ2dHbGwsu3btYs6cORbl1Gp1rlt6FwatBpRm7fh/KRPogG81Rw78cI+0FAMNu/kA8MPH/+Dspea1MQEABLZyZ/+qEEpVtse3hiPRd1PYtvA2gS3dkStkpn2KXFV+6MJlRIXFsX3RbeRyGXU6ej63ehQGAwbb88nYWKpWU1KtppI1y5NISZbo1iPzRTN+VCye3gpGj8t06i6c1RMRbqBSFSWR4QYWz9MhGeHt9zLHp+3s5ZSvaP5W0mplOLnIKV/ROnuWAEPetWP06Diq11BSq6aSZd8nk5Ii0bNnZsLgiJFx+HjLGT8+0w5nzugJDzdQtaqS8HAjX83VYZTgg/ezx+mHDLGjS9cYFi5KpHMnDefOpbNuXTJzZjsVSR2fhqHv2jFydBw1aiip+dAOySkSvR7aYfjIOLy95Ux4xA5h4QYCqyoJe8QOHz5ih3eH2NG5awwLFiXyWicNZ8+ls3ZdMl9YsR1GDXXm7ZGR1Kmhpl5NDQuXxZOULDGglwMAA4dHUNLbhhkT3AA4fiaV0LAMagSqCQ3LYNpXsRiN8L8PnU1l7t6fjCRBhXJKbt5O5+PpMVQsp2TgwzKtkRHvOjFkVBS1a6ipW0vF18sSSE6W6PdQ58EjoijhbcO0TzInO5w4k0ZoeAY1qqoIDTcw46s4jEYY80F2p7BDO1vmLIyndEkbqlRUcu6SnkXfJdC/VzHNcSnwAnRWH3t4Lli947Jr1y4kSaJixYrcuHGDjz76iEqVKpm24H7R1OmQmWy7beFtdNF6Sla254Ol1XF0z+xVxoalIXtkTDboPV+QZQ4ZxUekYe+qJLClO51G+QOQbHjA/fBgSnqX4cDnck6cu0zZ2k6M+akODq7WPSX61ddsefDAyNdzdURHZTok361xMw0VhYUakD3yXKWlSSz8Qse9kAy0WjnNW6n5fL4LjsVgynNedHnNlgcxRr78MpGoKANVqyhZu8YVj4d2CL1vMOslpqVJzPkikeDgDLRaGa1ba1i4wHzqd82aKr7/3oXPZ+mYP19H6dIKpk5x5PXXrXf2RJfXbImJMTLnETusf8QO9x+zQ2qaxOxH7NCmtYZFFuyw4nsXZs7SMe+hHaZNceQNK7ZDjy72RMUYmDonlvCoDGpUVbN1vQ9eHpmv25D7GWZ5G2mpEp/OfsCt4AzstTJeaaNl1SJPnJ2yo0rxOiMTZ8ZwLywDV2cF3TraMX2cK0ql9UUhs+jexY6oGAPTv4glIspA9aoqNq3zMg0VZdohWz4tTWLa7DhuB6djr5UT1MaW7xe6m9nhq8/cmDYnllHjY4iKMeLjpeDtfg58Mtr5BdeucDBKMowF2B26INcWZ2SSlS85+MsvvzB+/Hju3buHq6srb7zxBjNmzMDJ6el6XAkJCTg5OTHnZDNs7a3TT2vn8wkVndpyPGolJ2PWPLf7tLa7+tzKLk44y626yb8wire7WHi4K6xvdlJRkS5ZZ+7QiyRBZ8S7YjDx8fE4OlpOASjwPQrpu5SSmMH/1fvruepqjVjnl/wRevToQY8ePYpajedKeMplKjq1xcc2sKhVEQgEAsELwljAoaKXdQE6q3dcXgbCHua5eNtWQYYc6aVdyFkgEAheHgq+O/TL6bi8nLW2MmLSbqE3JKFS2OGq9itqdQQCgUAgsFqE42IFSBhN06JL2FYrYm0EAoFA8CIwICvw8TIiHBcrITTlIgA+WuG4CAQCwctA1lBRQY6XkZez1lZIWMolAJGgKxAIBAJBHojkXCshIuUKBikDB6UnDkovdOkRRa2SQCAQCJ4jBijQcM/LOnldRFyshAwpjajUawCUsK1exNoIBAKB4Hkjhoryx8tZayslNDkzz6WEVjguAoFA8F9HbLKYP17OWlspoSkXABFxEQgEAoEgN0SOixURlnwRSTLioi6NrcKFFEPsky8SCAQCQbFEQoaxADkukpgOLShq0oyJRKfdAqCkGC4SCASC/zRiqCh/vJy1tmJCkx8OF2lrFLEmAoFAIBBYHy/NUJFGno6mGOwKHJV6GnidUtrqaOTpRa3OfxLhrWfiqbAvahWsAqPYG8yEWqYsahWKHLXsxU0yNkoyjFL+h3sKcm1x5qVxXIoLYcnnAXBVl0WjcCbVEFe0CgkEAoHguWAo4O7QBbm2OPNy1tqKSTPG8yDtJgA+tjWLVhmBQCAQCKwM4bhYIWHJZwHw0dYqYk0EAoFA8LzIGioqyPEyIhwXKyQ05QwAPra1i1gTgUAgEDwvjMgLfLyMvJy1tnLCk889XM/FD1uFa1GrIxAIBIL/EIsXL8bPzw+NRkODBg04ceJEnvLz58+nYsWK2NraUrp0aUaPHk1qauoL0jYnwnGxQtKMOmLSbgBQQiuiLgKBQPBfxCDJCnw8Kz///DNjxozh008/5cyZM9SoUYOgoCAiIyMtyq9fv55x48bx6aefcuXKFZYvX87PP//MJ598UtDq5xvhuFgpocmnASihrVPEmggEAoHgeVAUOS5z585lyJAhDBo0iCpVqrBkyRK0Wi0rVqywKP/333/TpEkT+vTpg5+fH+3bt6d3795PjNI8T4TjYqVk5bmIiItAIBD8N5EKuDO09HDl3ISEBLMjLS3N4v30ej2nT5+mbdu2pnNyuZy2bdty9OhRi9c0btyY06dPmxyVW7dusX37djp06FDI1nh6hONipYQnn8coZeCgLIGD0qeo1REIBAKBlVK6dGmcnJxMx6xZsyzKRUdHYzAY8PLyMjvv5eVFeHi4xWv69OnDtGnTaNq0KUqlkoCAAFq2bCmGigQ5yZBSiEi5BEAJbd0i1kYgEAgEhY0BWYEPgJCQEOLj403H+PHjC03HAwcOMHPmTL755hvOnDnDxo0b2bZtG9OnTy+0ezwrYuVcKyY0+TQ+2pqU1NblavwfRa2OQCAQCAoRo1SwZfuND3excXR0xNHR8Yny7u7uKBQKIiIizM5HRETg7e1t8ZpJkybRr18/Bg8eDEC1atVISkri3XffZcKECcjlLz7+ISIuVsz95FNAZoKuTPypBAKBQFAAVCoVderUYe/evaZzRqORvXv30qhRI4vXJCcn53BOFAoFAJJUNPv/ia9hPti/LpRxrU/yfrUjzHzzHLcv6PKU/3PVfSYGneaD6n/zfy1O8PPMW6SnmW/sFhuRxvf/u8qoBsf4oPrfTOl8hlOnTqA3JKJROOGmLv88q5Rv1q9Ool3jCGqVD6XXa1FcOKfPVTY9XeKb+TpeaZop3y0okr8O5L4WwLLFOqqWCWXWlPjnoXqhsnJVEvUaRuIXEEaHTtGcPZu3HebO09GwSaZ8m3ZR7Nuf0w5hYQY+HB5LlcBw/APCaNUminPncy+3qDl0NIXX+odSquYtFD7X2bQj8YnXHPg7mbrtgrH1vUGFRndY9XNCDplvVsZRtt5ttH43aNQhmBNni279iKflm5XxlKt3F3u/WzTucC9PndPTJT6b+4CKDTPla7cJYde+ZDMZXaKRMZOiCah7Fwf/WzTrfI+T54qDHZ7+b5eeLjF9bgzlG95B63eDWm3usnNfkpmMLtHI6ElR+Ne9jZ3/DZp2DikWdsiNgiTmZh3PypgxY1i2bBmrV6/mypUrvP/++yQlJTFo0CAA+vfvbzbU1LlzZ7799lt++uknbt++zZ49e5g0aRKdO3c2OTAvGqt2XAwGA5MmTcLf3x9bW1sCAgKYPn16kXl5ACe3R/HLrNt0/rAMk36vRalKdsx/5xIJMZY/KMf/iGTDV3foPKw007bXZsCM8pzcHs3GuXdMMknxGczufQGFUsbIZVWZuq02b37sj8ZRRmhK5vL/JbX1XkT1nokdW1KYMz2eD0Y58Os2DypWVjK0bwwx0ZZ3V134hY5f1yXxyTQntvzpSc++dowc8oArl3Lugn3xvJ5f1ydTobL1j2Zu3pLClGkJjB1tz64d7lSpYkPvvg+IzsUOs+foWLM2mRnTHDm4z4P+/bS8MziWi4/YIS7OyGvdYlAqZaxb48rB/R58OtkRZyfrfWSTko3UqKJi0UzPp5K/HZxO576htGxiy5k9ZRg5xJl3x0awa3/2x+rnzTrGTolm0lhXTu0qTfUqal7tfZ/I6IznVY0C88vmRD6aEs3EsS6c2FWK6lVUdOwdlqvOk2c/YNmaBObPcOfCwdK829+R7u+Ec/Zi9syQoWMj2XsomVWLPDm7rzTtWmh5pUcY98Os1w7P+rebNDuGpWviWTDDg0sHfXm3vxNvvBPG2YvZjsmQsRH8eSiZ1Yu8Ob+vDO1aaGnf475V2yEvjMgKfDwrPXv25Msvv2Ty5MnUrFmTc+fOsXPnTlPCbnBwMGFhYSb5iRMnMnbsWCZOnEiVKlV45513CAoK4rvvvis0OzwrMqkovYAnMHPmTObOncvq1aupWrUqp06dYtCgQcyYMYMRI0Y8VRkJCQk4OTmx8HRDbO0L/hGc+eY5/Ko50GdyAABGo8THLU7Sup8Pr75bOof8+mk3CbuZzNjV1Uznfvn8FrfPJ/Lxj9UB2PDlHW6cSeDj9dVzXF/ZqStNvMYSmnyG7fdGFkj3xra3CnT94/R6LYrAGkomTncGMm3RpkEEfQbaMeRDhxzyLeuG8+5wB/oMsDOdGzn0ARqNjNkLXEznkpKMvNkhikmfOfPdIh0VqygZP8Wp0PR2lRduk+/QKZqaNZTMnJGpo9EoUadeJG8PsmP4MPsc8jXrRDByuD2DBmbb4Z0hsWg0sHhRph1mzEzgxCk9mze6F6quj+KpyKlbYaHwuc6GFT50fTX3e4z7LJrtfyZx4YCv6Vzv98KIizey48eSADTqEEzdmhqTM2Q0SvjWuc2wt535eHjhrCptxPhkoWegcYd71K2pZuFMj8zyjRL+de7y4dtO/N9wlxzyZWreYdxIFz4YlN3Ge7wTjkYj44fFXqSkGHEpf5uNq7zp0Da7zdRvH8IrrbVMG+dWaLrLC7Ev+6x/u1I1b/HJSFc+GORsOtf9nVBsNXLWLPYmJcWIU/mb/L6qBB0fsUO99sG80lrL9HGF86wk6Ay4VLhFfHz8U+WN5OseD79L/fb3RmWvync5+kQ9a1r9+Fx1tUast/tG5sI3Xbp0oWPHjvj5+dG9e3fat29fZAvfZOiN3L2cSOXGzqZzcrmMyo2duXnW8nBRQC0H7l5ONA0nRYWkcvFgLIEtsl9g5/fF4Bdoz5IRVxjT6DjTup7l0C+ZU9PuJ58EwMu2GjYy2+dUs2dHr5f452I6jZqqTefkchkNm6o5fyZnBCXrGrXa/JxGI+PMSfNo1WcT42neWkOjZo8JWyF6vcSFi+k0a2Zuh2bN1Jw+YzkKp0+TUKvNe0oaDZw4mW23XXvSqFFdxZChsQTWiKBdUBRr1yU/XlSx5tipFNo005qda99Sy7HTmT1svV7i9IU0Mxm5XEabZlqOnrbO4QG9XuKMBZ1bN7M11etx0vQSmhztQcbfJzLlMwxgMJBDxlYj58gJ67XDs/7t0vQ5n4vMOqYAedlBZrV2eBJFsXLufwGrdlwaN27M3r17uXbtGgDnz5/n8OHDvPrqq0WiT2JsOkYDOLopzc47uilJiLb8kWrQ2ZMuI3yZ3ecC71U9widtT1GxvhMd38uOzkSFpHLgxzA8/WwZtbwqLXv78NNnt/j79wgS0u+ToL+PQqakhBXtFh33wIjBAG7u5mOcbu5yoqMsD5E0aaFh9bIk7t7OwGiU+PtQKn/uSCUqMlt++5YUrlxKZ/THxaP38OChHTw8zB8lD3c5kZGWe/ItW6j5blkSt25l2uHgoTS270gl8hE7BAdn8MOaJPz9Ffy4zpX+/eyYNDmeX3797zgv4VEGvDzM24+Xhw0JOiMpKUaiHxgwGLAoExFpnUMDWTp7WtA5PNLyc9G+pZYF38Vx/ZYeo1Hiz4PJbNqeRNjDOjrYy2lYV82MebGEhmdgMEis+03HsdOpuZZZ1OTnb9e+pZb5j9hhz8Ekft+eSNjDOjrYy2lUV8OMeQ9Mdlj7WwJHT6eabFXcKIocl/8CVl3rcePG0atXLypVqoRSqaRWrVqMGjWKt956K9dr0tLScqwiWJRcOx6PU1xL9hxbz7TNjXj/60pcPBjL1sXBJhlJAt+q9rw+xo8yVexp3tObZj28OPhTZtTlXnJmhKmUXYMiqUNhMX6KI77+NnRqFUnNgDBmTI6naw9b5A87DWGhBj6fEs/shS6oNf/dnsS0aY74+yto1jKKMv7hTJgYT6+eWpMdAIxGqBao5JNxjlQLVNKvr5a3+mj5Yc1/x3ERZDJ3mjvl/JUENgtBW+YWIydEM6CXA/JHGsSqRV6Z74lad7HzvcXXy+Pp2dXerM0Ud+ZP86Ccv5Iqze6iKXODEROiGNjLkUcntKx+aIfStW5j63uDr5fH0aurw3/KDoInY9WZj7/88gvr1q1j/fr1VK1alXPnzjFq1ChKlCjBgAEDLF4za9Yspk6d+lz0sXdRIldAQoz5UEhCTDqO7pbHKX9fcJfDu7bj5VaK5JCjeJY7gz7ZyJrJN+jwfmnkchlOHip8AsxD5j5ltZzZFQPAvaTjVHHuRklt/edSr/zg7CpHoSBHIm5MtBF3D8uZ5q5uChZ970paqkRcnBFPLzlzZ+koVSazGf5zUU9MdGZ+SxYGA5w6rufH1UmcveGDQmFdbyjXh3aIijKPrkRFG/H0tNwvcHdTsGq5K6mpErGxRry95cyYqaOMb/bj6OmpoEJ588ezfHkbtm0vniFxS3h7KIh4LDoXEZWBo4McW1s5CoUMhQKLMl6e1vnqcndVoFBApAWdvT0tPxce7go2rPIhNdVITKyREt4KPpnxgLJlsusY4Kdk3+8lSUo2kqAz4uNlQ5+h4fj7Ki2WWdRk2eFZ/nYe7jb8vqqEmR3Gz4ihbJnsOgb4qdj/eykzO/QaGma1dngSRvK339Cj17+MWHXE5aOPPjJFXapVq0a/fv0YPXp0rssZA4wfP95sBcGQkJBC08dGJce3qj1XjsaZzhmNEleOxhFQK2cyKoA+1cCVm5nrsXjZBgIgy/r4PswRLVfbkfDbKWbXRdxJwa1kZt5EWPIZDFI6TqpSOCpLFlp9CoJKJaNKNSXHjmQPkRmNEsePpFGjdt4vEbVGhpe3gowM2LMjhdbtNQA0bKJm0x4PNuzMPqpWV9Kpqy0bdnpYndMCmXaoXk3J4cPZM0CMRonDh9OoUzvvpDuNRoaPT6Ydtm1PJah9dp5M/bpKbtwyD3/fvGWgVKmimX74PGhY15Z9h80jSH8eSqZhncz2oFLJqFNdbSZjNErsO5xCo4cy1oZKJaO2BZ33H04x1Ss3NBo5JX1syMiA37cl0jnILoeMnVaOj5cNsXEGdh9IsShjDRTkb/eoHTZuS+S1J9ohmdeCnl+i+fNEKuCMIukldVyss9vykNwWvjEac58FoFarUT+eAVqItBtUkhUfX8Mv0B7/6g78uToUfYqBJq9nTiVb/n9XcfFS8/pYPwBqtHJlyy/7aVm/Ky5U5Z8jsWxecJfqrVyRP/wQtx1Qgtm9L7BtSQj1XnXn9gUdh34Jp9+0cgCkSymEp1ygpLYOpe0acjluw3Or37MwYLA9n4yNpWo1JdVqKlmzPImUZIluPTKjR+NHxeLprWD0uMx8lQtn9USEG6hURUlkuIHF83RIRnj7vcyXjp29nPIVzf/eWq0MJxc55Stab49q6Lt2jBwdR40aSmrWVLLs+2SSUyR69cxMph4+Mg5vbzkTxmfa4cwZPWHhBgKrKgkLN/LVXB1GCT58P/vl++4QOzp3jWHBokRe66Th7Ll01q5L5ovZhTe7qrBJTDJy43Z2NPJOcDrnLqXh6iynTCkln8yI5n54BqsXZa7QObS/E4tXxPHx9GgG9XJk/5Fkft2SyB9rSpjKGDXUhUEjI6hTQ0P9mhoWLIslKdnIwF7WmwM1aqgzb4+MpE4NNfVqali4LJ6kZIkBvTI7NwOHR1DS24YZEzJnAx0/k0poWAY1AtWEhmUw7atYjEb434fOpjJ3709GkqBCOSU3b6fz8fQYKpZTMrCX5Q6TNfCkv92A4eGU9LZh5oTM2UDHz6RyPyyDmoFq7odlMO2rGIxGiY8+zJ7IsGt/EpIEFcupuHFbz8fTo6lUTsUgK24PeZHfHZ4fvf5lxKodl86dOzNjxgzKlClD1apVOXv2LHPnzuXtt98uMp3qdfBA9yCdzQuDSYjSU7qyHSO/DzQNFT0IS0P2yIBrx/fL8O+2GwC42VThh4k3qdbShW6js6eA+ld34P2vK/P73DtsXRyMeykNPT8pS8PXstfDuJd0jJLaOpSyIsfl1ddsefDAyNdzdURHZTok361xMw0VhYUakD3ih6SlSSz8Qse9kAy0WjnNW6n5fL4Ljla8NsnT0OU1W2JijMz5MpGoKANVqyhZv8YVj4d2uH/fYDZOn5omMfuLRIKDM9BqZbRprWHRAmecHrFDzZoqVnzvwsxZOubN11G6tIJpUxx543XrmVn2OKfOp9Lmjfum/4+dEg1A/x4OrFzgTVhkBiH3s6NI/mWU/LG2BGM/jWbh93GU8rFh6VdeBLXK7mH37OJAdIyBKXNiCI8yULOqiu3rS+LlYb2vrh5d7ImKMTB1TizhURnUqKpm63ofk84h9zPM8lfSUiU+nf2AW8EZ2GtlvNJGy6pFnjg7ZUfX4nVGJs6M4V5YBq7OCrp1tGP6OFeUSuv9cD3pb5dph2z51FQjk2fHcCs4HXutjFfb2LF6kXcOO0ww2UHO6x3t+Wycm1XbQVD4WPU6LjqdjkmTJvH7778TGRlJiRIl6N27N5MnT0alerq574W9jkt+kKGgf7ntKOVaNtwZQKz+2ddTcVb50d1vDRnGNNbc7IhBsrxteV4U9jouxZXCXseluPI813EpThT2Oi7FmcJcx6W48iLXcem2ZxBKu/yv45KepOf3ditfunVcrLfbAjg4ODB//nzmz59f1KoUCAkDkalXKKmtg5dttXw5LnH6O+jSw3BQ+lBCW4eQpL+fg6YCgUAgeFGIoaL8IdzrF0REygUAvG1zro77tIQkHQOgtF3DQtFJIBAIBILihnBcXhBZjouXbbUnSOZOSNJRAMrYNS4UnQQCgUBQdBTFXkX/BYTj8oKITLmMUcrAQemDnc3TbUL3OKHJp8kwpmKv9MJVFVDIGgoEAoHgRZI1VFSQ42VEOC4viHQphZi0zNlF+R0uMkh6QpNPA1DaXkRdBAKBQPDyIRyXF0h4ynkAvG1r5LuM4IdJuWK4SCAQCIo3IuKSP6x6VtF/jRsJu4lNu0Vo8pl8l5HluHhqqmCrcCHFEFtY6gkEAoHgBSJmFeUPEXF5gcSkXeNawnYSM8LzXUZyRjRRqVeQyeSUFlEXgUAgELxkCMelGHI38QgAvvZNi1gTgUAgEOQXMVSUP4TjUgy5m/gXACW19bCRWedmcwKBQCDIG4mCTYl+WdcAF45LMSRWf4sEfSg2cjUl7eoVtToCgUAgyAci4pI/hONiFTx747ublBl18bNvXtjKCAQCgUBgtQjHpYgo69AGP/sWuKsrQT4CfncSDwFQxq4JMhRPkBYIBAKBtSEiLvnjpZkOHZ1hjyZDWdRqmGhq1w4PdRmu6Y5R2WUgVxOOcCvpDKmGRKSn2K02WneX1hlx2Nk4o1U35k7SuSdeo3hpR0TNSbbeDdFfKOlSRlGrYBVkYChqFawGg3g2SDS+uN3CxXTo/CEiLi8Y+cPoSHTaHa4k/MWByJUcjvoRtcKevn5zaOHZ/6nKkTByTZe5d1FFhybPTV+BQCAQCKwJ4bi8YIwPe3eX4vdTwaExJW0rE2BflwD7uiRmPMDfrs5Tl3UtIXMxugoOjZCJP6VAIBAUK8RQUf54aYaKrIl6rl3wsa2Ii8qHFp4DiEkL5lbiaSLSbqFLjyYzWffJIds7SedJNSRir3SlpLYy95IvP3fdBQKBQFA4SJIMqQDOR0GuLc4Ix6UIUMm1hKVcxVHpwaX4vVyI2wOAQmaDHBueNlnXSAbXdcep5tyGSg5NheMiEAgEgv88wnEpAk492EKaMYk7Secp79CQIO9hBNjXRSGz4XricYKTLvBPwsGnKuvfhMOZjotjE/6MWEp+ZigJBAKB4MWTtZBcQa5/GRGOSxGQZkxCIbOhqUcfvDQB3Ek6x/awBUSm3qaMNpBmnn25nXSGFIPuiWXdTjpDqiEJB6U7JW0rcz/lnxdQA4FAIBAUFDGrKH+IjM4ior7b6yRnxPH9zQ/YGbaIO0lnSTbE86/uMHH6cALsn25FXIOUznXdMQAqOzZ7nioLBAKBQFDkCMeliHBXlSEi9RYZUtojZyW8NeXIkNKJSbv31GX9m5C5im4lx6ZidpFAIBAUE7KScwtyvIyIoaIiIiT5EhUdGxOSfBlHpTvuaj+8NGXx1gRwK+k0YanXn7qsrGElB6UbpbRVCEm+9Bw1FwgEAkFhIIaK8ofonhcRl+L3c013jF6+n9HArTuuqhJEpd1hy/0v2BexnGdJsjVIGaY1Xao4tnhOGgsEAoGgMCmqiMvixYvx8/NDo9HQoEEDTpw4katsy5YtkclkOY6OHTvmt9oFRkRciogMKY2zsds5G7sdADk2yGSglttR1q4OMfp7xKdHPHV5/yQcooZLEJUcm7InfIlpoTuBQCAQCLL4+eefGTNmDEuWLKFBgwbMnz+foKAgrl69iqenZw75jRs3otfrTf+PiYmhRo0avPnmmy9SbTOE42IFlLCtSE3nV/Gzq4mdjQtRaXeITgsmKu0Ox2M2PFUZd5POk5QRi52NC352NbmVdPo5ay0QCASCgiAVcKgoPxGXuXPnMmTIEAYNGgTAkiVL2LZtGytWrGDcuHE55F1dXc3+/9NPP6HVaovUcRFDRfng6Pq7zGl3gMm1dvFNr78JuRCXp/yRH24zt+MhJtfexew2+9n2+RXS0zIjIl6asrTyfAeAP0K/pNPYQEpoK/DNom+p7tzuqXWSMPJvwmEAqji1zFe98sO61Um0bhxJ9fJh9Hgtmgvn9LnKpqdLLJ6vo13TTPkuQVH8dSA1V/mlixOpVCaMmVPin4fqhcqaVUk0bxRJ5XLhvN45hvNn87bDovmJtGoSReVy4XRsH83B/WlmMgvm6ggoHW52tGsZ9byrUWCWrEygQv0QnPzv0KxjKCfPpuUqm54uMWNuLJUbZcrXa3uf3fuTzWR0iUb+NzmG8vWCcS57h5adQzl1LvcyrYXvVuqoUv8+bv7BtOwYzqkn2GHW3HiqNQrFzT+Yhm3D2LM/xUzGYJCYNieOqg3u4142hGqNQvl8XjySlW+KuGyVjmoNQvEsG0LrThGcfoIdZs+Lp0bjTPkmbcP504IdPpsTT7WGoXgF3KNG41DmFAM75IYESFIBjoflJCQkmB1paZbtrNfrOX36NG3btjWdk8vltG3blqNHjz6VzsuXL6dXr17Y2dkVsPb5x+odFz8/P4vjax9++GGR6HNhRxjb51yhzQfl+PDXxvhUdGTl0JMkxlhuKOe2hrJr3jVav1+O0X804/VpgVzYGcbu+deQIaeZR18ux+9ne9h8jh4/zIlfQ/Cu4MCFa6fIMOopYVvxqXW7HH8AyNy7yEamLozq5sn2LSl8Pj2BD0fZs3GbOxUr2zC47wNioi0PUy34QsfP65KZOM2RbX960KuvlmFDYvnnUnoO2Yvn9fy8PpmKla0/KLh1Swozp+sYMcqeLdvdqVTFhoH9YonOxQ5zv0jkx7XJTJ7uyK697vTpq+X9IbFcfswO5SvYcOy0h+n4eaPbi6hOvvl1cyL/NzWGCWOcObarBNWqqOjcJ5zIXOwwZXYsy9fqmPeZG2cPlGRIPwd6vBPJuYvZz9L7Y6PZeyiFFYs8OL23JG1a2NKhZxj3w6x3Z+vfNicxfmos48c4cXiXD4FVlHTtE5mrHabNjmPF2kS+/MyFUwdK8E4/e3q/E835i9nO79zFCXy/OpGvZrhy+qAP0yY4M/+bBL5dnviiqvXMbNiczCdT4/h4jCOHdnoTWEVJt7eiiMrFDtPnxLNybRJfTHfh+H4fBvWz563BMZy/lG2HeYt1LP8h01YnDngz9RNnFnyr47sV1muHF0Hp0qVxcnIyHbNmzbIoFx0djcFgwMvLy+y8l5cX4eHhT7zPiRMnuHTpEoMHDy4UvfOL1TsuJ0+eJCwszHTs2ZO5PH5RhakOr75Nve6lqdOtFF7lHOjyaVVUGgWnN1qevhx8LpYytVyo2akELiW1lG/iQY0OPty7GI+EEaXclmh9MGlJGfz88Xm6TQ2kXKWyvN9zHLH6MKLTgp9at/spV4jVh6FWaCnv0KCwqpwrq75P4s3eWt7ooaVcBSVTZzmhsZWx4ecUi/KbN6YwdJg9LVprKO1rQ+9+djRvrWHlMvOXTlKSkf+NiGP65044Oll9E2XFsmR69tbSvaeW8hVs+GyWI7YaGb/lYodNG1J4f5gdrVqrKeNrw1v9tbRsrWb50iQzORsb8PBUmA5XV+u2xcKlCbzdx4EBvRyoXEHF17Pd0NrKWP2j5YUU129I5P+GO/NKGy1lfZW8O8CRV1rbMv+7zAhbSoqR37cnMXOiK80a2hLgr2TS/1wI8FOy9IeEF1m1Z+LrpToG9rGnXy97KldQsnC2K7a2ctb8aPnj+uOGZP433JGgNrb4+9owZIAD7VtrWPhddh2Pn0qjU5Atr7S1xbe0Dd06aWndQsNpK44+LV6mY0Afe/r2tKdSBSXzP3dBaytnzU9JFuV/3pDE2OEOtH9oh8ED7GnXWsPX32W3nxOn0ugQZEvQQzt07aSlVQsNp/OI9FozWSvnFuQACAkJIT4+3nSMHz/+uei7fPlyqlWrRv369Z9L+U+Ldb8JAQ8PD7y9vU3H1q1bCQgIoEWLFz97JkNvJPSfBMo1cjedk8tlBDR0J/h8nMVrytR0IfSfeNNw0oOQZK7+FUXF5h5AZm5KXdfXcLrUjC8XfM7w16cz9aPZlPLy5eSD39EbLX/8cuOfh1GXQKfWz1y/Z0Gvl7h8MZ3GTbMjO3K5jEZN1Zw7Y/klotdLqNXmY7IaDZw+aR5pmDYxgZatNTRu9vyjRgVFr5e4dDGdxk1VpnNyuYzGzVScPZ0zkpR1jVrzuB1knDppbrc7tw00qhNJyyZRjB4eR+h960241uslzlxIo3UzW9M5uVxGq2a2HD9t+eOaZrE9yPj7RKZ8hgEMBvKUsTb0eomzF/S0aqYxncu0g4YTp3N/LjSP1dFWI+PoI3VsUFfNgcOpXL+Z2aYuXtZz9EQa7VvbYo3o9RLnLuhp2cz8/dCyqZqTubWHtJx/a1uNjGOP2KF+XTWHDqdy4xE7HDuRRrtWGoojhTWryNHR0exQqy2/O93d3VEoFEREmE/8iIiIwNvbO09dk5KS+Omnn3jnnXcKp/IFwPrj8I+g1+tZu3YtY8aMQSaznJSUlpZmNr6XkFB4PbPkOD1Gg4S9m8rsvL2biqjblntTNTuVIDlOz9J+x5AAY4ZE/Z6lafluAAAnYjaiuBZAzYAgbCvpiE4L5uffDxCacoWmw/JuSJa4FL+fJh69KWtfB1uFIymG59MzjX1gxGAAN3dz39fdXc7tm5bD+E1bqFm1LIm6DVSU8VVw9LCePTtSMRizZbZtSeGfS+n89oe7xTKsjSw7uHs8bgcFt25Y/lA1a6FmxbJk6jVQ4eur4O/DenbtSMX4iB1q1FIxZ66SsgEKIiOMLJyfSM83Ytjxpzv29tbX34h+YMBgAE8Phdl5L3cF125YduDatrBl4dJ4mjXUUNbPhn1/pbJ5ezIGY+bIvYO9nIZ11MyaH0el8kq8PBT8vCmJ46fTCPBTPvc65YeYXOzg6S7P1Q5tWmhYtFRHk4ZqyvrZcOCvVLZsTzHZAWDsMEd0OonazcNQKDIduk/HOdHz9aLLM8iLmIfPhae7uR08PBRcy+X90KalhsVLdTRpoMbfz4YDh9P44zE7jBnmgC7RSN0W4SY7TPrYiR5WagdrQ6VSUadOHfbu3UvXrl0BMBqN7N27l2HDhuV57a+//kpaWhp9+/Z9AZrmjfW9AfNg06ZNxMXFMXDgwFxlZs2aZTbWV7p06RenoAVunYjhwNKbvDapKsN+bcJbC2px9WAU+769AUB0aDyT3/maTTHTOBS9ijOxf7D3r53E6R7k634P9PcIS7mGXKag6gtM0n0aJkxxxNdfQYdWUVQLCGf65Hhe76FF/tAHDQs1MHNKAl8udM4RkfgvMWmqI75+Ctq3jKZS2QimTEqgew8tj/riLVup6dBJQ6XKSpq3VLNitQsJCRLbt+aezFzc+Gq6G+X8lVRvfg8H3zuMnhBD/572yOXZhli+yANJgrK1Q3D0u8M3y+Pp0dUOebF6c+XNnOkulPO3oXbzMFx8Qxg7IZa+Pe3M7LBhSzI/b0xixWI3Du/yZukCNxYu0bHul/9Obsfsac4E+Cup2yIcd797fDQhlrces8PGP1L4dWMy3y9249BOL5bMd2XREh3rf7E8/GTtZC1AV5DjWRkzZgzLli1j9erVXLlyhffff5+kpCTTLKP+/ftbHGpavnw5Xbt2xc2t6HPtilXEZfny5bz66quUKFEiV5nx48czZswY0/8TEhIKzXnROquQK2Qkxpj3pBNj9Di4Ww7N7Vl0nVqvlaRe90wdvCs4oE8xsGnKJVoODSD0nwSSYvQsfvNv0zVGg8SdUw849mMw084GIVc8W+O8GLcXH9sKBDq14dSDLc9Yy6fDxVWOQgEx0Uaz89HRxhzRhyxc3RQs/t6VtFSJuDgjnl5yvpqlo3SZzGZ4+WI6MdFGXu8QbbrGYIBTx/WsW53MhRveKJ7RFs+bLDtERz1uBwMeudjBzU3Od8tdSEuViI014uUtZ86sRMr45v44OjrJ8fdXcPeOdQ4XubsqUCggMspcv4hoA16PRR+y8HBT8OtKL1JTjcTEGinhrWDijFj8y2TbIcBPyZ8bfUhKNpKgM+LjZUPfoZH452GrosQtFztERhvztMNPKz1ITZV4EGvAx1vB5Blx+D1ih4nT4xgzzJE3u2ZGFgIrqwi+l8GXixJ4q4f986tQPnF7+Fw8npAcFWXAK5fnwt1NwfoV7mZ2+HRmPH5lsu02eXoco4c50L2LFoCqlVWE3Mtg7tcJ9OlR/KIuWbODCnL9s9KzZ0+ioqKYPHky4eHh1KxZk507d5oSdoODg5E/1jO4evUqhw8fZvfu3flXthApNv2Wu3fv8ueffz4xm1mtVucY7yssbFRySlRx5MaxGNM5o1Hi5vFoytRwtnhNeqqBx0e1TD0ICQIaujFiU1OGbWhiOkpWdaJGpxIM29DkmZ0WgH8SDmKQMvCxLY+7uswzX/80qFQyqlZTcvRI9rCc0Shx7EgaNWur8rgS1BoZXt4KMjJg945UWrfPdPoaNlGxZY87v+/MPgKrK+nc1Zbfd7pbndMCmXYIrKbk7yPZzqzRKHH0sJ5adfIezlBrZHj7ZNph5/ZU2rbLPacnKclI8F0DHp7W+ciqVDJqV1ez/3B2RMholDhwOIUGdfLOVdJo5JT0sSEjA37fnkSnIG0OGTutHB8vG2LjDOw5mGJRxhpQqWTUqq7iQA47pFK/Tt7PhUYjo8RDO2zenkKnoOz8lZRUKUeUSaEo2EfveaJSyahZXcXBw+bvh4OH06j3xPaQbYct21Po0D7bDskpUo40AblCZjbMKngyw4YN4+7du6SlpXH8+HEaNMiezHHgwAFWrVplJl+xYkUkSaJdu6dfouN5Yp3dFgusXLkST0/PIl1mGKDpAH9+++QCpao6UqqaM0fW3EGfYqB2t1IA/Dr+PI6eGoJGZ05jrtTSkyOrb+NT2ZHS1Z2JCU5mz6LrVGrpiVwhQ21ng3d5B7N7qLQKtE7KHOeflhRDAjd1J6ng2IhqTm3ZH7miYJXOhYGD7Rg3No7Aakqq11SyenkyKckSr/fIfNF8PCoOT285Y8dlOo/nz+qJCDdQuYqSiHAjX8/TYTTC4Pcye4z29nIqVDR/O9tqZTi7yKhQ0TpzGgDeHqLlozHxVKuupEZNJSuXJ5GcItH9oR3GjorD21vBR+My/57nzuqJCDdSuYoNEeFGFsxLRJLg3feze4wzpyfQpq2GkqXkREQYWTA3EYUCOnexzmRMgBHvOjJ4VDS1a6ioV0vNomUJJCVL9O+VWe+3R0RRwlvBZ59kLmh14kwqoeEGqldVERpu4LOvYjEaYewHTqYy9xxIRpKgfICSm7cz+GT6AyqWUzKgZ/6ejRfBsHcdGDoqhto1VNSppWbxMh3JyUb69sps50NGRFPC24apnzgDcPJM2iN2yGDmV/EYjRKjPsjudL3azpYvFiZQuqQNlSsqOX9Jz6LvdPTvZb1Rhg+HOPD+6BhqVVdRp5aKb5bpSEox0rdnps5DR8Tg46NgynhnAE49tEO1qirCwg3MemiHkWZ20PDVwgRKl1RQqaKSC5f0LF6qo68V2yEvCrpRothk0YoxGo2sXLmSAQMGYGNTtCpXf9WHpAd6/vz6OrroNHwqOTLou3qmoaK4sFSzHkGroQHIZLBn4XUSIlOxc1FRqaUn7UdWeK56Xoj/kwqOjQh0as2ByFVIFH6XpMNrtjx4YGTR3ESiojIdkmVrXHF/GBIPDTUge8QPSUuTWPBFIiEhGWi1Mlq00jB7vnOxmPKcF50e2mH+Vzqio4xUrqJk5RoXkx3C7ht4ZJietFSY+4WO4GADdloZLVqr+Wq++dTv8DAjo4bFERdnxNVVTp16Kn7b7Iabm/Xa6s0u9kTHGJn2RSwRUQZqVFWzZZ2XaYgk5H6GWdQgNU1iyuxYbgdnYK+VEdRGy4qFHjg7ZQ8NxCcYmTQrlvthGbg6K+jaQcvUca4oldb7wu7exY7oGCOffRFPRFSmQ/L7Os9H7GAwy9tITZOYNjuOO8EZ2GnlBLXR8P1CN5wfaQ9ffubC9DnxjB7/gKgYIz5eCt7uZ8/40U457m8tvNFFS8wDAzO/zLRDtaoqNq71MCUu3ws15GgPn82JN9mhfWsNSx+zw5zPXJgxJ56xn8QSFWPE20vOoL72fDy68CLrLxLhuOQPmVQMlhzcvXu3aS+FChWe7YOfkJCAk5MTk4+3RWNvvb12AIVMSVOPt/C3q8W6O/9HupT/KZ9ybBheYQ1aGyd+DZ7CjcQTvO5wrtB0Lc4oZVbf5F8IJRXWG715kWSIfb1MGKz/c/DcSdAZKV3pPvHx8YWaamB2j4ffpYrrx6HQ5n/ZB0NyGlf7fP5cdbVGrLf79gjt27dHkqRndlqKGwYpnSqOzfGxLY+ffe0ClWUkg0vx+wCeaesAgUAgEAismWLhuLxMXNcdB6C8fcFXvj0fl5kBXs6hAVqFc4HLEwgEAkHhUaB9igo4I6k4IxwXK+OaLnOjq/IODZAV8M8TnXaX0JSrKGQ2BDo/35V0BQKBQPBsZDofBVk5t6hrUDQIx8XKCEm+RIpBh9bGiZLaygUu71zsTgBqOgcVuCyBQCAQCIoa4bhYGRJGbjwcLqro0LjA5V1JOITemIKbujS2qqLdGEsgEAgE2RTWXkUvG8JxsUKuPhwuquDQqMBl6Y0p/BN/CAAn+6LfY0IgEAgEmUiFcLyMCMfFCrmdeAa9MRVnlTdemoACl3cudjsADtpOyOUuBS5PIBAIBIKiQjguVkiGlMatxNMAVHRoUuDywlKvE55yE7lMg5P2zQKXJxAIBIKCI4aK8odwXKyUqwlHAKjkWHDHBeDsw6iLs30/4OVs7AKBQGBViLGifCEcFyvlRuJxMox63NSlcVf7Fri8y/H7MRh1qJQBaNVNC0FDgUAgEBSIgkZbRMRFYE3ojSncSsocLqrsWHBHI11KJSFpAwDO9gMKXJ5AIBAIBEWBcFysmH8TDgNQybFZoZQXl7QaAHvbIGwUJQulTIFAIBDkD7Fybv4QjosVc113jAyjHnd1GTzUfgUuT59+leTUI8hkCpzF1GiBQCAoUkRybv6wKWoFXhRXEkuglFRFrcYzczbuMvVca+Gu6cj+6E0FKquB9ib6hB+ppmmCg10/LsZ+j1HSF46ixYjSNrqiVsEquJORWtQqWAWuipfz5W8JNYqiVkEgeCIi4mLlHH9wCoCGbnULpbzo5H2kZoSiUrjiqe1QKGUKBAKBIB9kJdgW5HgJEY6LlXMm9jxphjS8NV742xV8dpGEgfu69QCUcuxX4PIEAoFAkD9Ejkv+EI6LlZNmTONM3HkAGrsVzl5D93W/YjCm4qgOxEldp1DKFAgEAoHgRSAcl2LA0ZgTADR0q4esEBaPyzDGEZ60CYDSjmJqtEAgEBQJYgG6fCEcl2LA+bjLJGUk4apyobJjxUIpMyThBwA8tO2wtSldKGUKBAKB4OkRs4ryh3BcigEZUgbHYjKTdJu4NSiUMpPTbxKTfAiZTE4px/6FUqZAIBAIBM8b4bgUE47EHAeggVsdlDJloZQZnLACAB/7N7CROxZKmQKBQCB4BsQw0TMjHJdiwjXdDaLSorFV2FLHpWahlBmbehSd/l9s5HaUdOhVKGUKBAKB4OkQQ0X5QzguxQQJicPRxwBo6t6w0MoNic+MupRy7I9cVvwW6BMIBIJii0jOzRfCcSlG/BV1FIDqzlVxUhbO0E5E0jZSM0JRKzzwtutaKGUKBAKBQPC8EI5LMSIiLZJruhsoZIpCS9KVyCA4YRUAZZzeQTQJgUAgeFHICuF4+RBfqWLGX9GZUZfmHk0Krcww3a+kG2LRKv3w1AYVWrkCgUAgyAMxVJQvhOOST6799g+bu/7ET81XsuvtzURfjsxV9s/3t7K+4fc5jgNjdplkLP2+vuH3/LP2gllZx2JOojfqKa0tSVk7v0Kpi0FKJiRhDQC+zkOf6dpNP8TRp+ktXql4nQ+7BvPvuZRcZTPSJX5YGEPfFrd5peJ1hrx6hxMHk8xkLhxPZsI79+nR4CZt/K9xeHfis1eoCFi7KolWjSIJLBdG987RnD+b++aV6ekSX8/X0aZJpnzn9lEc2m++4eHCuToqlA4zO4Ja5t7GrIV1q5No3TiS6uXD6PFaNBfO5W2HxfN1tGuaKd8lKIq/DuS+8ePSxYlUKhPGzCnxz0P1QmX5qiTqNIigdNlQXukUxZkntIcv5+mo1zhTvmXbSPY91h7qNIjAs2RojuPjT+Kec00KxrJVOqo1CMWzbAitO0Vw+mxarrLp6RKz58VTo3GmfJO24fy53/x9YjBIfDYnnmoNQ/EKuEeNxqHMmReP9LKuff+SYvWOy/379+nbty9ubm7Y2tpSrVo1Tp06VaQ63d1zkzMLjhE4uDavru6Kc3lX9o/aSeoDyx/tZp+3pdu2Pqajw/o3kClklGntb5J59Pdu2/rQYGJzkEGZVn5mZSUbUjj54CwALQox6nJPt5YMYxIOqsq42bZ4qmv2b9WxZEYU/Ue6sWRrGQIqq/l4wH1iozMsyq/4Kpqt6+MYPsWDFXt86fyWM58ODeX65eyXdEqKREBlNSOmeRZKvV4E27akMGt6AsNG2bNpuzuVqtjwTr8HxEQbLMrP/0LHT2uTmTTdke17PejdV8uHQ2L551K6mVz5CjYcOe1pOn7c6P4iqpNvtm9J4fPpCXw4yp6N29ypWNmGwX1zt8OCL3T8vC6ZidMc2fanB736ahlmwQ4AF8/r+Xl9MhUrW/+G9ps2p/Dp1Hj+N8aBP3d6ULWKkp5vxRCVix1mzdHxw9okZk134q/9ngzoZ8fAwQ+4+Igddm135+JZL9Px649uALzWyfaF1Ck/bNiczCdT4/h4jCOHdnoTWEVJt7eicrXD9DnxrFybxBfTXTi+34dB/ex5a3AM5y9lO33zFutY/kMiX37mwokD3kz9xJkF3+r4bkXx6ODkQERc8oVVOy6xsbE0adIEpVLJjh07+Oeff/jqq69wcXEpUr3+/fESAV0qEdCpAk7+LtT/uCk2Ghtubr1mUV7tpMHWTWs6wk/cR6G2oUybbMfl0d9t3bTcP3QXrzolsC+ZMwn3QNRhIHPvIpW8cGYCZRjjCdX9BICf0/tPdc1v38fSoacjr7zphF95NaNmeKK2lbHz1wSL8n/+nkCfD9xo0MqeEmVUvNbXmQat7Ph1WaxJpkFLO97+nztNgxwKXqkXxMplSfToreWNnlrKVVAybZYTGo2M33627Mhu3pDCe8PsadlaQxlfG/r0t6NFaw0rlpq/fBU24OGpMB2urlb9uLLq+yTe7K3ljR6Zdpg6ywmNrYwNudlhYwpDh9nTorWG0r429O5nR/PWGlYuM7dDUpKR/42IY/rnTjg6WbcNAJYsS6RvHy29e2qpWEHJF587YWsr48efki3K/7ohmZHDHWjbRoOfrw2DBtjRprWGb77LtoO7mwIvz+xjz5+p+PkpaNzIemcCLl6mY0Afe/r2tKdSBSXzP3dBaytnzU9JFuV/3pDE2OEOtG9ji7+vDYMH2NOutYavv9OZZE6cSqNDkC1BbW3xLW1D105aWrXQcDqPyJ5VU0S7Qy9evBg/Pz80Gg0NGjTgxIkTecrHxcXx4Ycf4uPjg1qtpkKFCmzfvj1f9y4MrPotMHv2bEqXLs3KlSupX78+/v7+tG/fnoCAgCLTyZBu4MHVaLzrlTCdk8lleNcrSfTFiKcq4+YfV/FtVxYbW8sLyaXEJHP/SDABnStY/P1KwlUiUiPR2mip71p4myQGJ6zEIKXhpKmFiybvKdfpeolrl1Kp3dTOdE4ul1G7iR3/nLH8odLrJVRq8wdNpZZx6VTuw0vWjl4vcfliOo2bqk3n5HIZjZupOXfa8stUr5dQa8ztoNHA6ZPmkYa7tw00rRNB6yaRjB0eS+h9yz1VayA3OzRqqubcmTzsoH6yHaZNTKBlaw2Nm6mxdvR6ifMX0mnezNwOzZuqOXU6ZyQJQJ8moXmsahqNjBMncrfbbxtT6NNTi0xmncmZer3EuQt6Wj5mh5ZN1Zw8bXm4KC2NHO3BViPj2Ils+fp11Rw6nMqNm5m2vHhZz7ETabRrpXkOtfhv8vPPPzNmzBg+/fRTzpw5Q40aNQgKCiIy0vJQtF6vp127dty5c4fffvuNq1evsmzZMkqWLPmCNc/Gqh2XLVu2ULduXd588008PT2pVasWy5Yty/OatLQ0EhISzI7CJC0uFckgoXE1D9FqXDSkxjz5Axx9OZL4m7EEvJb7nkO3t19HaaeidEs/i79LSByIOgJAK49mT6/8E9AbogjV/QyAn/OHecrGxxowGsDFXWF23sVdwYMoyx/Yes3t+G15LPdu6zEaJU79lcThXYm5yhcHYh8YMRjA3cP8UXJ3lxMVZbR4TdMWalYuS+LO7QyMRokjh9LYvSOVyMhsO9SopeTzuU58v9aVqTOcuBdioM8bMSQmWi6zqMmyg5t7TjtE52GHVY/ZYc+OVKIescO2LSn8cymdMR8Xjwjcg4d28HjsufDwkBOZSztv1VLDkqVJ3LqVaYcDh1LZvj2ViEjL8jt2phKfYKRXD22h619YxDy0g2cOOyiIyKU9tGmpYfFSHTdvpWM0Suw7lMof21MIf8QOY4Y58HoXLXVbhOPmG0KzoAjeH+xAj9ftLJZp7UhSwY9nZe7cuQwZMoRBgwZRpUoVlixZglarZcWKFRblV6xYwYMHD9i0aRNNmjTBz8+PFi1aUKNGjQLWPv9YteNy69Ytvv32W8qXL8+uXbt4//33GTFiBKtXr871mlmzZuHk5GQ6Spcu+g0E23m15P8qjsTRxoFbf1zDOcAF96q553Dc2noNv/YBKNS5j+cfijqCQTJQybE8JW19Ck3X4PjvMUp6XDT1nxh1eVY+nOxBST8lg9reIajCdRZ9GklQd0estNP43Jg41RFfPwWvtIyiatlwpk2K5/UeWuSP2KFFKw2vdrKlUmUlzVqqWbbalYQEIzu25p68WtyYMMURX38FHVpFUS0gnOmTze0QFmpg5pQEvlzonCNC9V/is2mO+Pvb0LhFJCX9whg/IZ5ePW2R5/J2XvdTMm1aqfH2VlgWKKbMnuZMgL+Sui3Ccfe7x0cTYnmrpx3yRx6MjX+k8OvGZL5f7MahnV4sme/KoiU61v9iefjJ6nnBOS56vZ7Tp0/Ttm1b0zm5XE7btm05evSoxWu2bNlCo0aN+PDDD/Hy8iIwMJCZM2diMBRdhzNfjsvOnTs5fPiw6f+LFy+mZs2a9OnTh9jY2DyufDaMRiO1a9dm5syZ1KpVi3fffZchQ4awZMmSXK8ZP3488fHxpiMkJKTQ9AFQO2uQKWQ5EnFTY1PRuFlOlGvh0ZQazoFUs6vC3T03KZtHtCXyXDgJd+MJ6JL3LtBx6fGcic2ccdTKo/kz1iJ30gwRhOp+AcDfeXiuck4uCuQKiH0s0S422oCrh+UXqrObDdOXlmTbP+VYf9ifVXv9sLWT41OmcPZeKgpcXOUoFOSIKkRHG/HwsPx4ubop+Ha5K+everP/qCc7D3hgZyejtG/ujqqjkxw/fxvu3rGc+FzUZNkhJjqnHR6PRmXh6qZg8feunP3Xm31HPdmx3wOtVkbpMpl2uHwxnZhoI693iKaqfxhV/cM4eUzPmpXJVPUPw2CwvsxE14d2eDwBNSrKiGcuz4W7m4IfVrhy57oPZ4578fchT+zs5PiWydkeQu5lcOivNN7qY73RFgC3h3aIzGEHA165tAd3NwXrV7gTdr0Ul477cOqQN3Z2MvzKZNtt8vQ4Rg9zoHsXLVUrq+jV3Y4Ph9gz9+vCjawXNx4fZUhLszwcFx0djcFgwMvLy+y8l5cX4eHhFq+5desWv/32GwaDge3btzNp0iS++uorPvvss0Kvx9OSL8flo48+Mg3BXLx4kbFjx9KhQwdu377NmDFjCk05Hx8fqlSpYnaucuXKBAcH53qNWq3G0dHR7ChMFEoFrhXdiTgZajonGSXCT97HvZqXxWvOxJ4HoIqxAoZ0I/6vlMu1/JtbruJayR2X8m5P1GVf5EEAmns0KrSNFwHuxH+HQUrDWVMXF00jizJKlYwKgRrOHslOODQaJc7+nUyV2nnPdFCp5Xh4KzFkwF87E2nczr7QdH/RqFQyqlZTcvRI9ovCaJQ4ejiNmnXyTpxUa2R4+yjIyIBd21Np0y73HI6kJCMhdzPw9LTOXnZudjh2JI2atZ9sBy/vTDvs3pFK6/aZdmjYRMWWPe78vjP7CKyupHNXW37f6Y5CYX1RGJVKRo3qSv46nJ2fYjRK/HU4jbp18n5GNRoZPg/bw9btKbzSPmfexo8/J+PuLqddG+vO6VCpZNSsruLgYfP2cPBwGvXq5J2rpNHIKOFjQ0YGbNmeQof22e+T5BQpR16PXCHDaJ0jqE+mkJJzS5cubTbSMGvWrEJT0Wg04unpydKlS6lTpw49e/ZkwoQJeQYQLKHX67l69SoZGQXvfOVrbuHt27dNDsWGDRvo1KkTM2fO5MyZM3To0KHASmXRpEkTrl69anbu2rVr+Pr6Fto98kOl3oEcnX4I18ruuFXx4OrPl8lIzaBsx/IA/D31AFoPO2p+UA/IdFzeKPUa9fzrEtC2Amonyy+d9CQ9wftuU3vE062KezH+HyJTo/HUuNPIrR6Hov8ulPrpDZGE6n6mtGN/yjqP4HS45RBi98EuzB4bToXqairV0LBhRRypyUaCumc6i5+PCcPd24bB/+cBwJWzKURHZBBQRU10eAY/LIhBMkKvodmzxFKSjNy/m/3SDw9J58Y/qTg4KfAqaZ2RmUFD7Ph4TByB1ZVUr6lk9fJkUlIk3uiR+cL9aFQcXt5y/jcu0y7nz+oJDzdQuYqSiHAji+bpMEow5P1sB+7z6Qm0bqumRCkFkRFGFs7VIVfI6NTFej9YAwfbMW5sHIHVHrFDssTrD+3w8ag4PL3ljH3EDhGP2OHreTqMRhj8XqYd7O3lVKho3rey1cpwdpFRoaJ1tgWA94bYM3x0LDWqK6ldS8l3y5JITpHo1TMzSvLhiFh8fBRMHJ9ph9Nn9ISFGwisqiQ83MAXX2XaYdgH5g690Sjx088p9HxTi42N9Tltj/PhEAfeHx1Dreoq6tRS8c0yHUkpRvr2zMxHGToiBh8fBVPGOwNw6kwaoeEGqlVVERZuYNZX8RiNEiM/yO58vtpOw1cLEyhdUkGlikouXNKzeKmOvr2KZ46LTMo8CnI9QEhIiFknXa227By6u7ujUCiIiDCfSBIREYG3t7fFa3x8fFAqlSgU2Z2mypUrEx4ejl6vR6XKu2OSnJzM8OHDTSke165do2zZsgwfPpySJUsybty4J9bzcfLluKhUKpKTM3vaf/75J/379wfA1dW1UJNhR48eTePGjZk5cyY9evTgxIkTLF26lKVLlxbaPfKDb7sAUuNSubDsDKkxybiUd6PVvFewdct8MSWHJ5r1Cu4kBxOVHI2H1p3uQ9/kLqEWy7275xb8P3vnGR9F1cXhZ3t67500khB6r6GjSFMUREXsioAiWEBfQUBEERErKqgoSO/SBem9E0oggfReNj3Z/n4IJkQShGSTbGCe328+7Oyde8/cnZ35z73nnmMw4Nv/7lZNGTDwd8Z+nvQZTl/XnkYTLgDxeT/hYTUCW7M2OJj3IKfkwG1leg2yJi9by5L52SizdASEKvh0iScOzmWXVUaKFtEt89NqlYFfvsgmNUGDuaWIjj0tmTLfHSubij/E1chSJo9KKv+88ONMAPoPt+G9eVX/sRqaR4aYk5Oj5+svCsnMLHsQ/7zUAaebUwOpybpK/iuqUgMLPi8kMUGLhYWIiN5mfL7ArtJS37RUHZPG56LM1ePgIKZtezlrNjni4GiaIy4AA2/2wzfzK/ph0S39kJKiQ3SLDlGpDHz1eSGJiTf7oZcZn/2rHxojw4aak52jZ+68AjIyywTJymWO5VNFySm6Sv4rKpWBT+cWEJ+gxdJCTJ/eCr772h7bf/XD/oMqkpJ1PDXStKeJ/mH4UAuyc3R8Mi+P9MwyQbJ+mXN5PyT9qx9KVWXB5eJu9kP/3mb89LUjdrf0w9yP7Zk9N4/J7yvJzNbj5irm+WeseO8t446s1xu1jcVy89i7nV2Qy+W0bduWPXv2MGzYMKBsRGXPnj2MHz++ymO6du3K8uXL0ev1iG/+YNeuXcPd3f0/RQuUuW+cP3+effv28dBDD5Xv79u3Lx999FGNhIvIUIOQg0OGDEGtVtO1a1dmzZpFbGwsnp6e7Nq1i/Hjx3PtWtXxTGrCli1bmDp1KtHR0TRp0oRJkybx8ssv3/Xx+fn52Nra8sSeZ5FZNlzMg2d9RzHArTd7Mw6wOHap0eq1kVrzdevPkIllfHhxNjeK4qot+6Lr7eLjTgTYv4uv7Yvkqy5yKvVx7pdoR97Sgv8u9ACgvz9+zlrjYIJTTg2FAtMVxvVFfoEe75Bk8vLyjO5qUN7GzeeS94KZiM1rPoqqLyklceK0e7J11apVjBkzhh9//JEOHTqwYMECVq9eTVRUFK6urjz77LN4enqWTzclJibSrFkzxowZw4QJE4iOjuaFF17gjTfe4IMPPvjP9nx9fVm1ahWdOnXC2tqa8+fP4+/vT0xMDG3atKnRYEeNXm2+/fZbpFIpa9euZeHCheXrubdv315JURmDQYMGERkZSWlpKVeuXLkn0WJKnFaeA6CNfStERkyMla8t4HjOaQD6ufYyWr0ACXmL0OqLsFGE4yzkMBIQEBAwLg0QgG7kyJHMmzePadOm0apVK86dO8eOHTvKHXYTEhJITU0tL+/t7c3OnTs5efIkLVq04I033uDNN9+865GSzMxMXFxuX0VbVFRU4zhENZoq8vHxYcuWLbft//LLL2tkxINAVME1irRF2MpsCLYO5GpBtNHq/it9L92cOtHJsT3LE9ZQoDVO+GuNXkli/i80sZtAgP1Esop3Y8A0V7UICAgINDqMNFV0r4wfP77aqaF9+/bdtq9z584cO3asRm21a9eOrVu3MmFC2SrVf8TK4sWL6dy56sUf/0WNRlwkEkmVUfays7MrOfAIVKAz6Dh9c3VRe/vWRq07pvAG1wvjkItl9HIx3tJogIS8X1HrsrGQNcHdarhR6xYQEBAQuL/55JNPeP/99xk7dixarZavvvqK/v378+uvvzJ79uwa1Vkj4VKdW4xKpborZ50HlVPKMwC0d2hj9Lp3pe8ByoLdSUTGE486QxFxuQsBaGI3HrHIdJO6CQgICDQqHoAki926deP8+fNotVqaN2/Orl27cHFx4ejRo7RtW7OUNfc0VfT1118DZUM9ixcvxsqqYrmeTqfjwIEDhISE1MiQB4ELuZcp1ZXipHDE39Lvjo6098qx7FOM8n4cB7k97e3bcCznpNHqTi5YibfNGMxl3vjYPEdc3kKj1S0gICDwwNJAU0X1hUaj4dVXX+XDDz/8z3Q998I9CZd/fFgMBgM//PBDpWkhuVyOn5/fPQeleZDQGDScy42kk2N7Ojq0Napw0Rq07MnYz3CvITzs3teowsWAhhu5X9LMeT4+ti+TXLAajT7baPULCAgICNx/yGQy1q1bx4cffmjUeu9pqig2NpbY2FgiIiI4f/58+efY2FiuXr3Kzp076djx7oKnPagcyz4FQAeHdkave3f6PtR6DYFW/gRZGTeDdnrRNvJVF5CKLe+YCkBAQEBA4C5pgFVF9c2wYcPYuHGjUeus0aqivXv3GtWIB4nzeRcp1alwMXMy+nRRvraAw1nH6OXSnYHu/fgq+rrR6gYDMTmf0cb9DzytR5BcsIwiTYwR6xcQEBB4sDBW5FxTJigoiJkzZ3L48GHatm2LpWXlKMdvvPHGPddZI+ECkJSUxObNm0lISECtVlf6bv78+TWt9r5HrVdzNvc8nR070MmxnVGFC8D2tN30culOO/vWuCpcSFfdvvqrpuSqTpFRtAsXy/4EOUzlXPqLRqtbQEBAQOD+4+eff8bOzo7Tp09z+vTpSt+JRKL6Ey579uxhyJAh+Pv7ExUVRXh4OHFxcRgMBtq0Mf6KmfuNo9kny4SLQ3tWJKzDYEQPq+SSFM4qL9DavgUD3fvxa9wfRqsb4LpyLk4WPXEw74ajeU+yS/YZtX4BAQGBB4b73DkXylxMjE2NlkNPnTqVt99+m8jISMzMzFi3bh2JiYlERETwxBNPGNvG+44LuRcp1hbjqHAg2Lr6TNE1ZUvqTgB6OHfBRmpt1LpLtIkk5pclywp0mIII0012JyAgICBgOhgMhmrDqdwLNRIuV65cKU+sKJVKKSkpwcrKipkzZ/LZZ5/V2qj7HY1By6mbKQA6O7Y3ev1RBdeIKbyBXCynv1tvo9cfl7sQlS4TS1kTvGxGG71+AQEBgQcBERV+LjXaGvoE7pLff/+d5s2bY25ujrm5OS1atGDp0prn7KuRcLG0tCz3a3F3d+f69Qon0KysrBob8yBxJPs4AJ0c2hk1YNw//JmyA4D+rr0wl9Q8iVdV6AxF3FCWLY1vYjceucTZqPULCAgICNwfzJ8/n7FjxzJw4EBWr17N6tWreeihh3jttddqnCaoRj4unTp14tChQ4SGhjJw4EAmT55MZGQk69evp1OnTjUypK4p1cnQ6UxnWuN0znWU6jzs5baEWLfgtPKiUes/nHWJJ7zS8LJwo4dTLzal7OaG+vZEVzXlRs4hHC0v42Iehqvth+xP+9hoddc11mJVQ5tgEnhL1P9d6AEgV0iTXY6DWN/QJjQ4WuqxD2q7pLkRLIf+5ptvWLhwYfksDcCQIUNo1qwZH330EW+99dY911mjEZf58+eXx2uZMWMGffr0YdWqVfj5+fHzzz/XpMoHDj16DmeVeVj3cO5g9PoNGNiQXObrMtijD3KxsUWbgSMZX2Iw6AmyGYCbeUsj1y8gICBwn/MAhPxPTU2lS5cut+3v0qVLpSzU90KNhIu/vz8tWrQAyqaNfvjhBy5cuMC6devw9fWtkSEPIvszy6aL2tu3wMLI0zkAB7NOkl6ahb3clr4uXY1ef5Yqiqi8zQB0cZmECCHBpoCAgIBABYGBgaxevfq2/atWrSIoKKhGddY4jktubi5r167l+vXrvPPOOzg4OHDmzBlcXV3x9PSsabUPFDeKEkksTsHbwoPOjm3Yk3HEqPXrDHo2JO/itYCnGObZn80JP6IzGHd64FTWT/hZ9cRB4U+4/QgilSuMWr+AgIDAfcsDsBx6xowZjBw5kgMHDtC1a9kL9OHDh9mzZ0+VguZuqNGIy4ULFwgODuazzz5j3rx55ObmArB+/XqmTp1aI0MeVPbdHHXp6Vw3qRL2ZhwjS6XEUWFHsM1Ao9ev0hdwIut7ANo4Po+V1M3obQgICAjcj9RqRVEto+7WF8OHD+f48eM4OTmxceNGNm7ciJOTEydOnODRRx+tUZ01Ei6TJk3iueeeIzo6GjOziimOgQMHcuDAgRoZ8qByIPMkOoOeMNsg3MyMvzpHa9CyMXkXAC0dnkEsMr6DcnT+dlKLzyETm9PVdZLR6xcQEBAQaLy0bduWZcuWlUfPXbZsGa1bt65xfTUSLidPnuTVV1+9bb+npydpaWk1NuZBJEedy4XcK0DdjbrsTj9MtkqJlcyVpjaD6qSNQ+mfo9Or8bbsjL+V8WPHCAgICNx3PADOudu2bWPnzp237d+5cyfbt2+vUZ01Ei4KhYL8/Pzb9l+7dg1nZyGmx73yd8ZRAHq6dEJcByGFNAYt626uMGrlOBqJSG70NvI0CZzLKQso1NnlTRRi40bsFRAQELjveACEy5QpU9DpdLftNxgMTJkypUZ11ki4DBkyhJkzZ6LRaICyREkJCQm89957DB8+vEaGPMicyLlAgaYIZ4UDLexC6qSNPelHKNSkYyl1JtR2WJ20cV75B0pVHOZSBzo4j6uTNgQEBAQEGg/R0dGEhYXdtj8kJISYmJga1Vkj4fLFF19QWFiIi4sLJSUlREREEBgYiLW1NbNnz66RIQ8yWoOWA1knAOhTB8uW/2njTPavALR0GI1MZG70NvQGDYfS52Iw6Glq+wieFsZPZyAgICBwv/AgOOfa2tpy48aN2/bHxMRgaWlZozprJFxsbW3566+/2LJlC19//TXjx49n27Zt7N+/v8aGPOjsSS9bCt3eoQU2Mqs6aSM6fwd56kTMpXY0sx9RJ22kl0ZyKXcdAN1c360TgSQgICBwX/BP5NzabCbO0KFDmThxYqXUQDExMUyePJkhQ4bUqM67Fi4ODg7leYheeOEFCgoK6Nq1K6+//jrvvvsuffv2rZEBAmXEFydzrSAWmVhKb5fOddKGAR2nsxYD0MJ+FAqxbZ20cyrrJ/LVKVjL3IQpIwEBAYHqeAB8XObOnYulpSUhISE0adKEJk2aEBISgqOjI/PmzatRnXctXNRqdblD7m+//UZpaWmNGhSonr/SDwHQz7UbojrK+3mjcC9ZpdeQSyxp5fjsfx9QA7SGUg6mfwpAqN1QPC2Mn9JAQEBAQMD0sbW15ciRI2zdupXXX3+dyZMns3fvXv7++2/s7OxqVOddR87t3Lkzw4YNo23bthgMBt544w3MzaueBvjll19qZExj4fq6i0QvP0dpTjG2gY60fKsbDmGuVZY9MH4TWWdTbtvv2tmHrvMeKf+cH6fki2mf8PTawbjZOaP/OZOSRxRYuBl7dY6Bk1k/8LDXfMLsHuWSci2F2prliwDY+0cKO39OJi9TjXeIJaM+DKBJC2tSS85ySbmWZvaP08P1PdbFj0GtL2T3kmT2rUgjJ1WFlb2UtgOceGyyHzJFhYZWpqtY93kcFw8qUZfocfE147lPgvBrbrorldb8VsCyn/LIztQRFCrn7RkONGulqLKsVmNgyfd5bF1bRGa6Fh9/GROm2NO5Z8X/ae3SAtYvKyA1SQtAkyAZL71pR5depj319uuSIr7/oYjMTB1hoTJmz7KhdeuqV7FpNAa++baQ1WtLSEvTEeAv5YP3rendq3L6i9RUHR9/ks/evSpKSgz4+Un5cr4trVoaf3WcsVi2pIiffyzrh5BQGR/OtKHlHfrhx+8K2bCmhPR0HU38pbwz1Zoet/TD1/ML+PbLwkrHNQmQsHOf8RKn1gU/Lynk24WFZGTqaBYm49NZdrS5Qz8s+LaAVWuKSU3TEegvZdoHtvS5pR9ad0wjMen2FSovjLFk7id2dXUadUZt/VRM2cfl6NGjZGdnM2jQIEQiEf379yc1NZXp06dTXFzMsGHD+Oabb1Aoqr5P3om7HnFZtmwZAwcOpLCwEJFIRF5eHkqlssrNWHz00UeIRKJKW0hI3ay6uVuSdscQ+c1hQl5oR+9fHsc20JHDk7ZQqiyusnynTwYwcPOY8q3v0pGIJCK8egWUlylMyuPA2A1IXc34O6XM1+XN9yYiVtRN7p/k4pMkFZ1AIpLR3un2eDx3y8ltmayeE8vgcT58uKE1XiGWLHjxIvnZZWkFTmb9SJ46EUuZC51dJnL8zwzWfRHH4PHezNzWhjGzgzi5LYv18+PK6yzK0/LZqAtIZCLeXNSMGVvb8MR7TbCwrXF2ijrnrz+LWPBxDi+9acfvW9wJCpXzxugMcrJuv8ECLJyXy4Y/Cnl7hgOrdnvw2NPWvPtKJlcvVqRjcHWXMO49e37b4s6SP91p18WMt1/O4Po1083ovGlzCR/NzGfyW1bs3O5EWJiUUc/kkFVNP3w2t4Cly4qZPdOG/X878+xoC158SUnkRU15mdxcPUMezUYmE/HHUgf273Vm+jQb7Gxr5J5XL2zdXMKcWfmMn2jFxm1OhIRJeXF0DtnV9MOCzwtYuayYD2fZsG2PM6OesWDcy0ou39IPAEHBUg6fdinfVqx3qo/TqTEbNhXz4Yw83plkzd87XGgWJuOJp7PIrKYfPpmbz2/Lipgzy47De10ZM9qSMS9lc+GW/8Vf25y5dNatfFu3whGAIYNMW9BXy308VTRz5kwuXbpU/jkyMpKXX36Zfv36MWXKFP7880/mzJlTo7rv+t/v6urKp59+ypo1a/Dx8WHp0qVs2LChys2YNGvWjNTU1PLt0KFDRq3/XoledR6/wWH4PRKCTRMHWr8TgUQhI35LVJXl5TZmmDlalG8ZJxORKKR49q4QLpd/OoFrZ1+aj+vMftUpALoFdcLLte5yPp3IWojBoCfApg/OZrcvVbsb/vo1me4j3Og63BWPQAuemRGI3EzC4XXpQNmU0f602egNOoJsBuAt70VgGxs6DnbBycuMZt3s6TDIibgLFW+SOxYlYe+m4Pk5wTRpYY2zd1k5Fx/TvTEtX5zPsCetGTzCCv9gOVM+ccDMXMSfqwurLL99fRHPjbOla29zPH1kPD7ami69zPljUUVspO59Leja2xyfJjJ8/WW8/q49FhZiLp5R1ddp3TM//lTE06MseHKkBU2DZcz91BZzMxErVpZUWX7t+hLemGBFnz5m+PpKGfOsJb17m/HDjxX99t33hXh4iFkw347WreX4+EjpGaHAz890heyvi4oYMcqC4SMtCAyWMXOOLWZmItauqrofNq0r4bXxVvTsbYaPr5SnnrUkorcZv/xU+fqRSMHZRVK+OTiYrngDWLiokNFPWfLUSEuaBsv44lM7zM1FLF9Z9Uve6nXFvDXBmn59zPDzlfLCGCv69jbj+1uuBydHCa4uFduu3aU08ZPQtbPpjr49qJw7d44+ffqUf165ciUdOnRg0aJFTJo0ia+//rp+cxXFxsZy7tw53n//fV566SVeeOGF8u3FF1+skSHVIZVKcXNzK9+cnBruLUOv0ZF7NROX9l7l+0RiES7tPMm5mH5XdcRticKrbyBS87LQ+wa9gbQj8Vh523LorS382HsO+48dRCIS09+te52cB0COKoZr+WVRCzs5j7/n47VqPfGXCgntYle+TywWEdrFjutnC8r3ZZReKg9MN/nlz9AqbYm9UPZ9ZmIpkfuVhEfYl5c//3c2fuFW/PDGFSZ1Ps7MYWc5sNp0ozFr1AaiItW071YxnC0Wi2jfzYzIakSGWm1A/q/RUYWZiPOnqvYb0+kM7NpcREmJnuZt7n1YtT5Qqw1ciNTQvXuFfWKxiO7dFZw+U/UokVplQKGo7MtlZgYnTlaMNOz8S0XLFnJeflVJeMt0+g3IZNkfVT/4TAG12sClSA1dulXuhy7dFZw7XU0/qA0ozG7vh9MnK4+4xMfq6NY2nd5dM5g8QUlKctUjF6aAWm3g/AUNEf+6HiK6KThZXT9UeT2IOH6i+n5bs76Ep0ZaIhKZ/uqaKqntUmgTHnFRKpW4ula4UOzfv5+HH364/HP79u1JTEysUd01Ei4zZ86kf//+7Nmzh6ysrErTRDk5OTUypDqio6Px8PDA39+fp59+moSEhDuWV6lU5OfnV9qMhSq3FIPOgMKh8tu/wsGC0pz/vpnmXE4n/0YOfoNDK+pUlqAt0XBt2VlcO3rT9cvBrD+3BYA+jp2RieruzfJ01iI0+hJczZvfc5j+QqUGvQ5sHCvnPrJxlJGfVflGczZ7CRmll7E0s2XD1hXMfTqS15od5v2+p2jawZZHXvMuL5uZWMq+Fam4+Jkz8edm9BzlzsqPb3Bkw90Jw/omV6lDpwMHp8rTeg5OErIzq36wdOphxvLFBSTEatDrDRw/WMLeHcVkZVQuHxOlJiI0gW5BCXz6QTZzf3TBP9g03yxzcvTodODsXPmW4uwkJiNDX+UxPSMU/LioiBs3tOj1BvYfULFteykZt/RDQoKW35cW0aSJhBV/OPDsaEs+nJbH6jWmKV6UN/vB6V/94OQkJjOz6n7oFqHg10VFxMWW9cPhAyp2/asfWraW8el8WxYvc2DGbFuSEnU8NTybwsKq62xosv+5Hpz+dT04S8io5n/Rq6cZC38q5PrN62HfgVK2bislPaPq8tt2lJCXr+fJERZGt7/euI+nilxdXYmNjQXKFvecOXOGTp06lX9fUFCATFaz3Hk1eiouXLiQJUuWMHr06Bo1erd07NiRJUuW0LRpU1JTU5kxYwbdu3fn4sWLWFtX7ag5Z84cZsyYUad21ZS4LVHYBDhUcuQ16MuuPPfufgQ92RKAFIpITk/G09WTbk7t2Jt5rE7sKdZlcyFnOW2dXqS982vEFx1CZzC+D4UBHftSP2aY92LCA7qwdNsnRBWvIiOhhFWzY9nyXQKDxvmUlTWAX7gVj03yA8AnzIrk6CL2r0yjy6NVO0A3NiZ/5MDsKdmM6J2CSASevlIGP2HJn6uLKpXz9ZexbLs7hQV6/t5WzIzJWfywytVkxcu9MnOmDW+/m0f3npmIRODnK+HJkRasvGUqQa+Hli1kvD/FBoDm4TKuXtXw+9JiRjzRiB9Yt/C/GTZ88G4eD93sBx9fCY+NsGDdqop+iLjFQTUktEzI9OycwfYtpTzx5P3RD5/MtOWtd3LpHJF+83qQMmqkBctXFVVZ/o+VxfTpZYa7W934AgrUjoEDBzJlyhQ+++wzNm7ciIWFBd27V8wiXLhwgYCAgDvUUD01GnFRq9V06dKlRg3eCw8//DBPPPEELVq0YMCAAWzbto3c3Nw7zotNnTqVvLy88q2mQ1FVobAzQyQRocqpPFetyinGzOHONw9tiYak3TH4DQqttL+sTjE2fg7l+/ToWbF3LQAD3XsZyfqquaBcQaEmHWuZOy3sn7rr46zsZYglkJ9deTg7P1uDjdPtD9Z8TSIfzXkPgBG9J9OqRVva9HPi0bd82f5TEvqbAs7WWY57QOW+dPe3ICfFNH077OwlSCTc5oibk6XD0bnqG6q9o4R5i1zYf8WHTUc8WfO3B+aWYjx8Kr9HyOQivP1khDZXMO49e4JC5az6taDKOhsaBwcxEgm3jSpkZulxcan6NuPkKGHJzw5cv+bGyWMuHNzvjKWFCB/fin5wcZEQHFS5X4KCpCSb6DSJ/c1+yPpXP2Rl6W8bjfoHB0cJC3924PxVN/YedWHHPmcsLUV4+1b/XmljK8aviZT4OK1R7TcWjv9cD1n/uh4ydbhU879wcpSw9BdHEqI9OHfcjWMHXLC0FOHrc3s/JCZp2X9QxTNPNXLRdh+PuMyaNQupVEpERASLFi1i0aJFyOUVz4ZffvmF/v3716juGgmXl156ieXLl9eowdpgZ2dHcHDwHfMbKBQKbGxsKm3GQiyTYNfUmYxTSeX7DHoDGaeTcQi/82hA8t/X0Wt0eA8Ivq1O+1BnChJyK+3/ZdkSSkpL8LfyJswmyGjn8G90BhUnMr8HoKXD01hK7255pVQuxreZFVeO5pbv0+sNXDmaS0DrqkfD/lj1KwdO/YlYJKW3+0fIxJaIJDfnpm/+AQPb2JAWW1kYpseV4Ohpmr4dMrmIkOZyTh6u8E/R6w2cOlz6n/4oCjMRLm5SdFrYu72YiP53dkDW6w2o1aZ5p5LLRbRoLuPQoQqBqdcbOHRIRds2dx4hMjMT4e4uQauFrdtKGdC/ot86tJMRc6Pyw/n6DR1eXqb5li2Xi2jWXMbRw5X74eghFa3a3rkfFGYi3G72w85tpfTpV/31U1SkJzFei4uL6fZDyxYyDvzrejhwSEX7/+iHW6+HLdtKeLi/2W1llq8qxslJTP8+t3/XmLifQ/47OTlx4MCBcjeSRx99tNL3a9asYfr06TWqu0bCpbS0lPnz5xMREcGECROYNGlSpa2uKCws5Pr167i7u9dZG/9F0MiWxP15hfhtUeTHKTk77wC6Ug2+j5Qt0z41aw8XF94+tRO35Qoe3ZugsL39jxb0VCuS9sQQu/kyhUl5XF8bSdSO8+y6vh+AwR735n9yr9wo/JvU4rNIxWZ0vAdH3X7Pe3JwdRpHNqSTer2YPz66jrpER9fHykTcz+9eZf0XceXlW/ZyYMTQ58jKS8ZG7kkLyUQ2fRVPi14OiG8KmL5jPIg9X8DWHxLJiC/h+J8ZHFidRs+nGu43/y+eesmGTSsL2LK2kNhoDZ99kENJsYFBT5Slbpj+VhbffVYRJuDiWRV7txeTnKDh7IlS3ng2A70eRr9aEcn4u8+UnDleSkqilpgoddnnYyoeGma6KTVefcWSP1YUs3pNMdeiNbw3NZ/iEgNPjiwTZBPezGX2nAqfszNn1GzdVkJ8vJZjx9U89UwOegOMG1uR8uKVly05c0bDV98UEhurZf2GEpb9UcxzY0y3H55/2ZLVK4pZv6aYmGgN09/Pp6TEwPARZf3wzsRc5n1a0Q/nz6rZub2EhHgtJ4+reXF0WT+8fEs/fDornxNHVSQlajlzSs24l5WIJSIGDTXdB/fYl61YuryIlauLuBat4e0puRSXGBg1smyU5PU3cpg1J6+8/OkzarZsKyEuXsvR4ypGPJ2NXg8TXq/8IqTXG1ixqpgnn7BAKm2kTrkNzHfffYefnx9mZmZ07NiREydOVFt2yZIlt4UlMTO7++vO1tYWieR2ge3g4FBpBOZeqJGPy4ULF2jVqhUAFy9erPSdMb273377bQYPHoyvry8pKSlMnz4diUTCqFGjjNbGveLVNxBVbgmXF59ElVOMbZATXb8YVD5VVJxeCP/qg4J4JdkX0uj65aAq6/SM8Kf1Oz24uvQs5788hLWPHR1nD2C36hhDeYh29s3xMHMhpTSjzs7raMZXDPNdjL91L67mtSe5+OR/HtN+oDMFORo2fZ1AfqYa71BL3lwcXj5VlJOqQiSu6ItHxvqAKJHRY55i85rdtG7yEFOnv4mkxf7yMk1aWDP221A2zI9jy3cJOHmZMfJ9fzoNMd1AW/0GW6LM1vHT/FyyM3UEh8n56neX8qmi9BQt4lteEdQqAz/MyyU5UYO5hZguvcyZscAR61tik+Rk6ZgxKYusDB1W1mICQ+R8vdSFjt1Nd1n40CHmZGfrmTuvkMybAceWL3XA+WY/JCfrKvVDqcrAZ58XkpCgxcJCRJ/eZnzzlR22t/RDq1ZyfllszydzCvhyQQHe3hJmfmTD8MdMtx8eGWJOTo6er78o64fQMBk/L3XA6WY/pCbruOVvgarUwILPC0m82Q8Rvc34fIEdNrf0Q1qqjknjc1Hm6nFwENO2vZw1mxxxcDTNEReAR4dakJ2j59N5BWRk6ghvJmP1MqfyqaKkFB3iWzqiVGXgk7n5xCdosbQQ07e3gu+/dq50PQDsP6giKVnHUyMb+TRRA7Fq1SomTZrEDz/8QMeOHVmwYAEDBgzg6tWruLhUfZ+1sbHh6tWr5Z8behWXyGAwmOxg05NPPsmBAwfIzs7G2dmZbt26MXv27Hty6MnPz8fW1pbBu15EZtn4nBrfC3mVDg4t2ZV2kB9vrKhVXQ87Rd7x+47OE2huP4I8dSLr4segN2juWL42NLcfSUfn8ej0ajYnjiVbda3O2vo3Lc2M5/fUmPGWmG4wu/qkwGTvgPWPg9i0Y8PUBwUFepqEpJKXl2dUV4Nb+ee5FDD1EyT3MHrxb3SlpVyf8/492dqxY0fat2/Pt99+C4Ber8fb25sJEyYwZcqU28ovWbKEiRMnkpubW2M7jY1JX6UrV64kJSUFlUpFUlISK1eurLEXcmNlc/JuAHq6dKqzrNH/cCb7F4q12djKve/JUbcmRCpXEV94CIlYTh/3WcjFdXtuAgICAqaGsXxc/h0CRKWqLoaUmtOnT1dKiiwWi+nbty9Hjx6t1s7CwkJ8fX3x9vZm6NChlSLiNgQmLVwE4ErBda4VxCIXy3jErW5XGGn0RRzPLFPhrRxGYyPz+o8jasf+tNnkq1OwkXvQ020a1FFiSQEBAYH7GW9vb2xtbcu36kLpZ2VlodPpKgWGg7KYK2lpVQf6bNq0Kb/88gubNm1i2bJl6PV6unTpQlJSUpXl6wNBuDQCNib/BcDD7hGYS+rWGe96wW6Sik4gFSvo6vp2nbal1heyJ/V/aPUqfKw608bxuTptT0BAQMDkMMJS6MTExEphQKZOnWo08zp37syzzz5Lq1atiIiIYP369Tg7O/Pjjz8arY17RRAujYATOedJKk7DUmpBf9e6SwPwD4czvkCrV+Fp0ZZA6wF12la2KprDGfMAaOP4At6Wneu0PQEBAQGTwUhxXP4dAqS6jMtOTk5IJBLS0ytHIk9PT8fNze2uTJbJZLRu3fqOYUnqGkG4NAIMGNiQvBOAIR59kItrFib5binQpHAm+1cAOrmMx0xiV6ftRefv4HLuBgB6uU3DVuZTp+0JCAgIPIjI5XLatm3Lnj17yvfp9Xr27NlD585399Ko0+mIjIxs0LAkgnBpJBzMOkl6aRZ2chv6uXar8/YilSvJLo3GTGJHZ+c367y9Yxlfk1Z8HrnEin6ecwRnXQEBgfuehghAN2nSJBYtWsRvv/3GlStXGDt2LEVFRTz//PMAPPvss5WmmmbOnMmuXbu4ceMGZ86c4ZlnniE+Pp6XXnrJWN1wzwjCpZGgM+jLR12GevSr0+SLUJZf6ED6p+gNWgJs+uJrWbdTVHq07E79H4WadOzkPvRyn45IuDwFBATuZxog5P/IkSOZN28e06ZNo1WrVpw7d44dO3aUO+wmJCSQmppaXl6pVPLyyy8TGhrKwIEDyc/P58iRI4SFhdX0rGuN8GRoROzNOE6WSomjwo7ernWfKypbdY0LypUAdHWdjEJcNzEN/qFUl8tfKVPR6kvxtuxEB6exddqegICAwIPI+PHjiY+PR6VScfz4cTp27Fj+3b59+1iyZEn55y+//LK8bFpaGlu3bqV169YNYHUFgnBpRGgNWtbfHHUZ7jmgzkddAM5m/4pSFYeF1JEuLm/VeXvZqmj2p30CQHOHJ2lqO7jO2xQQEBBoCO7nXEV1iSBcGhl70o/cHHWxrxdfF51Bzf602eVTRk2setZ5m7GFezmVtRiAri6T8LBoW+dtCggICNQ7DTBVdD8gCJdGhtagZW3SdgAe8xqAQlz3aQyyVFGcz1kGlE0ZmUsc67zNczm/EZ2/E7FISh/3WdjJ/eq8TQEBAQEB00cQLo2QvRlHSS/Nwl5uy0D3nvXS5tns38gqvYaZxI4ebrfns6gLDqZ/RlrxeRQSawZ4fo5FPQgmAQEBgXpDGHGpEYJwaYRoDTpWJW4BYJhnfywldZ8pV4+WfWmz0OpVeFt2Iszusbpv06Dhr5T3yVMnYi1zo7/nXGRiISOsgIDA/YHg41Iz6t6700S4luWMpLjqaIKNkWuZ8Tzkmk6wjSvd7Yex4Mqe/zymo13tYqPkaLPYl/4Lfd3H0t7pda4URJGtSqhVnf+NnlXx03m6yRc4mQUT4TaHtQnT0aOteY0GIScSwBm1Q0ObYBKEybIb2gSTodiga2gTGpxig77+GqvtqMkDKlyEEZdGih4DX10uEyvP+HfCxcy6Xto9o9zMjcKTyMQKBnu+h0RUt1F8AXI1qaxLmI5aX4KfVRsGek5CSMgoICAg8GAiCJdGzL70a5zOjsdcKmN8SN1mjr6V7clfUqRV4mLmTy/Xl+ulzbTSaDYmfozOoCXMthe9XV+pl3YFBAQE6gzBx6VGCMKlkTPvUlnm6Ed9WhNs4/ofpY1DkU7JtuQvAGjjMJhg66710m5c0Rm2J88HoJ3jMLo4PVUv7QoICAjUBYKPS80QhEsj54IyiW1JFxGLRLzTrH+9tRtbdJpjWasBeMhjInay+km4dTl/L7vTFgLQzWU0bRyG1Eu7AgICAgKmgSBc7gMWXNmNWqeli0sAPV2D663dQxm/k1x8GTOJFUO93q8XfxeAMzmbOZSxFIC+bmNpbld/gk1AQEDAaAhTRTVCEC73AcnFufx2/SgA74YPQCaW1Eu7enRsTppDsTYPV/NA+ri9Vi/tAhzJWs7J7HUAPOT+JqE2PeutbQEBAQFjIEwV1QxBuNwn/BR9kMzSAnytHHnGv+N/H2AkCrRZbEmei8Ggp5X9QMJt+9Zb23vTF3MuZysikZhHPN+uN18bAQEBAYGGQxAu9wnFWjULbi6PHts0ot6WR0OZ0+zhzD8A6O8+ATezoHpre1fad0Tm7kIskjDYawpB1nWfNVtAQEDAKAhTRTVCEC73EZsSz3MuJxFLqaJeHXUBjmStIKbgGFKxnGHeH2Ihsa2nlg3sSPmKS7l7kIikDPGaKogXAQGBxoEgXGqEIFzuIwwY+PjCNnQGPQO9mtPBya9eW9+S/DnZqkRsZM4M9foAMfXja2NAz7aU+VzO24tEJGWo1/sEW9d95mwBAQEBgfpHEC73GVfyUlkVewqA/7V4pN4cdQHU+mI2JM5EpSvG27I5fd3G1lvbBvRsTZ7Hpdw9iEUShnhNERx2BQQETBqREbYHEUG43Id8E/U3WaWFBFg780Jg/Tqs5qiT2JL8WZmzrsMjtLGvvzgr/4y8/OPzMsjzHWGptICAgOkiTBXViAcmyaIxydl2guwNR9DmFqLwc8P95YcxD/astryusJSMP/ZQcCwKXUEJMhdbXF94COt2ZU6sBp2ezJX7yNsfiTa3EKm9NXa9W+I0ogci0b1r6nxNKXMv7mRuu+G8GtyD7ckXSSjKqfH53okjy+M58GssBVlq3JtaM/T9UGhxgn0Zv9DL9SV6u72CUp1MbNFpAA7+HsexVQnkppZiaS+neT9XHnorGJni9pGhvYtusGPBNbo+48uQqaF3ZY8BPdtTFqDTa2jl8AgPe7yFTGzGmZzNRj3vf7P293yW/ZhHTqaOwFA5k2c40qxV1Uk9tRoDv32fx7Z1hWSmafHxlzFuij2de1Zkvv7tu1z27Swm/roGhZmI5m0UjJvigG9A/cTKqSlbfs9m3aJslJlamoSa8dpHbjRtWXVGb63GwOqFmexZn0t2mhYvfznPvedKuwjrGtdpKvy+pIiffiwiM1NPaKiMj2Za06q1vMqyGo2Bhd8VsW5NCWnpOvz9pUyZak1Er4rrZ8H8Ar76sqjScf4BEvbsc67T86gtvy0p4scfKvph5qw798N33xaxdm0J6Wll/TD1fWt69qr8P0pL1THnkwL27lVRUmLAz0/KvPm2tGxp2v+NqqjtkmZhOXQj4NNPP0UkEjFx4sQGsyHv0EXSf9mF85MR+M9/FTM/V+JnLEObW1RleYNGR/xHS9Fk5OH17hMEfDce99cHI3OsuDlnrT+Mcscp3F55mIBvxuE6pi/ZG46Qs/VEje3cmhzJ4YwYFBIpM1oORlQHg4rnt6eyZW4UfV4P5I01XXBvas3Pr56iMFvFyex1XFDuujltMxVHhQ9nt6Sw48tr9B0byOQ/u/H4zHDO70hjx4Jrt9WdGJnH8TWJuAfXZHWUgV1p33LiZpyXvm5j6ew0qpZnWz1//VnEVx/n8NKbdvy21YOgMDkTn00nJ6vqTLs/zFOycXkBk2c4sGK3J48+bc2UVzO5elFVXubs8VKGj7Zm8QZ3vl7qhlYLbz6bRklxPWauvUcObMlj0SfpPPWGM1//6U+TUDM+HBNPblbVmbx//yKdHSuUvDbdnYW7Ann4KQdmv5bI9UslNa7TFNiyuYTZswp4c6IVW7Y5ERomZcxoJVnVXA9ffF7I8mXFfDTLhr/2OPH0Mxa8+rKSSxc1lcoFB0s5cdq5fFuz3rE+TqfGbN5cwqyZBUx8y4qt28v64Zlnqu+Hz+cW8seyYmbOtGH33048M9qCl19ScvGWfsjN1fPYo9lIZSJ+X2rPnr1OfDjNGlvbB3XS5MGk0QiXkydP8uOPP9KiRYsGtSN70zHs+rfBrk9rFN7OuI8dhFghI3fP2SrLK/ecRVdQgvfUkViE+iB3tcMy3A+zJm7lZUquJmLdoSnW7YKRu9ph0yUMy1YBlEYn18rWGee3UKxV08G5CY/7tqlVXVVx8Lc4OjzuTftHvXANtOLR6c2QmUk4ub7M7l2p35BYFIlCYskTPrMoipPj29qO1oM8cPC0ILirE60GupMUmVepXlWRlpXvnWf4jGaY29Z8UHBf+uLyCLvdXZ6lt+ur1MWs8IrFeQx90ppBI6xpEiTnvdmOmJmL2LK6oMryOzYUMWacLV16WeDpI2P4aBs69zJn+eL88jILfndj0BPW+AfLCQqT8+E8J9KSdURFqo1uv7HY8HM2D420p98T9vgEmTH+Y3fMzMXsWqOssvzejXmMGOtE+17WuPvIeeQZB9r1tGL94uwa12kKLF5UzMhRFjwx0oKgYCmz59hgbiZizaqSKstvWFfC6+Mt6dVbgY+vlGeetaBXbwWLfqr8MiSRgrOLpHxzcDDt2/fin4oZNcqCESMtCA6WMufTsn5YtbLqfli/voTxEyzp3UeBr6+U0c9a0Lu3gkU/VvTDwu+LcPeQ8MV8W1q1luPjI6VHhAI/v0Y6eSBMFdUI077yb1JYWMjTTz/NokWLsLe3bzA7DBodpddTsGzhX75PJBZh2dKf4qtJVR5TeOIqFiFepP64jatj5nH9je/JXHMQg67izdm8qTdFF2JRJZfdsEtj0yi+koBVm8Ba2ZtcnMtXV8piu7zdrD/WUuMNK2vVepIv5xPUueKtTywWEdjJkYTzuQDo0bIhadbNlUYufD19KXkJehIvlH2fnVhM1MFMmvaobNfGjy8T0sOZoM5OtbbzSNby8txG7RyHMcjzHUQYb0hZozZw9aKa9l3NyveJxSLadzUj8oyqymPUagNyRWUBpTATcf5kabXtFBaUXS82dqb5l9Wo9cRcLKFVV8vyfWKxiFZdLYk6W/WDSqM2IFNUPh+5mZjLp4prXGdDo1YbuBipoVu3iukQsVhE1+5yzpzWVHuMwuz26+HUycoiNS5WR8e2GfTomsnECbkkJ1c9cmEKqNUGIiM1dOteuR+6dZdz5kw1/aAyoPjX/8LMTMTJW/rhr79KadFCxmuvKmndMoOHB2Sx/I/iujmJ+kIQLfeMad4F/8W4ceN45JFH6Nv3v6OyqlQq8vPzK23GQltQDHoDUjvLSvultpZolYVVHqNOV5J/5DIigwGfD5/CaUQPcjYfJWvNgfIyTsO7YdM9nOvjv+Xy8FncmPQjjoM7YhtR+9Gl5TdOcDY7ASuZggEeE2pd3z8U56rR6wxYOVaer7Z2VFCQVfHALtUVsDZhGkVaJX6uIezct5lFz59masudzH3oAAHtHej9SkB5+XPbUkm5ks9Dbxkv59KZnM1sSZqLzqAlzLYXTV1+Riyy/O8D74JcpQ6dDhycKvvo2DtLyM6s+sHSqYc5KxbnkxCrQa83cPxgCft2FFdbXq83sGBmDi3aKQhoWrV/QEOTr9Sh14GdU+U3XzsnKcrMqqd12nS3YuMv2STHqtDrDZw9WMjRnfnk3CxfkzobGmWOHp0OnJwr31qdnCRkZlY9zdcjQsHPi4qJjdWi1xs4eEDFzu2lZGZUlG/VWs7n821ZssyeWbNtSEzUMWJ4NoWFpjl1mHOnfsio2uaICAWLFhUTe6OsHw4cULF9eykZt5RPTNCxbGkxTZpIWfqHPc+MtmD6tHzWrDFNIStQN5i8cFm5ciVnzpxhzpw5d1V+zpw52Nralm/e3t51bOF/YDDw+ptvcH7jblq1aY1tt3CcHu+Ocufp8iL5hy+Rtz8Sz0nD8f/iFTzeGEb2pqPk/n2u1s3rMfDhuc2odFr8rdo3yCqbPE0a6xI+Qq0tpU1wd3YcW8Oba7oy+qvWXNmfye6FMQDkppbw56dXePKzllU669aGy/l7WZcwHbW+BFvz7oS5rkQmaRjHxremO+DtJ+XJPsl0D4rni+nZDHrCCnE1jtiff5jD9atqPv7GtB0x75VXp7nh4SfntX4xDG16mYUfpdL3cTvED5i7wrQZNvj5SejbM4tg/3Smf5jP4yMsuPVy6NlLwSODzAgNlRHRU8Gvv9lTkG9g65bqR+kaGx/NtKFJEwm9emYR0CSdaf/LZ8TIyv2g10N4uIz3plgTHi7j6WcsGPWUBX8sbZyjLkKuopph0sIlMTGRN998kz/++AMzM7P/PgCYOnUqeXl55VtiYqLR7JFaW4BYdJsjrjavCKm9VdXH2FvTq29vvC0deC6wLKKr3MsJrbIQg6bsDTt9yV84De+KbfdwzPxcsevVEofBnchad8godscWZvFN1N8A9HF9FVuZa63rtLCTI5aIKMyuPJxdkK3C2un21TRppdd4bfIYtDotPVsOZVT3iYT3deWhicHsW3wDvd5A8uV8CrPVfP3EEaa22MnUFju5cVLJkT/imdpiJ3pd7f6lcUVnWBk3BY0uC0tFOM3cNmAuq116Ajt7CRIJtzniKjN1ODpXLb7sHSXMXeTK3ss+bDjsxao9nphbiPDwuX2eft60bA7/Xcz3K91wcTfdeXwbewliCbc5zeZmabF3rtpuW0cpH/7ow7pLofx6MJgfdwdiZiHGzUde4zobGnsHMRIJZP1rdCUrS4ezc9W3W0dHMT/9bM/lq64cOurMnn1OWFqK8PGt/hxtbMU0aSIhPs40p4sc7tQPLtX3w+Kf7Ym65srRY87s3e+EhUXlfnBxERMUVLlfgoKkJj1tdkcEH5caYdLC5fTp02RkZNCmTRukUilSqZT9+/fz9ddfI5VK0eluv1gVCgU2NjaVNmMhkkkwC/Cg6MKN8n0GvYGiCzewaOpV5THmId58Pm8eAA97huNmZoM6JRupvRUiWdmDzaDWwL/etkViERiMd1X+FnOUxKJI5BILBnpMRlTLn14qF+MZZkPMsQpHSr3eQMzxbHxa2lV5zK7dO5j763sAtHccTkfHJxD/Y4YBAjs58tbGrry5rkv55tXMhlaDPHhzXRfEktq/iqeVXuNS2nBKNDdQSD0Jc1uLjVnNUwTI5CKahss5eaTizVevN3DySCnN21S9HPofFGZiXNyk6LSwb0cxPfpVLPE1GAzMm5bN/p3FfLvcDQ9v017qKZOLCQw359yRClGv1xs4d6SIkNbmdzxWrhDj5CZDp4UjOwvo1Ne61nU2FHK5iPDmMg4frhD0er2BI4fUtGl7599QYSbCzV2CVgs7tpXSr1/1109RkZ74+OpFQEMjl4to3lzG4UOV++HwITVt2ty5H8xu6Yft20rp37+iH9q1k3P9RmUhe+OGFi+v+gu0KdDwmOZVf5M+ffoQGRnJuXPnyrd27drx9NNPc+7cOSSS+r9YHYd2IvevM+T+fQ5VYiapP2xBX6rBrk8rAJIXbCB96e7y8g4PtePk4aMcvHAKmVjCk1YhZK09hP3A9uVlrNoFk7X2IAWnrqFOzyX/2BWyNx/DumOI0ezWY2BbynzUN6PatnccXus6u4/x48TaJE5vTCb9eiEbZl5CU6Kj3aNlMW1WTb3A9i+vlpcP7enMzIlfsWxvmZCLcH0BD2UEoT1dEEtEKCyluAVZV9rkFhIsbGW4BRkvaaRKm8DltOHkl55EKrahqcsSnK1G1ri+US/ZsnlFAVvXFhIbo2buB9mUFht45Ikym2dMyuT7zypWwVw8q2LvjiKSEzScO1HKxDHp6PXwzKsVIvvzD3PYsaGQGV85Y2kpIjtDS3aGltJS0/RpAHj0RUd2rlSye10uCTEqvvswldJiPf0eL3Oo/2JyEkvmppeXjzpXzOEd+aQmqLl4oohpz8Wj1xsY/qrTXddpirz0sgUrVxSzbk0JMdFa/vd+PsUlBh4fUSa2Jk3MZe6nFSvOzp5Vs2N7KQnxWk4cV/PcaCV6A7w6tsIPa/asfI4dVZOUqOX0KTWvvpyLRAJDhpqmgAN46RULVqwoZs2aEqKjtbw/tawfRowss3nim7l8OueWfjijZvu2UuLjtRw/rmb0M2X98Not/fDSy5acPaPh228KiYvVsnFDCcv/KOHZMaYd16c6hKmimmGa4603sba2Jjw8vNI+S0tLHB0db9tfX9h2C0eXV0zmin1olYUomrjhM/1ppHZlU0WazLxKoycyZ1t8pj/DvK8X0H3xMp5qHcEXT/ZD3L95eRm3Vx4m84+9pP247ea0kzX2A9riPCLCqLbnadLYk/4jD3u8RXeX0cQXnSW9NKbG9bV82J2iHDW7vo2mIEuFR4gNL/zYrnyqKDe1pNJAUu9XA0AkYuKY6SSOUzP1vfeZ+/ECNt3wIFq9v7and09o9blEpT+Dv9NcnCyH4u/4KeayIBKUc4B7G3buN9iS3Bwdi75Ukp2pIyhUzpe/uZZPFaUlayv1g1pl4Md5uaQkaDC3FNOllznTv3TC2rZCiK9fVnZDf/3JtEpt/e9zRwY9UX+Zv++FHoNsycvRsuzLDJRZWvxDzZi5xLd8WiczRVM2kngTjcrA0vkZpCWoMbcU066nFZPne2JlI7nrOk2RQUPMyc7RM/+LArIy9YSGyViy1B7nm9dDSrKukh+PqhS++LyAhAQdlhYievZWMH+BLTa2Fe+Vaal63hyfS26uHgcHMe3ay1m/yRFHR9N99xwyxJycbD3z5xWQmaknLEzG0n/3wy3mq1Tw+ecFJCbosLAQ0au3ggVf2WJ7Sz+0bCXjp8V2fDankK8WFOLtLWH6R9Y8+pjpCrg7UtvpngdUuIgMBiPOR9QDPXv2pFWrVixYsOCuyufn52Nra0vT5VOQWNx56L6uWRXxCuF2HvxwdT/fRO2t9/bHBB0HYKjXBzS16UaOKonfbkxAY2gYB78+bmNp6zAEvUHHn8mfcTX/YL20G2EZVemzp+0EvOwmAZBbso+YzDfQGaqOwXI/ka03zsqqxk6YLPu/Cz0gGGE2ttFTUKCnWWgGeXl5RnU1uJV/nkvNX/wEifzu/DerQqcuJfLn9+vUVlPEdOV6Nezbt++uRYupseha2YP5Kf+OWEkbTkTtTPmKfE0mDgov+rmPazA79qT9wHnl9pt5hd4l0Lpzg9iRnPcN0Znj0OlLsDPvSTO3dZhJmzSILQICAg8OwlRRzWh0wqUxsyc1iuj8DGxkZoz279RgdpTqC9mSPBe9QUe4XV/Cbfs1kCUGdqV+y6XcPUhEUoZ6TSXQqmH6Jad4G5fTR6DWpmIuD6KZ+0bszHs1iC0CAgIPCMKqohohCJd6xICBH66W+XI8G9gZa2nNhwhrS1LxRQ5lLgOgn/vrOCl8G8SOfzI6X87bi0QkY6j3BwRZ13yVT20oVl/kYuqQcqfdYOfFeNiO58FNHi8gIFCnNJBw+e677/Dz88PMzIyOHTty4sTd5cVbuXIlIpGIYcOG1axhIyEIl3pmZ8rlilGXgIYbdQE4lrWK2MLTyMRmDPV6H7m4YRzcDOjZmjzvpniRMtTrfZpad2sQWzT6LKLSnya9YCkikRhvu8kEO/+ERPzgzB8LCAjcv6xatYpJkyYxffp0zpw5Q8uWLRkwYAAZGRl3PC4uLo63336b7t2715Ol1SMIl3rGgIHvr+4D4NmATtjKGtIb3sCW5M8p0GThqPDhIY+3GtCSMvFyMXc3YpGEwV5TCLNtmKkaAxricqZxPesd9AYV9hZ9CXf7Ewt5swaxR0BA4P6kIXxc5s+fz8svv8zzzz9PWFgYP/zwAxYWFvzyyy/VHqPT6Xj66aeZMWMG/v7+1ZarLwTh0gD8lXKFK7mpWMvMeCmoYUYW/qFEl8empNnoDBpCbLrTwfGJBrPFgJ7tKV9yQbkTsUjCIx5v08r+kQazJ6toLZfSHqdUm4iZzIdmbutwthrVYPYICAjcZxhpqujf+flUquoSvKo5ffp0pbx/YrGYvn37cvTo0WrNnDlzJi4uLrz44ou1Ol1jIQiXBsCAgQU3szY/5d8BF7OGjcuRUhLFnrQfAOjhMgZfy9YNZosBPTtSv+J0zmZEIjH93cfTsQHFVJnfyyCUxXsQixT4O35CgNNXSERVp3gQEBAQqG+8vb0r5eirLrdfVlYWOp0OV9fKaV9cXV1JS0ur8phDhw7x888/s2jRIqPbXVME4dJAHMqI4VRWPGYSGeOa9mxoczin3FY+0jHEcwq2MrcGtMbAnrSFHMlcAZRF2I1weaHBrNHp87mW+TLxyk8wGLQ4WQ4h3H0zFvKGCYIoICBwfyAyGGq9QVlev1tz9E2dOtUo9hUUFDB69GgWLVqEk5PTfx9QTwjCpQH58nJZaoBHfVsTaO3SwNbAX2nfkVpyFXOpDcO9P0Iubtgw2ocyf2dv+mIAOjo9wUCPyYhpqJwkBtLyF3E5fSQqbTJmsiY0c1uHu82rCKuOBAQEaoSRpor+nZ9Poag6TpiTkxMSiYT09PRK+9PT03Fzu/1l9fr168TFxTF48ODyfIG///47mzdvRiqVcv369Vp3QU0QhEsDck6ZyM7kS0hEYt5u1lCxVCrQGTRsSJxFgSYLJzNfBntOqXUyxtpyMnsd25K/KI8585jPR8hEDbeMvFB1hsjUR8gp2o5YJMfHfgohLr8jk9Q+47aAgIBAXSKXy2nbti179uwp36fX69mzZw+dO98eADQkJOS2fIFDhgyhV69enDt3Dm9v7/o0vxxBuDQwC67sQaPX0d01iK7OAQ1tDoXabDYkzkSjLyXAuj29XF9uaJO4mLeb9YkzUOtL8bdqxyi/z7CUNFySPZ0+j+is17mRPQWdvhhb8240d9+GvcVDDWaTgIBA46MhVhVNmjSJRYsW8dtvv3HlyhXGjh1LUVERzz//PADPPvts+VSTmZkZ4eHhlTY7O7vyPIJyudyY3XHXCMKlgUkoymH5jbLgP++GD0AqavifJK00mq3JXwDQznEYbeyHNLBFcKPwJCvj3qNYm4ebeTDPNPmywYLm/UNm4Soupg6mSBWJTOJAsPNC/B2/QCIyzSSIAgICJkYDBKAbOXIk8+bNY9q0abRq1Ypz586xY8eOcofdhIQEUlNTa3lidUvDPyUFWHh1PzmqIgJtXBjZpH1DmwPAtYJD7E8vW9ffx+3VBotmeytppddYFvsWOaokbOWuPO03Hz/LNg1qU6n2BpfShpOc9x0Ggw5nq8do7rEdG7OG7y8BAQGBqhg/fjzx8fGoVCqOHz9Ox44dy7/bt28fS5YsqfbYJUuWsHHjxro38g6Ybm54I1OcZ4ZY3XC+EXeiCPj89EHmdHmIccG9WHc5huzSYqO3c77A6x7LH0VLAH1cI3jE8z0+uTKf6MKGcca6lVN5nzMx+HXCbJoy3Gcmv8etZHfGvrs+PlllZ3yjcg7hZ5nOM76v46zwJNT1Dw5m7mJzynLU+qpjKjQ0LS0TG9oEk0CGrqFNMBlydMIy/+ISHXDnKLLGoraJEoUkiwINyqqYC1zMTsNWYcaUtj0b2pxylsQt54zyPHKxnLebTsDT3L2hTaJIV8ynUV9yIPMIEpGE55s8zXN+TyERNdSKozLiiqKZGzWFQ5l/AdDduT9TQuYSbCVE3BUQEKgCIclijRCEi4mgNxiYdrzsgfdEYHM6uN7b6EhdoUfPtzE/EVN4AyupJe81nYiT3KGhzUJn0PHjjV9ZmbAOvUFPP9deTAl5C2tpw74xqvUq1iT9wncxs8lWZeKocGFc0P8Y5fMK5hLLBrVNQEDAtGgI59z7AUG4mBBnMlNYfvUcAB93GoBMbBo/j0qv5vOrX5NckoKjwoEpIZOwkZqGA+qfqTuYf+07SnQlhNk0ZVb4B/haNMwSvVu5VnCRz6Le5UDmTgA6OfZiaujntLTt0MCWCQgICDRuTOPJKFDOZ2f2k1VSRLCdEy83M52HXKG2iE+jFpCpysLd3JUpIW9hKWnYAHX/cDb3AtMvzSGtNB1nhRMfNZtCN6fbYxLUNyp9KeuSlrDg2nTSSpOxldnzgv9bvOT/NvYyx4Y2T0BAoKERpopqhCBcTIw8dSmzT+0F4M2WXWli03DxSv5NjlrJnCtfkqvOw9fSm/dCJmIuacjs1hUkl6Ty4cVPOKu8gFwsZ2zACzzv9zRSUcP7n8cWXePzqKnsTFuPzqCluW1bpobOo5fLI4iFv6CAwAONME107wh3TRNkw41LHEiORSGR8mmXh00qoHy6KoM5UfMp0BQQYNWEd5u+gZm46vDS9U2xrpgvrn3LuqTN6A16+rr2ZFrYezgrGj7HhtagYVvqGuZGTeV6YRQKiRnDPJ/h7ZBPaGIZ3NDmCQgICDQaBOFiokw9uoNCjYqOrt6MCWnb0OZUIqkkhTlRX1KkLSLYOpB3Q940GfFiwMD65D+Zd/UbCjSFBFj5MTv8f7S1b9XQpgGQVprEN9EzWRH/I0XaAjzNfZkYPIOnfF7DWmrb0OYJCAjUJwZD7bcHEEG4mCjJRfl8eno/AO+1jTCpKSOA+OJEPrkynyJtEU2tg0xq2gjgfN5FPrg4i+iC61hKLZkUPI5nfZ9EZgJTRwYMHMvZx+zLkzma9TcAHR0j+CBsPj2dBzb4sm4BAYH6QVhVVDME4WLC/HH1LIdS4jCXyvii6yNIRKY0aQRxxQl8cmU+hTdHXqaakMMuQLY6h1lXPmdLStnKngFufZgZ/gGuZp4NbFkZRboCViYuYv7VD0ksvoG5xIJHvUbzXshnhFi3bGjzBAQEBEwSQbiYMAbgncPbyFeraOPiyavhHf/zmPqmTLx8Ue7z8kHo2yazVBrK4r2sSFzL3KivyNPk42PhxdtNP6GrY9+GNq2c+OIYvrj6P1Yk/ESBJg9XM0/GBk7hFf93cFF4NLR5AgICdYWwqqhGCMLFxEktLuCjm4Hp3mrVjZZODR+59t/EFyfy8ZV55auNPgx7F0cTCFJ3K+fzLjI1cgYXci8hF8sZ4fMir/i/YzJ+JQYMHMvey+wrk9ibsRWdQUsz2zZMCZ3LcK/nsJSYjhgUEBAwDiJ97bcHEUG4NALW37jEltgryMQSvu4xGCtZw6QSvxNJJSnMvDyXLFU2HuZuTA97zyTSA9xKniafuVe/YkPS72j06pvC4HNa2JpGYkuAEl0xG5OXMefKO0TmnUYiktDDeQAfNltAX9ehyESm99sLCAgI1CcN76nYCCnYfZS87fvR5RUi93HH4ZkhKPyrj9aqLypBuW4nJacvoSsqRupoj8NTgzBvGQJA6dUb5G87gDo+GV1uAc4TRmPRtnJ+m/eP7qSVswe+1vZ83Kk/Ew9uqdNzvFuurb3MlWUXKMkpwT7QgfQPU5k7dDae5u5MC3uPeVe/KU/MuHvsFjLOpt1Wh0cXb3rOHwDA8k6Lq2yn1fgOhD3Totb2GjCwL3M7VwsiecZ3HF4WfrzoP4kTOQdYn/Q7JbqiGtV7flU0Z36/QnF2KU7BdkS82xa38OqDzJ394yqRa2MoSCvG3E5OYB9vukxoiVRR5pibqUpjwpxXsYxxZtYHs2nTug2DPZ6ku1M/tqWu5UTOfgwmOE789x+p7Pg5mbxMNd4hljz1oT/+LaofLfprSQp7V6SSk6rGyl5KuwGODJ/sh0xR9k71bu9TZCffnqSy11NuPDM9oM7Oo7Zs/l3JmkXZ5GTq8A9VMO4jV0JaVu28rtUYWLkwm7/W55GVpsXbX86L7znTPsKqxnWaCjuXZfDn4jTyMjX4hFjw/DRvAltWn5Zj26/p/LUig6wUNdb2Ujo+ZM+ot72Q37we9DoDa75O4dDmbHIzNdi7yIl4zJHHxrkjMjEfwLuittM9pncLqBdMesRl4cKFtGjRAhsbG2xsbOjcuTPbt29vUJuKjp8nZ+UW7Ib1xX3GBOTe7mTM+xldfmGV5Q1aLenzfkaXpcRp/NN4zpmM4/OPIbG3qSij0iDzccdh9NBq283XqHjjwJ9o9XqG+TfjicDmRj+3eyX+r+uc+eoY4S+14eHfhmEX5MCaV/7g/cMziC64jpXUkqkhb9HGrszRtPunfXl061Pl28DlwxFJRPj0blJe563fP7r1KTr+rweIwKeXn1FtTy1NYv61//FX2kb0Bj0dHHowNfRzmtm0uee6ru1M4OD8s3R8JZwnlw/AKciOTeP2UZxTWmX5q9vjOPLNeTq+0ozR6x6mz7QORO9K4Mi3F26rUx2ew5c3PuS9BW8RHx+HndyRp3xfZUrIXJMaKQI4sS2TVXNiGTLOm+kbWuEdYsmXL14iP1tdZfljf2ay9os4hoz34eNtrXludiAntmWxbn58eZkP17Zk/qH25dvkX8sEfbuHGj42T3Xs25LPj59k8MwbTnz/px/+oQreH5OIMktbZfklX2SydUUu46a7snhXEx55yo4ZryUTc6m0xnWaAke25rD0k0QeH+/BnI1h+IaaM+eFaPKyNVWWP7Q5mxXzkhg+3oMvdoTz6id+HNumZOUXyeVlNv2Uxu4VmTw/zYcvdoTz1Due/Lk4jR2/1082Z2MjrCqqGSYtXLy8vPj00085ffo0p06donfv3gwdOpRLly41mE35Ow9hHdEBq+7tkHu64jBmGCK5nMIDp6osX3jgFPrCYpzfeBazID+kzg6Yhfgj96lwujRv0RT74QOwaBt+x7bPZCYz/9xBAGZ27EeIvbPxTqwGRK24SMDQEAIGBWPbxJ4O73VDaibl/IYzzImaz1nlBRQSBW8Fv04/114obM0wd7Qo39JOJCNRSPHpUyFcbv3e3NGC5APxuLb1wMrT5g6W1AydQceW1FUsuDad9Jsh+V8JeIfRvuOwvAcH47N/RBH+aABhQ/1x9Lel9wftkZpJubzpRpXlU89n497SiaYP+2HjYYVvZ3eCH/Il/VJ2lXU6+NtQ0j2VNt1a882GLyjSFuBm7sWL/pOYFDyLptYNL2IBdv2aQo8RrnQb7opHoAWjZwQgN5NwaF3VD5XrZ/MJbGNDp8HOOHmZEd7Nno6DnIm9UFBextpBhq2zvHw7vzcHFx8zmnYw/vVgLNb9nMPDI20Z8IQdvkEK3vzYDYW5mJ1r8qosv3tjPqPGOtKhlxXuPnIGP2NPh56WrF2cU+M6TYGtv6TTe6QTPR93wivInJdm+iI3F7NvbVaV5a+dLSS4rRXdhjji4qWgZXdbugxy4PqFilHQa2cKadvHjja97HDxUtDpYQdadLWpVKZRIcRxqREmLVwGDx7MwIEDCQoKIjg4mNmzZ2NlZcWxY8caxB6DVos6LhmzsMDyfSKxGLNmgaiux1d5TPG5KygCfchZuonENz4m5YMvyftzLwZ9zbyqFkYeY1/SDcylMn7o+Sg2soYJ/KbT6Mi5moVb+woBJhKLcGvvSVZkOiq9mvnXvmNvxgHEIjHP+T3FaN+RiG6JA3z9z6v49vNHai6rso2S7GKSDycQMLhuI8vGF8fwedRU9qT/id6gp51DN94P/YJ29t3+81idRkfGFSXeHV3L94nEIrw7upJ6IbvKY9xbOpJxRUnaxbLv85IKiTuUil9X9zvW6dLKji+/+pKZl95kZ9p6VLpSfC0DeT3wfSYETSPAMqQ23VArtGo98ZcKCe1iV75PLBYR1sWW62cLqjwmoLUN8ZcKuXFTqGQmlhK5X0mLiKpjFmnVeo5tzqTbcBeTnRbQqA1EXyylddeKTOBisYjWXS24crakmmP0yBSVz0duJubSqeIa19nQaNV6Yi8V0bxLhcAUi0U072LDtbNVi4zg1lbEXiwm5nzZ6HV6goqz+/JoFVHhQB/cxoqLR/NJiS0bjYq/UszV04W06mEaTvYC9UOj8XHR6XSsWbOGoqIiOneuPoGeSqVCpaqYE8/PzzeeDQXFoNcjsa08RyuxsUKTmlnlMdqMHEqzlFh2boXLpOfQpmeT8/smDDoddsPufUmuAZh46E+2DHoOPxt7vuj2CK/sXV/vU52q3FIMOgNmDpXn2M3szciPywVAj57FsUtJL83kSZ/hPOTWFxeFM9/FLCIpMpG860o6vt+92jZit0Ujs5Tj3dOvDs+kDI1Bw+aU5ZzLPcaTPq/gae7LaL9xtHPoxprEX8hWVz1qUJKrxqAzYOFgVmm/hYMZyriqr72mD/tRkqtm7Qt7AAN6rYHmjwfS/sVmd1Vnqb6EbalrOJC5k76uQ+jm1I9Aq1DeCJ7O1YJIdqSu40bR1dp3yj1QoNSg14GNY2URauMoJ/VG1aMCnQY7U6jU8OlTkWAAndZAzyfdeOS1qv3Fzu7OobhAS5dHXYxuv7HIV2rR68DeqfKt1d5JSuL14iqPadfdivW/5NCigwXuvjLOHi7m8M4C/nm3qUmdDc0/Nts6Vb4ebB2lJF+vegq12xBHCpRapo+6Wn499B3lzKNjK5z8h77qRkmhjskDLiKWiNDrDIyc5Em3oY0zaWltp3uEqSITJTIyEisrKxQKBa+99hobNmwgLCys2vJz5szB1ta2fPP2rt5ptl4wGJDYWOL4/GMo/Lyw7NgS28G9KNx7vMZV5qpKeW3vBlQ6Lf18gnijZVcjGmx8/kzdwVfRP6DWq2lj35KPmk1Fe7IEuwB7nJpV/xC6seUafv0DkCjqT18nFN9gXtQHbElZiUavJtSmJVNCP6ef6zAkRoq6m3QqnVO/XKbn1LY8+ccAHpnXjdhDKZxYdPGe6inU5rMxeRmzLk/kYOYutHotTa2b82bwR4wL/B8BVqFGsbeuiDqex9Yfk3hmuj/T1rdk3LchXNifw5/fJVZZ/uC6dJr3sMfe1TTSSxiLsdNc8PCT82K/GwxsepXvPkqn/+O2mOigUp1x6Xg+G39I5cWPfJizMZRJ3wVwdl8e675NKS9zbJuSQ5uzmTDfnzkbQxk7twlbfk5j//qqp59MHiGOS40weeHStGlTzp07x/Hjxxk7dixjxozh8uXL1ZafOnUqeXl55VtiYtU3wZogsbYAsRhdXmVHXF1+4W2jMOXH2Fkjc3NGJK7oapmHC7q8AgzamjvWXcxJ53/HdgFl8V0G+ATVuK6aoLAzQyQRUZpTeai6VFmKmePtKx1O5Jxm1uXPUapz8bbwZM3slTw5+Zlq6884l0Z+fB4BQ5sa3fb/Qo+Ov9I38VnUe1wtiEQuljPIYyTvhnxKkFXl1V7mdnJEEtFtjrjFOaVYVNEPAMe+jyRkoB/hjwbgFGRHQG8vuoxrwalfr2DQG+65zjyNkrVJv/Lx5bc4nLUbrV5LsHUz3giaxoSgafXiA2NtL0Msgfx/OV7mZ6uxdap6CffGrxLoPMSZHk+44dXUkjb9HHnsLV+2/ZSEXl/5jpyVXMrlI7l0f9y1yrpMBRt7KWIJtznNKrO0ODhXLXztHKXM+NGLzZeCWXYwgJ93N8HcQoy7j6zGdTY0/9icl1X5esjL1mLnXPXU8OoFKXQf6kjvEc74NLWgQ397npzsyaYf08qvh2WfJTL0VXe6DHLAp6kFPYY5MvA5Vzb9ePtqRYH7F5MXLnK5nMDAQNq2bcucOXNo2bIlX331VbXlFQpF+SqkfzZjIZJKkft5Uno5pnyfQa+n9HIMigDfqu0J8kWTnlXJp0WTlonEzhqRtHY3nTUxkfx6pcwp+Mtugwizr78hdIlMgkNTJ9JPVrwNGfQG0k4m49S86ofLjaI4Prw4m0uJl3FwcODb1xbwsFu/Kste33wVhxAn7IMabgg4U5XG9zGf8HvcNxRo8nAz82R80P8Y4zcBW1lZgD2JTIJLqD2JJ9LLjzPoDSSeSMe9RdW2a0p1iP71zxNJyl6vDQZDjeoEUGqyWJ34Mx9fnsihzL/Q6jUEWoXyeuD7TAqeRQvbdpV8jIyJVC7Gt5kVV45WTAvp9QauHM0joHXVjs7qUh0icWV7xDf74d9vkofXZ2DjKKNFT9MKbPhvZHIRQeFmnDtS4ceh1xs4d6SY0NZ3XrosV4hxcpOh08KhnQV07mtd6zobCqlcTJNmllw8WuHfpNcbuHgkn+DWllUeoy7R3349/PM/uXk9qEv1t41EiSWi24RuY0FYVVQzTF64/Bu9Xl/Jh6W+sRnQjYL9Jyk8dBpNSgY5v2/EoFJj1b0sg3PWT6tQrtlRXt66V6eyOC5//IkmLZPic1HkbdmHde8KPx19qQp1fArq+DIRoM3KQR2fgjY79z/t+fjk3xxIjsVCJmdxn+G4WlQfI8HYhIwKJ2bzVW5svUZerJKTcw+jLdXi/0jZ6M+RGfs49/3JSscoNbk8NPxhVu9ci0Qk5hnfEUwIfKVSdmlNkZqEv2MJGFL/oy1VcVp5hNlXJnMgcyd6g5429l34IPQL+rkORSqS0frpEC5tuM6VP2PJuZHH3k9OoS3REjbEH4BdHx7j8Dfny+tr0sODC2tjuLYznrzkQhKOpXHs+0iadPdALCn7S/5XnXdCqclmTdIvzLz8JnsztqLWq/C1DORF/8lMCf2cjg4RdZLIsf/zHhxYncbhDRmkXC9m2UfXUZXo6PpYmaBe/O411n0RV16+ZS8H9q1I4/jWTDITS7l0OJeNXyXQspd9hYCh7IF3aH0GXYa5IJGa/vzJ8Bcd2LYyj13r8kiIUfH1h+mUFusZ8HiZA+ncySn8PLfCZ+rKuRIO7SggNUFN5Ili3n8uEb0eRrzqcNd1miKPvODK36sy2b8+i+SYEn6eFo+qRE/E8LKl7N+9E8uKeUnl5dv0tmX38gyObMkhI1HFhUN5rF6QQpvetuXXQ5tedmxcmMqZvblkJKk4sUvJ1l/Sad/PtJLQ3jXCqqIaYZrjjDeZOnUqDz/8MD4+PhQUFLB8+XL27dvHzp07G8wmy44t0RUUkbvhL3R5Bch9PHCZ/AIS27K3I212Lre+Ekgd7XB9+wVylm+h4H9fIbW3waZfV2weiSgvo45NIv2zReWflSu2lrXVtQ1OL4+4oz06g4Hx+zexbuAzBNk58XPv4YzYsZxibdWxEoyJb78ASnNLubDoDKXZxdgHOdLry4cwdyxLtFicVnjb6o/8+FySTibww9WfKWmq4WmfJ+jk2B4fCy8WRP9AckkK8X/dAIMB3/6mE2CsRFfEuqQlHMvex+Nez+Fv1ZRBHk/S2bE3m2z/oERZyrGFkRRll+Lc1I6h3/bEwrHMubYgrajSCEuHl5ohEok4+l0khZklmNsraNLdgy7jKwLsBQ/wuWOdd0OeRsnG5GXsTt9MhPNDdHPqj5uZJ0/5vsZA9xFE560kKm8TGr1xlpJ2GOhMQY6WjV8nkJ+pxjvUkrcWNyufKspJVVV6ox401htEsHFBAsp0NdYOUlr2cuCxtyqPXl4+kktOiopuw017mugfeg6yIS9Hx+9fZqLMKgsWN3uJN/Y3p3UyUjSVrgeNysCS+ZmkJmgwtxTToacl7813x8pGctd1miJdHnEgP0fLmq9SyM3U4BtqwZSfg7C76bCblaKqNHry2OseiEQiVn2ZTE66GhsHGW172zJyUkVS1Oen+bB6QTK/fJRAXnZZALq+TzozfLxpRekWqFtEBoPpSrYXX3yRPXv2kJqaiq2tLS1atOC9996jX7+qpxeqIj8/v8xJd+FHiM3v/qbf2PCysmXjwNE4mVuyN+k6L/29Dt2/ftquITHVHN1wBFkF8EbQqzjI7SnVqfg1bhmHsup2ubuTvOpggfdCW/uuDPEYhZ28bOomuuAyG5OXkVQSW+u66wqF2JyuTn3o6TIQW1nZG6paV8S1vD+5lLuGIm36f9Rwf+Itq3rZ+oNIjq7+RmxNleICHS+0OUteXp5RXQ1u5Z/nUueHZyKV1fy5pNWUcnT7tDq11RQxaeFiDB4U4QLQysmdFQNGYS6VsTr6Au8eqRxl2BSFC4CN1JpxgS8Rblu2Wmx/5mF+i1uBSl83U4LGEC4AcrGCPi6D6e06GLm4bFThZM5BtqasRqkx3VUOEpGUdvZdedhtAPaKsuB/eoOWuML9XFKuJrO04QI8NgSCcKlAEC71LFweMoJw2fHgCZdG5+MiUD3nslKZcGAzOr2eEUEtmNq2Z0ObdFfkawv4NGoBa5M2oTfoiXDuysfh/8PXooGXsv8Har2K7Wlr+eTyJE7mlEU0bu/QnQ/CvmCox9NYSEzzIaAzaDmes58N8c+yK/ltUopOIRZJ8bfuw2CfHxns/RP+1v0Qm/ZMsoCAwAOKIFzuM3YnxjDlaJlz8KvhHRkb3rGBLbo7DBjYkLyF2Ve+IEetxMPcjZnN3meQ+4A6WwljLJSabJbFf8/nUe9zreASMrGc3q6DmNbsK/q5DkUuNtW4IwaSio6xI3kiG+Oe41reVnR6Nc7mYfR0n84I/7W0cngec0njDO4lIGDqCKuKaoYgXO5D1sRE8vHJvwF4r21PRjdt3cAW3T1RBdeYGjmDkzlnkYqljPJ5nPdDJ+EoN+1lsABJJbF8F/MxP1z/lKTiOMwlFgzyeJIPwxbQ3WmA0QLY1QU56hgOpc9hVexjnM5aRLE2CwupE22cXmSk/zp6un2Em3mrhjZTQOD+Qm+o/fYAIvi43MdMbt2dCS26ADD1yA4SJOsa2KJ7I8K5G8/6jsRMYkaxtphlCavZn3m41vUay8flTogQ0ca+MwPdR+CkKFsNo1RnsyttA8dz9qEz6Orchv+ipWX1wRnFSPGz7kmo3WO4mlesdlKqYonK28j1/J2o9XXfj/WB4ONSgeDjUr8+Ll36zqi1j8uR3dMfOB8XQbjc53zQrhcvN+sAwE83fmN/5qEGtujecFU481rACwRblyW2PJcbyc+xS8lRK2tcZ30Il3+QiCR0cuhFf7dh5SuQctSZ7ErbyImc/Q0qYO4kXG7FQRFIqO1j+Nv0QyYuC3im1Zdyo2APV/M2N3pnXkG4VCAIF0G4NAYE4fIAMK19H14Ia4feUJb0sLGJFxEiHnbrxxPew5CLZRRpi/mjFqMv9Slc/kEqktHVqQ99XIeUL0XOUWeyO20zx3L2oTPUPP1DTblb4fIPMrElgdYDCLEbhr2iIhBejuo61/K2cD1/Jyq98ZKa1heCcKlAEC71K1y69p2BVFoL4aIt5fADKFwEH5cHgJkn9/DrlVOIRWJe8R9DP9deDW3SPWHAwLa0XXwQOZOYwhtYSi14xf85poa8havCuaHNuyu0Bg37M3cw69KbrEtaQp5GiYPcmRE+LzIt7Ct6Og80YSfeMjT6Iq7krWdD/LNsSXiN6LxtaPWlOCgC6OTyJk/6b6Sn+ww8LTogEm4tAgL/TQNFzv3uu+/w8/PDzMyMjh07cuLEiWrLrl+/nnbt2mFnZ4elpSWtWrVi6dKlNT1joyCMuDxAfN+/DQPdy4L3rUpcz+aU7f9xhOkhRsxDbn153GsICokCtV7NhuQtbE3dddfTLg0x4vJvZCIZnRx708d1MPY3p5CKtAUcyNzJwcxdFOkK/qOG2nOvIy5VIRdbEWDdn2DbQTiaBZfvL9JkEJO/g+j87eRrjJfotC4QRlwqEEZc6nnEpc9HtR9x2fPRPdm6atUqnn32WX744Qc6duzIggULWLNmDVevXsXF5fZ8d/v27UOpVBISEoJcLmfLli1MnjyZrVu3MmDAgBrbXhsE4fIA0TUkhuGeQ3jMazAAm1O2sypxfQNbVTNcFM682OSZ8qB1ScUp/Bq3jKiC6P881hSEyz9IRBLa23enr+sQnM3KwpardKUcy97Lvsxt5KjrLpCdMYTLrTgoggi2HUSAdT8UkoqbaEbJRWLyd3CjYA9qfd0LsntFEC4VCMKlfoVLt961Fy6H/r434dKxY0fat2/Pt99+C5Tl//P29mbChAlMmTLlrupo06YNjzzyCLNmzaqx7bVBGM99wFiXvJnlCWsAGOLxMC83GVMnCffqmgxVJnOivmTh9V/I0+TjZeHBh2Hv8qr/89jKGs9cr86g41jOPmZfmcyvsV+RWHwDhcSMCJeH+TDsK8b4TcDH4r8TK5oCOapojmV8yYobQ/k75X8kFh5Bb9DiYh5OF9e3GeW/id7us/G1ikAikje0uQICDY/BCBtlQujWrbpExGq1mtOnT9O3b9/yfWKxmL59+3L06NH/NtdgYM+ePVy9epUePXrU6JSNgekGlhCoM7am7qJIW8yLTUbT06Ub9nJbvor+sc5C7Nclh7KOclZ5npHej9HLpTs9nLvQ3qE165P+ZGf63yax7PhuMGDgXO4xzuUeI9g6nD4ugwmxaUEb+y60se/C9cIo9mdsJzLvFHr0DW3uHdEbNMQV7iOucB/mEgf8rfsSaPMQjmbB+FlH4GcdgUpXQFzhPm7k7yat5CwGEz8nAQFTxtu7cpTx6dOn89FHH91WLisrC51Oh6tr5YSlrq6uREVFVVt/Xl4enp6eqFQqJBIJ33///T3lDDQ2gnB5QNmXeYg8TT4TAl+hpV1zPgx7h3lXvyFXk9fQpt0zRbpifolbxv7Mw4zxG0WAVROe9h1BT5fuLItfxYW8xrVc91rBRa4VXMTD3Idezo/Qxr4LAVYhBFiFkK3K5GDWTo5l76NEZ5ysznVJiS6HS7mruZS7Gnt5AAE2/fG37ouVzJWmtoNpajuYYm0WsQV7uVGwu9EvrRYQuBdEBgOiWnhr/HNsYmJipakihcK4jv7W1tacO3eOwsJC9uzZw6RJk/D396dnz55GbedueWB8XFq88AkS+YPt45Lvf/tP3dLdjUWPDcPBwoLU/AJeXr+BqEzTTRD4X4iA4eHNeKdHdxwtLQDYfyOWT/cdIDq7zJdB61T/S49rg7O5Jc+EtOaZkFY4mpWdU4lWw4brl1l65QxXlJk1q9ct14hW3j0iRLR28GOAe0t6u4VjJ7co/y61RMnu1Eh2p0VyOS+5XuxRyBrX9VCXuFqYjv9XQ6EpUvNn/5/rxcele4/ptfZxOXhgxl3bqlarsbCwYO3atQwbNqx8/5gxY8jNzWXTpk131e5LL71EYmIiO3furKnptULwcXnAOZ+axuN/rOB6dg7uNtaseupJ+gYGNLRZNcYArL14ib4//8rik6dQ63RE+Ddhy3Oj+bh/X1wsLRvaxHsms6SIL88eosvqH3j30HYuZ6djLpXxVNOWbB/2PGsHPsUw/zAUksbhq2TAwJmcWOZc2sjDf89h4qnf2J58liKtCndze0b79+C3LuPYGPE2bzR9iGa2Xg1tsoDAfYFcLqdt27bs2bOnfJ9er2fPnj107tz5ruvR6/XV+tHUB8KIywNEVSMu/2CjUPDN0EF09fUFYMGhI3x39BiN/eLwtbPjnYjuPBQcBECJRsPiyyf5KfIEBRp1A1tXc9q7ejEmtA0DfIOQicsES3ZpMWujL7Ly2nli8/87snBDjbhUh0IspYtzU/q5N6ebcwjm0goH3vSSXPamX+bvtIucV8ajN+KVKYy4VCCMuNTviEuP7tNqPeJy4ODMe14OPWbMGH788Uc6dOjAggULWL16NVFRUbi6uvLss8/i6enJnDlzAJgzZw7t2rUjICAAlUrFtm3bmDJlCgsXLuSll16qse21QfBxEQAgX6XixbUbeL9XBM+2ac3Ebl1o5urCO9t2UKhuvA/4+Nxcxm/6k7aeHrwX0YM2nh5MaNmFp5u24vsLx1kadRaVrvE9uE6mJ3EyPQlnc0tGBrfgqaYt8bC04dXmHXi1eQeOpiaw4up5diZcQ6VrHA7KKr2WvemX2Jt+CYVYRhfnYPq6NaerS1Ncze140q8LT/p1IUdVyIGMK+xPv8yJ7Ouo9Y3v9xMQACqtDKrx8ffIyJEjyczMZNq0aaSlpdGqVSt27NhR7rCbkJCAWFwxGVNUVMTrr79OUlIS5ubmhISEsGzZMkaOHFkLw2uHMOLyAHGnEZdbGR7ejJn9+qCQSrmRk8O4TX8SnXV/xLroGxjAO726EWBXFvQtraiAb88fZVX0BTT6xruyRSIS0ds7gCeDW9LLyx+xSARArqqEjdcvszo6kss5GZWOMbURl+qQi6V0dAqkt2szuruEYnuLT0yxVsWxrGj2p1/hcGYUeZqSe65fGHGpQBhxqecRl64f1n7E5fCsBy7kvyBcHiDuVrgANHdz5fuhQ3C3saZEo2HG7r9Ze/H+WPFhcNbxWGA4b7bqgpeVLQDJhfl8d+Eoa6IjG7WAAfCwtGZkUAseD2qOp1XFzexSdjprYy6y8fpllKqSRiNcbkUiEtPGoQk9XcOIcA3D1cy2/DudQc95ZTwHM6I4mBFFfNHdOS0LwqUCQbgIwqUxIAiXB4h7ES4ADubmzHvkYXo08QNg0+UrTNu1myKNpg6sqz/+WVUkF0sYGdyC8S0742pRFjE0uTCfhReOsSYmstFMsVSHWCSim7svI4Jb0M8nEIWkbGZYrdOxL+kGu7NPcCgzCo2+8Z5nqI0nEa6h9HAJJcjGvdJ3iUXZHMqM4lDGVc4qY6s9T0G4VCAIl/oVLhFdai9c9h8RhMt9hyBcKrhX4QJly4tf6dCet7p3RSoWcyMnh7e2bONSesZ/Hmuq/Hs5tEIi4cnglrzeolO5gEkrKmDRpZOsuHqeYm3jFmoAdgozhviH8nhgc1o4uZXvz1MXszstkh0p5zmvjMfQiN2x3c3t6OYcQneXENo5+iMTV7jwFWtVnMi+zpHMaxzJvEp6aUW8IkG4VCAIl3oWLp3/V3vhcvRjQbjcbwjCpYKaCJd/aOvpwYJBj+BuY41Gp+Prw0f58cRJ9I3w8qkujss/AubV5h3wsCy7CShLS/j9yhmWXDmDUnXv/hOmSLCdE48FNuPRoJBKUy2pJUp2pVxgZ+p5ogvSGtDC2mMhkdPBKZCuzk3p6twUZ7PKN/UbhRkczbzG0axrXC6IERx8byIIF0G4NAYE4fIAURvhAmBrZsbH/fvycNOyLMCnkpJ5Z9sOEvMaV7Td/wpAJxdLGBYQxtgWnWhiYw+UBXxbHR3J4osnSSxsXOdbHa5uebRz9Ochj1b0cmuG1S030NjCDHalXuCv1AvEFzXegIT/0NTGgy7OwXRxCqa5vQ8SUcWqCZVOw7ncG5zMjuZkzjWuFzZu0VYbBOFSv8KlZ8faC5d9xwXhct8hCJcKaitc/mFYs1A+6tMbK4WCIrWaufsPsvzc+UYzyXC3kXPFIhEP+QbzWvOO5dMrOr2eXQnRLL50itMZ9RPZta641TlXIZbSzSWEAe4t6eIcjEIiK//uWn4qu9Mi+Tvt4n0hYqylZrR3CqSzUxCdnYMrjToBZKsKOJUTfXOLIVN1fwjVu0EQLvUsXDp8UHvhcmK2IFzuNwThUoGxhAuAp40Nnz08gE4+Zcm9jick8v7Ov4jPzTVaG3VFTUL+d3b34dXwDvT0qsjUfC4zlSWXT7Mt7irqRujgWt2qIkupggiXMPq7t6CjUyBScUVE3piCNPakXWRv2iWuF6bXk6V1S1M7B9o7BNPRMZhW9v6YSSpnrk4oyuRUTjSnlTGcVd4gX1PcQJbWPYJwEYRLY0AQLjUg8+IhMs7tRVNSgLmjB15dH8XS1fc/j1PGnCVu91Js/cLxf+iF8v25Ny6QdfkIxZlJ6FTFNH18MhZOnkax9VaMKVygzHH3cTsb/vfUKCwtLSkpLWXBrt38Fh2DtoolxfmnTpC5elXlOqRS/D/5rMr6M9etJf/4URwHD8Wuu/FSqNcmV1GQnSMvNWtfFmJfWub8mVlcyC87tvDttJkkXY1G7u2Ow9NDUfh7V1uPvrgE5bqdlJy5iK6oGKmjPQ6jBmPeIgSA0qs3yN9xAHVcErq8ApzHP4tFm2Y1trsq7mY5tI3MnJ6uYfR1a057x4BKIia+KIt96ZfYm3aJy3nJGDCQ8edp0tYdR6MsxKKJC95j+2PV1KPKuqPe+4PCyITb9tu2DyBoxggADAYDKcsOkrXjHNoiFVZhXviOG4CZp0PNTroKbnXOlYkkhNv50d4hiHYOgTS18ao0raQ36IkpTOVMznXOKm9wPvcGhdrS2+pM3XSG5DUnUecUYRnggv+4PliHuN9WDiBy8kryLyTett++gz9hs4ej1+pI+PUQyhM3KE3LQ2Ihx66NL74vRqBwsjJCD1RgbOFyfd1FopefozSnGNtAR1q+1Q2HMNcqyx4Yv4mssym329TZh67zHin/nB+n5OL3R8k6l4pBp8faz55Oswdg4WZtFJvrVbi0N4JwOSkIl/sOYwsXZcxZ4v9ejnePJ7Bw8SEz8gC5188TOmoKMvPq/ziq/ByiN32D3MYRqcKiknDJuXYKVX42MktbEvevbjTCpfDcWdJXraDda68z/43xdA8u832JSk/nw91/czYltXL7p06QvXkT3u+8d8teEVLr2/ut8GIkyr92oSsqxC6il8kIl39wUJgzqmlLRoe0xs2yzH6tTsf2qxdZ+NOP7Fy0BI9P3kZic/uDxaDVkvbJQiQ2Vtg80gupvQ3a7FzE5mbIfcoe8iUXoiiNiUfh60nmd0sbTLjcirXUjB6uofR2DaejU2Cl6aTM0nz+OneEZR9/y/UQKbIgF9I3nkR5KIrwn15BZnd7jihtQQkGja7S50vjfsbvzYE49WsBQOqao6StPorfpEEo3OxIWXqA4rhMwn94GbHcOIG/77SqyEpqRit7f9o5BNHGPgB/K7dK3+sNeqILUjmrvM653BucV8ZyY/dZouduI+CNfliHupOy/jRZB67S5pcXkdvf3g+a/BIM2lv6Ib+Us68uIXDSQ7gOCEdbpCJq5ibcBrbAwt8FXUEpNxb+jUGnp9X3zxqlD/7BmMIlaXcMpz7eQ6t3InAIcyFm9QWS916n34pRmNlb3FZenV+KXlPxwqPOK2XPc6tp815PfB8pE/SFSXnse3kdvoNC8e4XiNRCTn5sDg7hrlXWWRPqU7j0avd+rYXL3lOfPHDCxaRD/s+ZM4f169cTFRWFubk5Xbp04bPPPqNp06YNZlPGhf04hnbCMaQDAN49Hic//jLZUSdwa92nymMMej3xe5bh3m4Ahamx6NSVV6c4BLcDysRNYyL34AFsOnZC6evH85u2MDQ0hCmdOhDi6sqap0ex+kIk8w4cIqek8vlKre/8B9Pm5ZG1aQMeL75C6q+L6/IUakyOqoTvLhzjx8gTdDoTy+svv0yX5q0YHNaSwQu+J+r1iSw9so+t8lJyVZXfyAsPnkJfVIzb+68jkpaNYEidKo8gmLcIKR99MRUKtKVsTT7L1uSzWEjkdHFuSk/XMLq6lK3aearTQzy15SGKtSqOZ8Wwv9NlFo18l6xdF3AfcXsCN6m1eaXPOQcuI1bIsO9edt4Gg4GMjSdxf7Ir9p3LRLHf5EGcf+prco9ewyEirM7PuVBbyqHMyxzKvAyAvdyK1vYBtLm5+Vg609TGk6Y2njzp2wO9Qc8ltyuc7Pw0cd4azufGYv6mI8rjN8jYeRGvJzve1obMpnI/ZO2LQmImw6lH2TlLLRWEfzaiUhn/8X24MH4Zqox8FC6m+cCKXnUev8Fh+N0UHa3fiSDtSALxW6JoOrrNbeXlNpUf4Em7o5EopHj2rkj6evmnE7h29qX5uIrrycqrso+SwP2PSQuX/fv3M27cONq3b49Wq+X999+nf//+XL58GcsGyPKr12kpzkzC9RaBIhKJsfYKpjg9rtrj0k7vQmpuhWNoJwpTY+vB0rrHoNWiSk7Cvlfv8n2brkSx7sv5zBo/jtGPPsqIFs3pHxTEl4cOs/L8BQD0ajXxn3yMwaBH4emF40MDkbtVvMUa9HrSVy7HLqJnpf2mikaj5o/vfmCXoZA2fXryTEgrHg1oRkhwMLODg5mm07Ij7hqroi9wNDUBA1B87jKKAF9ylm2k+NxlJNaWWHZshc3AnojEjSNhe7FOze60SHanRSITS2hj40ez8xoefeoJ3Gwc6eXWjF5uzZh2eTinL1/glDyTQ5lRXMtPrbbOrJ0XcIgIQ2JW5mOiTstFoyzCppVfeRmppRmWTT0ovJJcL8Ll3yjVhfydfp6/088D4Ci3obW9P63s/Wll3wQ/S1eahzSjeUjF6FhScRaHlnflyKnjZFk4kFB854i+6dsjceoZgsRcXm0ZXZEKRCCxVBjnxIyMXqMj92pmJYEiEotwaedJzsW7842K2xKFV99ApOZlI3sGvYG0I/EEPd2KQ29tIe9aJhYeNjQd3QaPHk3q5DzqHIOhbKvN8Q8gJi1cduzYUenzkiVLcHFx4fTp0/ToYbypg7tFV1oEBv1tU0JSc2tKc6sOyFaYeoPsqOOEPD65PkysN3RFRaDXI/nXNE+eTsfLb07kzxIVH/XpTZirCzP69WFUqxZMl8vYJxIjd3dHX1JK7oF9JH//Dd6T3kFqZwdA7r69iMRibLt2b4Czund0BcVl/WBjRZQyk/8d/Ys5J/fTT6ljTO/+tA5vztCAMIYGhJFQkMua6Ei+k68g9lQklp1a4TLxebQZ2eQs3YhBp8NuaL+GPqV7RqPXcfD6Ob4b+y3fFB+lXccOdHcpCwQXYutJ+/BWtAfGBvcjszSfo1nXOJJ5jeNZMeX+IYVXUyiJz8R34sCKepVFAEj/Nb0is7Ms/66hyVbnszv9HLvTzwFgWSDCalkMj334Mu0DmhNo5Y6XhRNP9h/Gk/2HAZCrLuJiXjwXc+O4kBdHVH5SeRyZgqhUiuOyCJz8ULVt6tVa4hYfwKlXKFITFS6q3FIMOgMKh8qjSQoHCwoScv/z+JzL6eTfyKHN1J4VdSpL0JZouLbsLGEvdyB8bCfSjydw7P0ddP9mKM6tq/alMmkMQG0yjDyYusW0hcu/ybsZL8TBoXrHPJVKhUqlKv+cn59f53ZVh05dWuYPEzGC0EA/rqfcH4kK74YzySkMW/oHo1q24K1uXQlxdmbVG+PZM/BhPtt/gBs5Ssz8/EiY9xn5x4/iMOBhVEmJ5B06iNebbyG6mSSwMVKkVfPr9m0sXPAV/Rd8zMjg5gzxD8PH2o7Jbbrz1onT7Dt0kD8NBexMiKbYzwudMo/8HQcapXC5FQMGruQncyU/mZ9i9qDdEElXl6Y8PuEFOjgG4GxmwxCvdgzxaodWr+NSXhLHsqJZv+s3Ev1dq3XkbSzkqArYtX490RFm2GR5YikxI9zOB99YCa29mtKhbXvs5JZ0cw6jm3PZiJFWr+NaQTKX8hLYc+ZP1N1aV+vIq9fqiJq1GQwGAt5o3NfKnYjbEoVNgEMlR16Dvuwp7d7dj6AnWwJgF+xEdmQasRsvNUrhIjIYENVi1KQ2xzZmGo1w0ev1TJw4ka5duxIeHl5tuTlz5jBjxow6sUFiZgkiMZqSgkr7tSUFyCxudzBV5WejLsghTJLOb28/we9Ll/LqwlMAnP3xbcKenILC1qlObK1rJJaWIBajK/hXXxQWlo/C6A0G/vU6EnIAAEYeSURBVDh3ni1RV5nQpRPPtG5Fn8AAIvybsCbyIt8cPkq6hyearLLYICWxseiKComf83FFhXo92Vs2k3foAL5T/1dv53e3SKwtyvohv7JToy6/AImtNZHZaUQeTePjE3t52C+YJ4Ka08Xdl949IugNFGnU7IyPZqVKwro12zFotYikjeZvWY7UxgLEIjTKykuFE2/E8UfkVY53lSMTS2ht70cX56Z0cQ6miZULLe19aWnvy6tf9iX343xO5cdzPCua49kxxNkrAdAqi5A7VDg5a3KLsPCvemVKQyOzNa/UD0W6Uo5nX2PpD9vQFapoPutxgq09aG7nR7itL83t/HBS2BBm60OYrQ9PvNsN3v2MbFUBl/LiuZyfyOW8BK7kJ1GkKubqx5tRZeQT/vnIex5taWnXhHYOQVzKi+d6YVqdxqdR2JkhkohQ5VT2b1PlFGPmcGcnWm2JhqTdMYS91L6KOsXY+FV+cbXxsyfrwoMbNPBBpNHcIceNG8fFixc5dOjQHctNnTqVSZMmlX/Oz8/H27v6Zan3glgixcLZi4LkaOyaNAfAYNBTkByNU3i328qb2bkQMuIdAjo1RyaX88rLL1Oil/C/WZ/i1XUYMis7o9jVEIikUhSeXhTHRGMZfrMv9HpKYqKx7dK1Utm80lI+/nsfK85d4J0e3egbFMioli0YFhbK1+oSvt/1FwDWbdpiHhRU6djUxT9h3aYt1u061M+J3SMiqRS5ryelV2LKV/0Y9HpKr8Rg3btLeblSnZYN1y+z4fplrA+e5bGg5jz3+ms0sXXgscBmPBbYjNRhT7MjJ4lN169wLqt6XxBTRCyTYBnoRsH5OOy7lDmVGvQG8s/F4zK4LVA2pXQi+zonsq+zIGobbmZ2dHYOorXehS6+4djZ2tLXsjl93cuup8T22WwXteOMKokYmYQ8TTG6YhVFV1NweeR2505TQCyTYBXsRt7ZeBy7ll3LBr2BvLPxuA9tg9agKxMj+Yms4iAAbmb2NLf1pUmeJaFmHrRu0wZHhTU9XMLp4VL2kqY36LkaG8PJN9qSEijmmiad64Wp6Ax3P88w0KMdzW398LV0xsfChcjcWH6L+5ssVT7eFk7IxVJKDDfuqc479YNdU2cyTiWV+58Y9AYyTicTMLz6F0+A5L+vo9fo8B4QfFud9qHOt001FSTmYeFm3GXh9YaBWvq4GM2SRkWjEC7jx49ny5YtHDhwAC8vrzuWVSgUKBR1N+/r0iKC+L0rsHD2xtLFh4wL+9Fr1Dg2LXuwxv29HLmlDR4dByGWyjB3cOfAtSw+/mM300f3581XXyAvv4CNNypuDtrSItSFuWiKyt6AVDf9ZWQW1sgsTHPFAIBd9x5krF6JwssbM28f8g4dwKBWl4uM9JXLkdra4vhwWQyGk6tW8uyxo3Ru05YpA/rR3r8J702cyGuvvMLi02f4/fRZiv7ldC2SSJBY2yB3can387tbbAZ0J2vxauR+XiiaeJH/1yEMKg1W3cpWi2UtWoXE3gb7xx8GQNmsCbP+N5Mv92wlYvSTDPMPY2hYK9zd3HjezY3nw9qRkK9k4/lTbL50lnhAm5WDOiEFsaU5Ukf7Bjzb6nF9tAOx87dgEeSGZbAH6ZtOoldpypc2x877E5mjNV7P9wQgrTSXDYknmfPOUsxc7Bg8+3U6OgXRySmIZrZeeFs68srzL5bXH5WVwJ6/9rDnySfI7h5EMaaZX8hjeDui527DKtgNq6bupGw4ha5Ug8uAsgf2tc+2Ineyxu/FMj+9tFIlaaVKIt9ajtzJmuYfPkqwtSfNbH1oZutDmI03buYOhPoHE+pf8TBX6TREF6RwtSCJK/lJXM1PIr4oA301TzMPcwc+j1rHWeUNAMwlckp0aro4hdLfrTXeFs7YyRX8HreeYznnECHCgAGpSIrWcO99HTSyJadm/419iDP2Ya7ErL6ArlRTvrT51Kw9mDlZEj62U6Xj4rZcwaN7ExS2ty8TDnqqFSem/YVTK3ec23iSfiyBtMNxdP9m6D3bZxIIzrk1wqSFi8FgYMKECWzYsIF9+/bRpEnDe47bB7ZGW1pI6skdaIvzMXfyJOCRV8qnijQFSkTc7p+x6cglrMwVTH48gmnvvInt+oP89lfZtFFe3CUS9q0sLxu3eykAbm37496+eie9hsaqVWt0RUUod+1EW5CPwsMT9xdfLo/Los3NreSroi8pIXPtGtb/+jObzC147NlnmfnBB4R4uDO5ezeeb9uWX0+dZunZcxSq1Q11WveMZYeW6AqKyN24C11eAXJvD1zeegGJ7c1+yMkFcUU/SB3scJ30Ijkr/2TLS5PYYW/D1F6deeTFMQwJCKO/TxA+Nva80b0fb3Tvx9VeQ1mzZg1r164lxkqK04sjqrGkYXGICEObX0zK0oNolEVY+LsQNHMEspvOtarM/Er9AFCalE3hpSTcR3UjMjeRyNxEFsf8jaVUQWt7Pzo4BtJK4kaoTwAhTj6EjHqecaOeR2fQczU/hTPZsZxRxnI2J67KQHANgXPPELS5xST8dhi1siwAXbNPHi+P4aLKKLjNh6s4MYf8i8k0+/QJ1HptmfNuXjwApWl5JL29iY4dO9K+fXvat29Phw4dsLe3J9zOl3C7iuCXww9+Qroqt0q7/C3d6OXSAhEiruQnUqIr+49NDB7C9zHb2JcRSRcXR57yHkxUwQ1yNfl4W7jzmOcAmlh6k6nK4dfYNaSU3l1meK++gahyS7i8+CSqnGJsg5zo+sWg8qmi4vRC+Fc/FMQryb6QRtcvB1VZp2eEP63f6cHVpWc5/+UhrH3s6Dh7AE4tq/YJErg/MekAdK+//jrLly9n06ZNlWK32NraYm5ufocjKzC1kP8vD+zI2MFlUwivLljLyau3R8ysK4wdgM4YiEUiHglpyoQunfC/6XSdV1rKktNn+O30WfJvcbQ2FsYIQFeXmEtl9PbyZ7B/KL08/csj9ALE5SvZEX+NHXHXOJ+VWquR4nsNQNeQOMitaOvQhHaOAbR19MfXsrJvWFkguDTO5sRxVhnHuZw4ctR3F0ztTgHoTBlPc0dCbbwJsfEixMYLF4UtI45UHYVaLpYyyKM9jgobQm28SS7JZsHVTTS19mRWi9EMP/QJIkS4WBTwS/vPePv8J+So85jf8gO2pu7llDKSvi5dsZZZsjR+g1Gmk0yV+gxA17v5e0glNZ8h0OpU/B352QMXgM6khUt1K0t+/fVXnnvuubuqw9SEC8ALD7XH1tKcL9cduGM5hUyCSmO8HDimKFz+QXJTwLzeuSOBjo4AFKpULD9/gSWnzpBRZLzlr6YuXG7FUiqnj08AD/sG08vLHzNpRbTatKICdiVEsyshmuNpiWiqSLNwJxqTcPk3zgob2jo2oY19E9o4NMHXyvm2MvFFWZzLieO8Mo5zyngSi6te1ddYhUtNkYjE/K/ZSOKKMkgpzuYhj7b/b+++45uq+geOf9K923Sme0NZZVNAhDIUEGTIdoAiIOJCQQQHor8HQVAeHKiPC3ChoIKo7NGCUKbMLrr3nukeub8/AoHQMlvapj3v1yuvNnfl3NOb5Ntzz/keFpz5BoDOciNebT+HD6O/Qm5kwyvtnmbO6dcBsDG04sOurzP71JIb3o5qDZoycBnaeVGDA5f9F1e1ucClxd8qao2+3XXyltuYmxjx+qNDuZCQwc8Hz977QjWzWklie2QUf0VFM6KdP/P6BRHg4MCcPr15skd3tkVE8u2p08Tm6VZ24YYqralie3wk2+MjMTMwZLCbD8MvBzEKc0umd+jB9A49KK6sICQtgX0psYSkxlNc1fgtVS1JTmUxu9LPsSv9ciI4Y0u6y73obutFN7kXfpZOeJrb42luz1h3dV+jvMoSzhckcb4wmfMFSUQVp2vyp7RmV/qqXFErqVBWl2NjaE6pUQX5lVdHBrqbuVBQpe5r52vhQUzJ1YSZVoYWFFQXYWZgRklNy8ijI7RNLTpwactMjAz4Yd+/fP/aNMxNjPhm54nmLlKTUEkSO6IvsSP6EsE+3swN6kMvN1cmB3ZhcmAXQuMT+PbUaY4k1Z2cr7Urq6nm78Ro/k6MxkhPn/tcPHnQw59h7r44mFkwxqcDY3w6UKNScTo7jf0pcRxMjSOmsPXnD8qrVGoy+YJ6XqVAuSfd5J50k3vRwdoVO2MLTUZfgGpVDVHF6UQUJxFelEx4URJZFYXNeBb3hp5MxovtxmAg0+dUfgzWhub4WbrwWczfDHDoSHHN1SHLgdbtKapWklWZh7uZM2nlV7Pcepi5kFGeg4FMv76XEe6G6Jx7V0Tg0kLlFZcR4O5IYlY+xyPb3pc0QEh8AiHxCXR3cebp3r140N+PQT7eDPLxJiY3l+/+Pcu2iAjKq1v/f83Xq1LVcjA1noOp8bwOdHNwZpi7H0M9/AiQOxCkcCdI4c7rvYNJVRYRkhZPSGoCRzOSKKupbu7i33PKmgqO5ERzJCcaAEM9fTpYuRIo9yTQxoNAuQd2xpZ0sfGgi42HZr+8SiURxclEFCUTUZRCVHEqpbUto9Pv3aqVVOxIP02gjSd97QMw1jPk40vbiSpORQ8ZkzwG0NcugEpVFR2s/Pg1ZScAziaOxJdc7YPX0cqPvKqCeltbHI3tsDOyIaU8g5KasjrrhRsQgctdadF9XBpDS+zjcjvsrMz4ZsFkNu45xR9Hw1Fd/jPp68moVd3dn6wl93G5HR421kzv0Z1JXTpjbqSex6W4ooLfLobz09nzJBQU3NZxdKmPy91ws7BiiLsvg9186K/w1OrcW1Vby8msVA6lJXCx8gIxykyt2whtiYupnEC5B11t3ehk5YG/pQsGetqtCSpJRVJpDlHFKUQpU4kqSiWmpHXdYprqMZAgu3ZYGJjya9o2zhdGoUJivOuDWBtasiHxN6wMLXiv80K+iv+Fc0WRdY4xwXUEj3qOAaCgqoiUsgz1ozydlLJMUsszdeb2UpP2cem4sOF9XCI+aHN9XETg0kJ9NG8s+coyVmw6QNXlKe+XTBuCsYEBLvZWrNh0gITMO+vvoeuByxUWRkZM6NyJ6T264ym30Sw/mpTMprPn2Bcbd9OOqq09cLmWib4B/Zw9GOzmwyBXbzyttHPA5FeWcCIvlhO5sZzIiyOr4t5lU22prnTONdIzoL2lqzqLrZUHHazdcTGtO71IjaqW+NJMoovTiCpOJVqZSnxJZqsIZpzMro7EMtU34eV2M1EY21OuqiQk+xg7M0Pr3W+sywOMdB6Ig7HdDY9dWFVMark6iEktyyDt8u/5VS3rmmvSwKXDgoYHLpEfisCltdGlwKWzl4KLiZlMG9ydUUEdePXLv8jIL8bcxIi3n3gQGwsT3v/lIN18XHhsWA9e/HQbqbm3/6ZvLYHLFTJgoLc3j3YLJNjHG/3LMyvnl5Xxe3gEm89fID6/bitMWwpcrudlJWeQqzf3u3jR38UdMwPtD82kkhxO5sdzMi+O03nxFFW3/mb/m40qsjE0p4OVOx2s1cOOO1i5Izeqm6X1SjBzqTiNS8o0LinTiVWmU6HSrdty1wYuVxjIDLA3lpNZcfNZrQFM9IxxN3PWPNxMFbibOd80oCmrKSetPIu08iwuFkVzMOdYg86hoZo0cGnfCIFLdNsLXEQflxbCxMiAWSODkFua4mBtwcIv/ySzQD1B5IT7u6CwteTpDzdTXVNLXHoeXXycsbEwvaPApbWRgNCEBEITEnC2tGRq1y5M6NwZhaUFs3r3YlbvXvybls5vF8P5Oypap5La3SuJxQUkFhewMfJfnJ2VBMo96GPnS287PzrZuOFp4YCnhQMTPYIAuFScwen8eE7nxXOmIJHi6vJbvELrUlhdSlheFGF5UZplTiY2tLd0I8DKlfZWbrS3dMPGyJx2lq60s3TVbKeSVKSU5RKjTCdGmc4lZRqxJRkU3GZ+mZaiRqq5raAFoEJVSUxJIjEliVrLTfSMcTV1wu1yMONmqsDVTIHCxB4zA1P8Lb3wt/TCQKbX7IFLUxKTLN4d0eLSwiyYOIgx/Tryzg97OXAmFld7a75dMJk3N+zSJKuztzLnlzcfZ97HvxOdqv5AuZ2cL62txaU++jIZg3y8mdylM8G+PhhcboWpqK5hb2ws28IjCS2Jo6YVJ9C6XdfncbEwMKGHrTe97XzpZeeDn6VCa71KUhGrzLqc5C2Bs/mJ5OnYl3B9GiOPi5OxDe2t1IGLv6Ur7a1csTeu/z/gvEolsSXpxCoziC3JIE6ZQVJZdotI6lZfi8u9ZCAzwNnEARdTJ1xNnUgtz+RE/rkmLcP1mrLFZVi7Vxrc4rLv0po21+IiApcWaEg3P2Y/FMQT72/ilQkDsTIz4c0NuzTr//PkCMqrqln+0348HG2YcH8gbvbWJGUV8PG2G09C2RYCl2s5mJszrlMHJnTqhJ/91abq3PJS/kyI4s/4SP7NSW/GEjavWyWgszWyoIetNz3tfOhp6423Rd35om43yVtLdq8S0NkaWeBn4UI7Sxf8LV3xt3TBzcwOPZlenW2rVTUklWYTV5JJXEkG8SVZxJdkkH0PZ3CuT1MHLi1RkwYu/i83PHCJ+a8IXFobXQxcAAz09KhRqZgS3A0jA32+33cagCeG9SQowIN1249SWFLOuhfHcywiiV0no3l8WE9UksQb3+6od+RRWwtcrtVF4cTYjh14OCAAO3MzzfJUZRF/JkTyZ0IUEfm3NwdLa3GnmXPlRuZ0t1Vnq+1uq07ydv2XcH5lCecuJ3m7UJhMVFEalS2802pTZs410TPEx0KBn6ULvhYK/Cxc8LVUYGFQ/xQmyupyEkqzSCjJJKE0i/jLP+/V7SYRuDRx4OI7v+GBS9xaEbi0NroauFwxMNCHBRMGseXQOfT0ZDwxrCdvbdhFZHI2L44fgLmJMYu//hsAuaUpCyYO4v9+2FvvbaO2HLhcYaCnR99AN8b6dOBBD3/MDY006xKKC9iREMWOpEuE52Xd5CitQ0NT/l9J8tZd7kWg3JOO1q4Y6xtqbVOtqiG6OIOLhSlcKEwmvDCFtPLbG7beVFpCyn8nExv8LJzxtXDGx0KBj4UCDzOHOsOzryisKiWxNIvE0mwSSjNJLMkmsTSbvKrihpVDBC4icNEBonNuC3fofDwZecXMfqgvEUlZLN2wm2ORyTzctyPd/VyZserqrNJ92nvQ0dOpUec3am1qVCpCUuMJSY3HRN+AIe6+POwdwGA3H7yt5DzXtR/Pde1HqrJIPZlh0iX+zUnX5NERrqovyVuAlQuBNp7q/ChyT+yMLels405nG3emop5cNL+yhPCiVMILU4goSiWiKJWiNtbp93pZFYVkVRRyJPdqjhQDmT4eZg54WzjhY6HA29wJbwsFrqa22BiZ083Ih25yH63jlNSUk1SqDmKSSrNJKs0hqTSbjIr8FtGHRriOSEB3V0SLiw7S15Px45LH+H7vaf4+of6gs7Ew5aN5Y9l65CLbjlxETyar82UrWlzU6hsObW5gxBB3H0Z6tSfY1Ruza1picstLOZASx96UWP5JT6K8lWSebYpJFl1M5XS2cb+codaddlbOGOrV/X8ptSyPiMI0IotTiShKI7o4ndKapplvqSW0uNwJYz1DPMwd8DZ3wsvcES9zJ7zNnXAxs0O/nv4zoG75Si3LI7ksm+TSHJLLLj9Kc1Bek/JftLg0cYuLz4sY6DWgxUVVyb74j++4rOvWrWP16tVkZmbStWtXPvnkE/r06VPvtl999RXfffcdFy9eBKBnz5689957N9y+KbSZwCWYsRjIDG+9gw6QyWS8/OUz/L72bxLD1SONFm14nuqqar5btoW89PoT0+mZmdW7vK3RU9TtZHotYxNDegxox30jutBncAcsra/WW2VFNefCYjlxMJKTIZFkpxfe49LeO5Kx0a03amSGRgb4BjjTPtCN9p3daNfFDTcv+3q3TU3IISYindiIdGIj04mLTKek+B6k39evfxZ6XWNoqI+Lpx0e3g64+zji7m2Pu7cDbl72mJje+G9dVFBKWlIeaUm5pKYWkJaST1pyHmkp+VRWtI4g/U7U1FZw4MzKVhu4/PLLL0yfPp0vvviCoKAg1q5dy5YtW4iOjsbRse5n42OPPcZ9991H//79MTEx4f3332fr1q2Eh4fj6upazyvceyJw0VEvfT4bV38XNq34nUGT+9Oupw8rH/+Y5Ki0G+4jAhe1WwUu19I30KNzL2/6Du1E32GdULhrZ1JNjs3iZGgUp0KjCT8VT3XVnd2mMzI2oM+QjmQk5RIX0bQjnJojcKmPhZUJ/p1cadfJFf/OrrTr7Iajs02922am5hMXlUlcVDpxkRnER2eQk9HAkTetJHC5EZlMhr2TFe7eDrh72+PmZY+blzqgcVBY33Tf3Oxi0lPzSUvOJz3l8iNV/agob51BTZMGLt4vNDxwSfjkjsoaFBRE7969+fTTTwFQqVS4u7vzwgsvsHjx4lvuX1tbi1wu59NPP2X69Ol3XfaGEIGLDpu44GE69m1HenwWf3yyk5zUmw9FFYGL2p0ELtfz8HciaEhH+gQH0KG7J/oGVztPVpRXceF4HKcPX+Lffy6REnfrUUruvo5Mf3kEcnsLTMyMOb4/nO8/2nPX5bsTLSVwqY+13Ay/ji74dXTFr6MLvgHOuHjUn31VWVRGfHQm8dEZxEdlknApk+S4bKoqb/MWUCsPXG7G2NQQF3c73DztcPNywMXbHlcPO9w87LCyufnnRX5eCekp+WSk5pORVkB6aoHm96IC3c243KSBi+fzDQ9ckj697bJWVVVhZmbGr7/+yrhx4zTLZ8yYQWFhIX/88cctj6FUKnF0dGTLli2MHj36rsveECJw0XH6BvrUXp7LSCaTcf2fc+SsoRzddpKi3GIRuFzWkMDlWhZWpnQf4E/vQR3oeX87bB21PzhyM4vYveUEP9wkEDExM6K2ppbqqlo8/Z149IUH+GPDP0T8m0jQkA6MnXE/xYWl7P3tFKcPRTdKua9oyYFLfSysTPAJcMY3wBmfAGf8Alxw93HAwLDuyJvaWhXpSXkkxmSSEJNFQnQmibFZZKUWoLo+VUAbDlyuJxlf/Yy0tDLBxc0WFw879U93Oa7udri422J9i6CmvKyKjLQCMtMKND8z0wvJTC8gK72QytsNKpuBLgYuKSkpWmU1NjbG2LjucdPT03F1deXo0aP069dPs3zRokWEhoZy/PjxW77mvHnz2L17N+Hh4ZiYNE+/UTGqSMddCVqAOkFL4KCOvPLlXJ5d8yTbPtnBb5/vQ5mvGzO06oKS4nIO7zjP4R3nAfBq70zP+9vRY0A7Ovf2xl5hjZnFzT+UKsqq0NNXd6hMT8rD0cUGE3Mjhj3Si6AhHdi9+TgW1mYMn9SbtIQcMlPU/ZfsFdbYOlqREJVBdVXL/RJoTCXFFZw/kcD5EwmaZYaG+nj4OuIT4Ix3ewXe7RT4tFdgLTfH3ccBdx8H7h/eRbN9RXkVKfE5JMVmkxSXpf6ZkEN2emGd909bpyyuIDoineh6bmGaWxjj7GaLq7stzq5ynN1scXaT4+wqx97RClMzI3z8nfDxd6r32Hm5SrLSC8nKKCQrvZDMyz/TkvPIauitP10iqdSPhuwPuLu7ay1+++23WbZsWQMKVr+VK1fy888/ExIS0mxBC4jApVWrqarh0qk42vXyZdqSRxjz3Ej+/HI/Wz/bTWF2w/I9CHUlRmeQGJ3Bb1+HYmRsQMceXuTdop719GSoatUfPlPnDaW6qoaoM8l8tPVFvn3/b8L2hQPwwIRedO7lTWZKPl37+jLo4e74BDhj52TFli9D2P7dkXt+fi1RdXUtcVEZxEVlaC23tbfEq50TXv5O6oDGX4G7jwMmpkb4d3LFv5N2p8KK8iqS43NIic8hOT5b/XtCDukp+Zq/j3BVaUklsVEZxF5X76AOJp1cbHB2laNwlaO47ndzCxPs7C2xs7ekY6D2F+7RkCjeefWXpjqN5tdIw6Hra3Gpj729Pfr6+mRlaeepysrKQqFQ1LvPFR988AErV65k3759BAYG3n2ZG4EIXFqxiLBLPNdnMf3G9GLGsin4dvNi6sLRjH/uQXZtDOXXj3aSnaJ7Kdp1QVVlDWfDYm+5nUol4envxJjpA/Dp4MKqV37CzNIYe4W1JmgBKMhVarIhz359DHt+PcHHb/yKuaUJ/1k/i5OhUWQkib/lFfm5SvJzlfx79OrfQE9PhrO7LZ5+Tnj6OWp+unmrR920u9xB+FrV1TWkJ+eTkpBDamLu5UcOqQm5lCgbf4TTc288jLGxIRkp+SQnZHMsJIraGt0KnKqra0lNyiP1BtejpZUJTi7qIEbhYoOTixwnhTVOLjYkJ+Y2cWmbmUpCPV1sQ/YHKyur27qtZWRkRM+ePdm/f7+mj4tKpWL//v08//zzN9xv1apVLF++nN27d9OrV6+7L28jEYFLGxC2/RTH/jxNvwn9mfbqwwT09mXs3AcYPWsIh7aeZOunu4k+Hd/cxWxzjE0NGTA8kL7DOpKRnM+S6f+joqyKASO6kJd1tblcbm9JTXUtZSUVOLrKcfd1YPt3R5DJZJQqKzC3NMXYRLf6qzQHlUq6POw3j6P7IzTL9Yz0cXG3xdPXEXcfBzy8HfDwddQMI/b0dcTTt26/qIK8ElITc9XDiJNySUvMIz05j/SU/Lu+fXd490Xsnaxw8bBjyKhuABzZF4HCVc6zi0dhZGJIQnQm6z/aQ7WOJppUFlegLK6/tUa491555RVmzJhBr1696NOnD2vXrqW0tJSnnnoKgOnTp+Pq6sqKFSsAeP/991m6dCk//fQTXl5eZGZmAmBhYYGFhUWznIMIXNoISZI4tuMMx3acoeugDkxdMJoeQzozeFJfBk/qS8SxGP743z7+2XaSGh39QNQ1C1dPo/+Dnfj+v7v5+fMDmuVu3g4kRGVqnnsHOCOTyUiNzyGwjw/JsepmXkmScHSxIT0pF2u56Hh9t1S1Kk1rCvuvLr8yjNjDxwG3y/lQ3L0dcPeyx87RCrmdBXI7C7r09NI+nkpFTmYx6cl5pCXnkp6crw5okvPISC24aVBz/tTV/juDH+rK488O4XhINAuXT+DA3+dIisvmwTE9GDmxN9s3HQOgQ6A7cxY9hKGhPnFRGXzyf9upqRHvYZ3QDJlzp0yZQk5ODkuXLiUzM5Nu3bqxa9cunJzU/ZGSk5PR07uayPDzzz+nqqqKiRMnah3nXvWjuR0icGmDzoVGci40Et9AD8Y/N5zgSX3p2Nefjn39yV85jZ3rQ9i5PpSctPoT2QmNY/fm4yREpRPQ3ZOPfn8RZPDOMxuIOJOEh78CK7kZxQVlDJ/ch7ysItIScpgwaxBRZ5M1x/D0V1CqrKC8tGmyzLYlkiSRk1lETmYRp49q3/YzNTPC1dMet8vDh1097XHzVP80tzTBycUGJxcbuvf11dpv6w9H+d+qHTd8TSdXOWOn9UXfQA8zCxNCdl6gc09PrGzM2LHlpOa1Z78ygu2bjuHl78Tc10bx/ef7SUnIZcL0+xj/RH+2rD/c+BUiND6JBgYud7fb888/f8NbQyEhIVrPExMT7+5F7iERuLRhceeT+eCZr/h26WZGzhzMqJnB2DnLeWzxOKa+OoZTe86zc2MoJ3ad0xq9JDSOU4eiOXXNEGfvAGcKcpTkZxczdFxP3v/xWQpzlZSVVrJt4z8ASCqJomtGhvUY0I6CXCVZaXUnLnz6tVGkxGUTG55GcmyWaElrROVlVcRGqjP6Xs/a1lwdzHjYqYcSe9jh4qEeVpyRcvN/BkqVFURdSGHAsE6Ul1Xx9+YTPPJEfyLPpWi20ZPJKCosQyaTEdjLm8rKak79EwPAhdOJTJwxQAQuQqsmAheB/KwiflyxjZ9X/8l9Y3oy6unBdBvUkaCR3Qga2Y2C7CIO/BLGvh//If5iyq0PKNyVhGvu+f938WbsFdb4dnThwokEykrUHUH//P4Is5aMpt+wTuRlFTFwdDfeeWa9VjAD4OBsw8TZwZrn1VU1JMdmEReRTlxEGglRGcQn5N6bFPptXFF+KUX5pURc0zJ2xZWh7zdSUlzOod0XObT7IguXT+DBsd0xMjYg65qpJeydrMlKK8DWwQKFm5zoC6madUZGBhTkl2BkbHD7CfiE5iMmWbwrInC5C2PmDWfSwjHYKmyIO5fEuhe/Jfpk/SNIPDu6MeOdKfj39EHh5chnL69n60faTcVTF49jwPgg3ANcqSyvIuJoNF8v/pHUS02bAr62ppZDv5/g0O8ncPVzYuSTwQx79D7kjtZMeGEEE14YQfyFZA78EkbIlmPkpOXz8JyhTHxpJLZO1sRfSOGzhT/csKOvZwdXpr85Hr9uXig8Hfhi0Y9s/Uw7Odvjr4/jidfHay1LuZTOrB5L7tl5N4bRj/dn4qxByB0siY/M4PN3t3HpfP1B3ogpfRg6riee7dTDD2MvprHhw511th85JYgRU4IwtzIl4nQiny79neS4bI7uucjox/tjYKjP2iWb630dSZL47ZtQfDu64tvRBUtrs8u/uwK9NdtlZxSSEK3ONpsYk0XCpUxSE3PveiTLw9OCmPjU/cjtLYiPzuSz9/7i0jVfrFr1MLEXw8Z0x9NPfW89NiKN9R/t1dr+8XlDGDQyEAeFNdXVtcRGpLHho71aX9Yt0cNTgpj45AB1PVzK5LMVf3HpYlq9Q6tHTOjFA2O64eF7pR7SWf/xHjx9HTlxKBr/Tq54WJjw1R8v4aCwRk9fj8K8Epxc5Tg623D2eJzmWLYOluRmFWFoVDdwMTY1pLKJ0/Q/PKk3Ex/vj62dBfExmXy2eme9eWEARo7rwbCHAjUdoWOjMli/br/W9gveHsuDo7tp7XcqLJY3Xvzxnp3DPaVSAQ0YNabSrRFnjUUELndo0OT+PPPhDD5+9ksij8fyyPxRrNj1BjMDXqIwp27ODmMzYzISsjn0axhz1zxZ7zEDB3Zi+2e7iT4Zi76BPjOXP8rK3W8yq9PLVJQ1T9+FtNgsvn7zF9Yv+5VeD3ThgccGEDSyGz5dPPDp4sGs/0whOSoNF18FX73+M/8evMj454azfNtCnu7xGkU5yjrHNDY1IiMhh0NbT/LMykdv+NqJEaksHr1K87y2tmXf4hj4UFfmvP4wn7z1G9Hnkhn35P38Z/0sZj+wqk5LCEBgH19C/jpL5L9JVFVWM2nOYJZvmM3ckR+Ql6W+hibNCWbMjAF8uOgXMlPymf7ycP6zfhbPjPiAHZuOseNyx8wbyc0s4usVf2meO7nJ8QlwwaejC74dXfFu74zC3RZHZxscnW0ICg7QbFtdXUNqQi5JsZcTtMVmkxSbRUZKft2ss9fWw4guzF70EJ+88wfRF1IY98R9LP/fk8wa/d/666G3NyE7zhNxNpmqymomPz2Q9758kmfGfqzJf5OalMtny/8kIzUfY2NDxk+/j/e+eoqZIz9ssWnlBw7vzOxXR/LJ/21X18Pj/Vn+xZPMGrO2/nro5c2hPRfpPaAKIyND5HYWfLB+NtEXU7l4OhHfABfcfYz47L2/yEzL5/8+m0FudhH/9+l0stILCN11QXMs/44uJFzKoqyk7ufGG6un0rWPD7lZRWRnFpF7uf9OTmYRuVnF5GQVkVNQ1mjDvAc90Ik58x/kk5V/E3UxlfHT+rL8k8d5euKn9f7tAnt6cnDPRSLOp1BdWcPkGffx3qdPMGfKZ+Rd83ly8mgMH757NTX9nc4PJui+Fp/y/9ChQ6xevZrTp0+TkZHB1q1bteZYuJXGTvn/cdh7XDoVx6cvfAOoRx78lPwF2z7dyS/vb7vpvt/Hr+P3j/6u0+JyPWt7K37N/oZXBi3lwuHIBpf5ioam/Le0NWfA2N4MntyXrvd30CxXqVRcOBLN0e2nmbJwNFvX7WHzmr9veqyN4R+wbd2eeltc+o/uwbz+SxtU1ptprJT/V/z31xe4dCGFz9/ZBqivie8Ov8H274+w5X8Hb10ePRlb/n2Xz5ZtY/+20wD8ePQtfv/mEL99EwqAmYUJm44vZc2iXwj9+1yjlNvUzhLvdgrN40rCNnOL+jNiVlVWk5aYR1JctiZRW0p8DmlJeVRX1bB201wuXUzjs+V/aurh+/2L2P5TGJu/PnR79RD2Jp8t/5P928/Wu42ZuTG/n1jK4pnfcPZ4Iw3hb+SU/2t/fEZdD5cDR5lMxvd7XmX7pmNs/vbG9eDkKsfN0w5nN1vmvDqSr/+7m+0/HcPCypTXV0/B3MKE2loVZ47F8feWE/y0/zWO7AsnKS6b79btx8bWnA83zmbN0q2En0mqc/zPf3seb/+bJxkDdTK+nOxicrOLyc0qJjdbSW5OMXnX/CwsKL1pEAvw0fqnuRSRzrrVOy/XA/zw18v8sfkEmzfeOmGinp6MX/e/xmerd7DvcnbqBW+PxcLC5J4mqWvSlP8OT2Ogd/epDGpUVezL+eaelrUlavEtLqWlpXTt2pWZM2fyyCOPNGtZDAwNaNfTh59XbtUskySJf/edp2Pfdo32OubW6gBDmV/SaMdsDMr80ssjjkJQeNmz/txqMhKycfVT0PX+DppgZsoro9A30Of4jjN31SfG1VfBTzFrqaqoJvJELN++vYWc1JY5wsnAUB//zq5s/uLqcGZJkjh7NIYO3T1v6xjGpkboG+ijLFL/F6pwt8XW0YozR2M025SVVBB9LpmA7p6NFriUlVQS/m8S4f9qf8k5OFvj5eeEVzsnPH3VSdquZJ31bq/Au732l19trYqstAKc3WwpyFUyclJvUhNySEvM48yxWDp09bit8hibGGJgoI+yqLze9QaG+oyc1JuS4nLiozPr3aa5GRjo49/BhV+uCdQkSeLM8Tg6dHW/yZ6QlVZAVlqBetTQwpFkpqo7XJcUl/POSz/i5GKD3N6S6POpjJqiroev1uzihTfH8r+tL1JdVcNv3x2pt28NwItTP8fO0QoHhbXmYa+wxsHJCnsn9XNruTkmpka4e9rj7ml/w7LW1qjIzyshL6eYvBzl1Ueu+mdRQSn+AS78vOGfa+oBzpyIp2MXt9uqS/X1oIeyWPt6COzpxS+7F6JUlnPuZCIbvjhww2umxRN9XO5Kiw9cRo4cyciRI5u7GABY21uib6BPQZb2XBoF2UW4B7jeYK87I5PJePa/T3LxnygSw1tuR9iqihr09PVYPedL8jIKuW9ML+4b05PO/dthYWPOk0sn8OTSCeSk5nF81zlO7D7H2dAIKsuqbnrcqJPxfDD3K1IvZWKrsObxJeP4cM8bPNPnDcpLWl5HUiu5ufqayNMOMgtyS3Dzub2WnZmLHiI/u5gzR9SBitze8vIxtG+3FeSWIHewbIRS31xORhE5GUWcPHxJs0wmk+HoYoOnryMevuoEbe7e6rmALKxMNTM39xvSkX5DOmr2q66qobZGxeLVk0lLyiP9cgK49OQ8igu1bxfMXDCCvOxizoTFaS3vM6g9Sz6YgrGJIfk5Jbw+e32dfVsKK7kZ+gb6FF53PRTmleDufeNA4FozXx5OXo6SM8eu1kNlRTUKN1uWrJp8tR6e2UBmagFvzN2AuaUJ1nJz0pNvnD25urpWPdlhPSPQrjC0MsXewRIHJ2vsHC2xd7TCwdEKOwf173YOlsjtLNA30MPByQoHp5v/l//mikmaYCY/rwSFsw3WcjOGj+lOQV6JOsNxXom6BadW+0v46ReGkZer5N8TV1vWTh2N5cjBSDLTCnF2k/PUvKEs/+gx5s/85pYtQELr0eIDlztVWVlJZeXV+7vFxbo1J88L62bh1dmdl+9/q7mLctuyU/LYum43W9ftZt4Hj9NneFcSw1PpPqQTDm52jJ41hNGzhlBVWc3i0e8THhZzw2Od2nte83tCeApRp+L5PuJDBj7Sh93f3fp2g66Z9MxgBo3qxqLHvmjRkyVKkqRpEThx3SzVtvaWdOjuwVtrHyV0x3lMLYxx87LHyVWOoZEBhkYQ/FDXOsdUFpXz1eqd7Nl6msmzBhI8sguLnvy6Tj2cOxHPvAmfYm1jzsiJvXj9w6m8NO2LevuL6LrJMwcSPKILi2Z+U7ceTsYzb9I6rOVmjHykN69/MJWXHlPXQ6mygtJG6JtSVVlDemoB6ak3Dm709GXIbS2wc7DUPOwdrLBztMTWzkLz3NLaFANDfZycbXByttE6xitvjdF6rlJJFBeWcWhfOOtW72TyjPsIfqAzr87doNWHJXTv1WkwEuOySYjNYuO2lwjs6cXZkwnonEZK+d/WtLrAZcWKFbzzzjv35NhFuUpqa2qRO1lrLZc7WlOQWdjg4z//ydMEjerBgkFvk9vCk78V56nrwsZRuy7MLE1JDE9l2dSPMDIxpOvADvQZ0ZXeDwRi72pL/IU7a0UqLSojNTYTF5/6Z5ltbsUFpeprwk479bXc3qJOi8n1Jjw9iMnPDOb16V+SGH11KPSV/eT2lhRc0ylRbm9B3A1GZDSn/Fwlx0OiqK2pJWTnecIOqPtlGRrqs2TNVGztLTm8+yKuXva4etrh4m6Lg7MNltamlJdWMuHJAUx+eiBLZq0n4VJWneNXlleTkZxPRnI+UedT+GbHy4x4pKfW7ZiWorigTP2+uO56sLGzoCD35rd+J8y4j8kz72fJnPUkxNygHlLyyUjJJ+p8Kt/8OZ8R43vyyzdNWw+qWklza+hGDAz02H74DT5+/y8SY7M1LTWjxvfE3NKExLhsbO0ssLW3xMbWHH19PWxszTE0MmDi4/2YMmMAi5/7joTY7JuWJTOtkMKCUlzcbHUycJEkFVIDZoduyL66rNUFLkuWLOGVV17RPC8uLq4z5ffdqqmu4dLpeLoP7cLRP9RZLGUyGd2HduGPdbsadOznP3ma+8b1YeHgt8lMvPmbtSWoqa4l5kwi3YM7EvbXv4C6LroFd2T7//YBUFVRzck95zm5R92K4uBqe8e3e0zMjXHxdmT/z0cb9wQaSU11LTEX0+jW308zKaJMJqNbfz+2f3/jMk+cHczUeUN486mvibmoPbQ3MyWf/OxiuvX3I/5ygjMzC2Pad/Xg7x/D7t3JNEBNdS0xEel06+urCVxqalT4d3Tlz03H+O2avg6g7r+gcJNz3wOdmDBjAG/M2UBMeNptvZZMJsPQqGV+dNXU1BITmU63IB/CDqrrQSaT0S3Ihz83Hb/hfhOfGsC0WcG88ewGYm4zOJXp6bXgelARE5WOj5+CXdvOAOrOuVOfvJ/tW7Q75+rpybC0NsXWzoIhI7rw6NMDef2FH4iJvPVcRvaOllhZm5Gfd/N/ElosSWpYq4no49I6GBsb33BK78bw23//YtGG57h0Ko7oE7GMnz8KE3Njdq9Xjx5ZtOF5ctPz+fb1nwB1h17PjurOaIZGBti72uHb1YvykgrS49QdDF9YN4sh0wbw9rhVlCkrkDvZAOrWhqqKm/cJaU6/f7qLhf+bzaV/E4g+Hc/454ZjYmbMnh/UWTtf/XIOuekFrF+2BVD3BfLpou6oaWhkgJ2LHJ8uHlSUVpAerw7WZi+fyrGdZ8hOzsPO2YYn3hhPrUpFyJabD/9tTlu/PcSC1VOIuZBK9PkUxj15P8amRuz9VR3cLlg9lbysIjZ8oB5dMWlOME/MH877L/9EVmqBpk9LeVklFZf7AG3bcJip84aSlphLVko+T7w8nLysYo5e01Te0vy+8QgL35tATHga0RdSGf9Ef0xMjdizVT1SauF7E8nLLmb92j1UVlTTZ1B7ps4J5v1Fm8lKL0Bur26lKC+roqKsCmNTQ6bNCebYwSjyc5RYyc14eFpf7J2sOLz7YnOe6k39/t0RFv5nAjER6ep6ePxyPVweMbZw+QTysopZ//FeACY9dT9PPDeU9xdvJiutUNN6V15WRUX55XqYHcyxkEjyc0qwsjHj4alB2DtacnhPC66Hn46x8O1xXIpMJzo8jfHT+mJiasieP88C8OqyceTmKFm/bj9FBWUMf7g746b15f03fycroxC5nTlwpR6qMTE15PHZwfxzIIKCvBKc3WyZ9cIw0lPyOX1dvyihdWt1gcu9Frr5KDYOVsx4ZwpyhQ1xZxN5feRyCrPVHXYdPeyRromg7VzkfHFmteb55IVjmLxwDOdCwlk4ZBkAY54dDsCHIdq3uFY/tY49G0Pu6fk0ROhvJ7C2t2L6m48gd7Im/nwyb4z/gMLLOTgc3G1RXZMgyc5Zzudh/6d5Pmn+Q0ya/xDnDkeyaORKAOxd5SxZ/yyWthYU5SoJD7vE/MH/R9Etbrs0p0M7zmFtZ87j84dj62BJXEQ6b838WtNB09HFRuuaGPVoPwyNDHhz3XSt4/zw8R5+vPxltuXLEExMjXjxPxOxsDIh/FQib82s2/+jJTm06wLWtuY88fxQ5PaWxEdl8OYzGyjMU/dFcXS25trsC6OnBGFkZMBba7Vz+vywbj8/fHYAVa2Eu7cDw8b2wEpuhrKwjEsX01g4/SuS4lpuq+Sh3RexlpvzxLyhlxPxZfDmsxspvNwnx1GhfT2MntxHXQ9rrquHzw/ww+eX68HLnmEfPnq1HsLTWPjk1y26HkL3hmNtY8b0Z4KR26kT8b3x4o+aenBQWKO65noYNaGXuh5WTdY6zvdfhvDDV6GoVBLefo48MKor5pYm5OUo+fd4HBu/OKizM2WrW0xEi8udavF5XEpKSoiNVWel7d69O2vWrGHw4MHY2tri4XHrYZaNncdFlzU0j0tr0dh5XHSVZHz3+SNalUbO46LLJOO2/RkJTZvHZajlYxjIGpDHRapiv/JHkcelpTl16hSDBw/WPL/Sf2XGjBls2LChmUolCIIgCEJzaPGBS3BwMC28UUgQBEEQ7py4VXRXWnzgIgiCIAitkaRSIcnEcOg7dfM51gVBEARBEFoQ0eIiCIIgCM1B3Cq6KyJwEQRBEITmoJJAJgKXOyVuFQmCIAiCoDNEi4sgCIIgNAdJAhrQwbaNtriIwEUQBEEQmoGkkpAacKuoraYKEYGLIAiCIDQHSUXDWlzEcGhBEARBEIQWTbS4CIIgCEIzELeK7o4IXARBEAShOYhbRXel1QcuVyLSGqoblOenNdCTqpq7CC2CnqqyuYvQIki1bfwNoSFmh75Cqq1t7iI0u5pa9edDU7RmNPR7qYbqxiuMDmn1gYtSqQTgH3Y0c0lagLLmLkALkdDcBRAEoaVTKpVYW1vfk2MbGRmhUCj4J7Ph30sKhQIjI6NGKJXukEmt/CaZSqUiPT0dS0tLZLLm+c+quLgYd3d3UlJSsLKyapYytASiHtREPaiJerhK1IVaS6gHSZJQKpW4uLigp3fvxq9UVFRQVdXwVnAjIyNMTEwaoUS6o9W3uOjp6eHm5tbcxQDAysqqTX8oXSHqQU3Ug5qoh6tEXag1dz3cq5aWa5mYmLS5gKOxiOHQgiAIgiDoDBG4CIIgCIKgM0Tg0gSMjY15++23MTY2bu6iNCtRD2qiHtREPVwl6kJN1INwO1p951xBEARBEFoP0eIiCIIgCILOEIGLIAiCIAg6QwQugiAIgiDoDBG4CIIgCIKgM0Tg0kiWLVuGTCbTegQEBGjWV1RU8Nxzz2FnZ4eFhQUTJkwgKyurGUvcOA4dOsTDDz+Mi4sLMpmMbdu2aa2XJImlS5fi7OyMqakpw4YNIyYmRmub/Px8HnvsMaysrLCxseHpp5+mpKSkCc+icdyqLp588sk618iIESO0ttH1ulixYgW9e/fG0tISR0dHxo0bR3R0tNY2t/NeSE5OZtSoUZiZmeHo6Mirr75KTU1NU55Kg9xOPQQHB9e5HubOnau1ja7XA8Dnn39OYGCgJqlcv3792Llzp2Z9W7gehMYlApdG1KlTJzIyMjSPf/75R7Pu5Zdf5s8//2TLli2EhoaSnp7OI4880oylbRylpaV07dqVdevW1bt+1apVfPzxx3zxxRccP34cc3Nzhg8fTkVFhWabxx57jPDwcPbu3ctff/3FoUOHmDNnTlOdQqO5VV0AjBgxQusa2bRpk9Z6Xa+L0NBQnnvuOY4dO8bevXuprq7mwQcfpLS0VLPNrd4LtbW1jBo1iqqqKo4ePcrGjRvZsGEDS5cubY5Tuiu3Uw8As2fP1roeVq1apVnXGuoBwM3NjZUrV3L69GlOnTrFkCFDGDt2LOHh4UDbuB6ERiYJjeLtt9+WunbtWu+6wsJCydDQUNqyZYtmWWRkpARIYWFhTVTCew+Qtm7dqnmuUqkkhUIhrV69WrOssLBQMjY2ljZt2iRJkiRFRERIgHTy5EnNNjt37pRkMpmUlpbWZGVvbNfXhSRJ0owZM6SxY8fecJ/WWBfZ2dkSIIWGhkqSdHvvhR07dkh6enpSZmamZpvPP/9csrKykiorK5v2BBrJ9fUgSZI0aNAg6aWXXrrhPq2xHq6Qy+XS119/3WavB6FhRItLI4qJicHFxQUfHx8ee+wxkpOTATh9+jTV1dUMGzZMs21AQAAeHh6EhYU1V3HvuYSEBDIzM7XO29ramqCgIM15h4WFYWNjQ69evTTbDBs2DD09PY4fP97kZb7XQkJCcHR0pH379jz77LPk5eVp1rXGuigqKgLA1tYWuL33QlhYGF26dMHJyUmzzfDhwykuLtb8l65rrq+HK3788Ufs7e3p3LkzS5Ysoazs6hTurbEeamtr+fnnnyktLaVfv35t9noQGqbVT7LYVIKCgtiwYQPt27cnIyODd955h/vvv5+LFy+SmZmJkZERNjY2Wvs4OTmRmZnZPAVuAlfO7doPnCvPr6zLzMzE0dFRa72BgQG2tratrm5GjBjBI488gre3N3Fxcbz++uuMHDmSsLAw9PX1W11dqFQq5s+fz3333Ufnzp0Bbuu9kJmZWe81c2WdrqmvHgAeffRRPD09cXFx4fz587z22mtER0fz+++/A62rHi5cuEC/fv2oqKjAwsKCrVu30rFjR86ePdvmrgeh4UTg0khGjhyp+T0wMJCgoCA8PT3ZvHkzpqamzVgyoaWYOnWq5vcuXboQGBiIr68vISEhDB06tBlLdm8899xzXLx4UauvV1t0o3q4tu9Sly5dcHZ2ZujQocTFxeHr69vUxbyn2rdvz9mzZykqKuLXX39lxowZhIaGNnexBB0lbhXdIzY2NrRr147Y2FgUCgVVVVUUFhZqbZOVlYVCoWieAjaBK+d2/QiBa89boVCQnZ2ttb6mpob8/PxWXTcAPj4+2NvbExsbC7Suunj++ef566+/OHjwIG5ubprlt/NeUCgU9V4zV9bpkhvVQ32CgoIAtK6H1lIPRkZG+Pn50bNnT1asWEHXrl356KOP2tz1IDQOEbjcIyUlJcTFxeHs7EzPnj0xNDRk//79mvXR0dEkJyfTr1+/ZizlveXt7Y1CodA67+LiYo4fP6457379+lFYWMjp06c12xw4cACVSqX5IG+tUlNTycvLw9nZGWgddSFJEs8//zxbt27lwIEDeHt7a62/nfdCv379uHDhglYQt3fvXqysrOjYsWPTnEgD3aoe6nP27FkAretB1+vhRlQqFZWVlW3mehAaWXP3Dm4tFixYIIWEhEgJCQnSkSNHpGHDhkn29vZSdna2JEmSNHfuXMnDw0M6cOCAdOrUKalfv35Sv379mrnUDadUKqUzZ85IZ86ckQBpzZo10pkzZ6SkpCRJkiRp5cqVko2NjfTHH39I58+fl8aOHSt5e3tL5eXlmmOMGDFC6t69u3T8+HHpn3/+kfz9/aVp06Y11yndtZvVhVKplBYuXCiFhYVJCQkJ0r59+6QePXpI/v7+UkVFheYYul4Xzz77rGRtbS2FhIRIGRkZmkdZWZlmm1u9F2pqaqTOnTtLDz74oHT27Flp165dkoODg7RkyZLmOKW7cqt6iI2Nld59913p1KlTUkJCgvTHH39IPj4+0sCBAzXHaA31IEmStHjxYik0NFRKSEiQzp8/Ly1evFiSyWTSnj17JElqG9eD0LhE4NJIpkyZIjk7O0tGRkaSq6urNGXKFCk2Nlazvry8XJo3b54kl8slMzMzafz48VJGRkYzlrhxHDx4UALqPGbMmCFJknpI9FtvvSU5OTlJxsbG0tChQ6Xo6GitY+Tl5UnTpk2TLCwsJCsrK+mpp56SlEplM5xNw9ysLsrKyqQHH3xQcnBwkAwNDSVPT09p9uzZWkM8JUn366K+8wek9evXa7a5nfdCYmKiNHLkSMnU1FSyt7eXFixYIFVXVzfx2dy9W9VDcnKyNHDgQMnW1lYyNjaW/Pz8pFdffVUqKirSOo6u14MkSdLMmTMlT09PycjISHJwcJCGDh2qCVokqW1cD0LjkkmSJDVd+44gCIIgCMLdE31cBEEQBEHQGSJwEQRBEARBZ4jARRAEQRAEnSECF0EQBEEQdIYIXARBEARB0BkicBEEQRAEQWeIwEUQBEEQBJ0hAhdBEBokMTERmUymSVkvCIJwL4nARRBaoQ0bNmBjY1NnuZeXF2vXrm3y8giCIDQWEbgIgiAIgqAzROAiCC1QcHAwL774IosWLcLW1haFQsGyZcs069esWUOXLl0wNzfH3d2defPmUVJSAkBISAhPPfUURUVFyGQyZDIZy5YtIzg4mKSkJF5++WXNcoC8vDymTZuGq6srZmZmdOnShU2bNmmVR6VSsWrVKvz8/DA2NsbDw4Ply5fXW/ba2lpmzpxJQEAAycnJ96aCBEFos0TgIggt1MaNGzE3N+f48eOsWrWKd999l7179wKgp6fHxx9/THh4OBs3buTAgQMsWrQIgP79+7N27VqsrKzIyMggIyODhQsX8vvvv+Pm5sa7776rWQ5QUVFBz549+fvvv7l48SJz5szhiSee4MSJE5qyLFmyhJUrV/LWW28RERHBTz/9hJOTU50yV1ZWMmnSJM6ePcvhw4fx8PBogpoSBKEtEZMsCkILFBwcTG1tLYcPH9Ys69OnD0OGDGHlypV1tv/111+ZO3cuubm5gLqPy/z58yksLNTazsvLi/nz5zN//vybvv7o0aMJCAjggw8+QKlU4uDgwKeffsqsWbPqbJuYmIi3tzeHDx9m2bJlVFZW8tdff2FtbX3nJy4IgnALBs1dAEEQ6hcYGKj13NnZmezsbAD27dvHihUriIqKori4mJqaGioqKigrK8PMzOyOXqe2tpb33nuPzZs3k5aWRlVVFZWVlZrjREZGUllZydChQ296nGnTpuHm5saBAwcwNTW9ozIIgiDcLnGrSBBaKENDQ63nMpkMlUpFYmIio0ePJjAwkN9++43Tp0+zbt06AKqqqu74dVavXs1HH33Ea6+9xsGDBzl79izDhw/XHOt2g5CHHnqI8+fPExYWdsdlEARBuF0icBEEHXP69GlUKhUffvghffv2pV27dqSnp2ttY2RkRG1tbZ1961t+5MgRxo4dy+OPP07Xrl3x8fHh0qVLmvX+/v6Ympqyf//+m5br2WefZeXKlYwZM4bQ0NAGnKEgCMKNicBFEHSMn58f1dXVfPLJJ8THx/P999/zxRdfaG3j5eVFSUkJ+/fvJzc3l7KyMs3yQ4cOkZaWpukP4+/vz969ezl69CiRkZE888wzZGVlaY5lYmLCa6+9xqJFi/juu++Ii4vj2LFjfPPNN3XK9sILL/Cf//yH0aNH888//9zDWhAEoa0SgYsg6JiuXbuyZs0a3n//fTp37syPP/7IihUrtLbp378/c+fOZcqUKTg4OLBq1SoA3n33XRITE/H19cXBwQGAN998kx49ejB8+HCCg4NRKBSMGzdO63hvvfUWCxYsYOnSpXTo0IEpU6Zo+ttcb/78+bzzzjs89NBDHD16tPErQBCENk2MKhIEQRAEQWeIFhdBEARBEHSGCFwEQRAEQdAZInARBEEQBEFniMBFEARBEASdIQIXQRAEQRB0hghcBEEQBEHQGSJwEQRBEARBZ4jARRAEQRAEnSECF0EQBEEQdIYIXARBEARB0BkicBEEQRAEQWeIwEUQBEEQBJ3x/ymgAPSKXwDDAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 2 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_performance(euclid_classifier, top_5_scorer, 500, tre, distributions_mults)" ] }, { @@ -512,7 +2777,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "id": "1f24b323-3604-4e34-a880-9dfd611fb245", "metadata": { "scrolled": true @@ -529,18 +2794,1416 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "id": "f1052222-ad32-4e25-97ca-851cc42bf546", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd0c41b2ba854130a3e11c46e17ec1b0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nattack: 0%| | 0/6 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "478784faa4b94d429b98b37a820def57", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "209d64069ce9435da23f62682b828ad4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,1: [3072], 0.148\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "33d005665a1747dba01fe60e6fb4c630", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,2: [131, 3072], 0.434\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "32bdd9803d27464387db9034fb86e92a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,3: [296, 12288, 131], 0.646\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "afcae911b9dc427796bdd50643c3a474", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,4: [342, 296, 123, 3072], 0.73\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e97347ebaec4d018aaaef666c307399", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,5: [768, 157, 43, 216, 57], 0.814\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eb96b6325a1e42baa63f57baaa4ae652", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,6: [162, 512, 165, 768, 57, 248], 0.844\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d7d6788b2b3f41708c0123ac3c73c901", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,7: [21711016731996786641919559689128982722488122124807605757398297001483711807488, 173, 102, 3072, 336, 1024, 103], 0.868\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f6399966759041a8be233670dc937299", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,8: [2048, 1176956575385002643219210516851437453019191645837006471168, 85, 33, 12288, 105, 178, 125], 0.892\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bb2ef21c12ee48538d30817e6cabdce4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,9: [131, 296, 57, 1024, 102, 99, 196, 17, 192], 0.922\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6daa95c095c744b6a847abf1cb5c7da6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,10: [80, 77, 172, 2048, 336, 29, 53, 588478287692501321609605258425718726509595822918503235584, 346, 178], 0.93\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "829ed72c6b8f4afdb7d9556b2fe9c1e8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c9eba258522d4fc3bd9b31625f8b052c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,1: [1536], 0.178\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6ec2c294b02c4a1681d114ce596b460b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,2: [83, 1536], 0.584\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d8e14a03845e46199afaa46492d491d0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,3: [1536, 79, 216], 0.756\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "37422066fed14839bc172c4c416575d3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,4: [342, 248, 57, 3072], 0.862\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e50d69794634e6896caf2a04aa8c1fe", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,5: [1536, 95, 325, 1024, 296], 0.924\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d8d690e8ec0e44fdb3c636ddf141ae68", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,6: [320, 27, 196, 173, 59, 12288], 0.94\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4258d734955749eda31cd89d54b23649", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,7: [160, 3072, 89, 192, 103, 109, 296], 0.958\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "03ded72caf5a459facbe3322f37a4b6b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,8: [65, 75, 105, 55, 1024, 59, 126, 346], 0.972\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2da9b0d659794020b7c94511a963da50", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,9: [101, 142, 1024, 80, 2048, 178, 325, 192, 336], 0.984\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "54128919a06d49f9b20ce563d488f90c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,10: [2048, 173688133855974293135356477513031861779904976998460846059186376011869694459904, 102, 157, 172, 105, 43, 216, 224, 162], 0.984\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e30999c3d8ff4214b77dab199643f38c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4c161e4ab0464e9e92deadf052ff9298", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,1: [3072], 0.208\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4e12ae59d4214c0e98af6a0d381e6310", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,2: [1536, 99], 0.64\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a4ed711f08b243c3968a72c81161dc1f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,3: [276, 59, 768], 0.846\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d6d6cd767dbe4a7f98cd92d1f4db9e69", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,4: [384, 55, 165, 3072], 0.91\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "10f77baf2fb74269ac62f923e8f8cf3a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,5: [1024, 59, 296, 131, 196608], 0.946\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "403e71b8952e49fd98e6a2b61ef66234", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,6: [165, 256, 105, 131, 3072, 320], 0.97\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b3f0a7148b6044be8406bd3283df98a3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,7: [123, 172, 111, 512, 142, 105, 43], 0.988\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "11d3082b162a4d708231b50bb23adad5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,8: [2048, 768, 165, 59, 81, 155, 343, 102], 0.99\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b93618c4bc86409f8dd0afaf8d0bbd98", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,9: [276, 216, 1536, 109, 768, 21711016731996786641919559689128982722488122124807605757398297001483711807488, 81, 325, 79], 0.996\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "12ca99c8f82944719c2d807881bc57d9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,10: [296, 224, 25, 8388609, 126, 57, 83, 77, 125, 2048], 0.994\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "994be9cb1a1f487bb7520d4b3f8fbf68", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ed8667691f6147c8856d95930450fef0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,1: [3072], 0.242\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fc81e268b2174f3793b8180bca33c708", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,2: [65, 12288], 0.736\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3f3f97c4666140f79d25f857cd968a18", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,3: [315, 3072, 196], 0.902\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "007745576dd44f7e8f059963a1763c8e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,4: [325, 43, 2048, 248], 0.948\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "02ace6fecc2a4c9db4f69a08e13d25ab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,5: [142, 39, 101, 3072, 512], 0.98\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "51b4b67acd094a4c9e278e2e8e3bad14", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,6: [196, 126, 155, 1536, 72, 192], 0.99\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "52c794f0c87a435fb5211c56aebbb4bb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,7: [53, 224, 1024, 178, 95, 65, 276], 0.992\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d481504c240640efaee50eae297faa53", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,8: [216, 144, 79, 4194306, 77, 41, 768, 85], 0.998\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fa215a0fc703419fa161181efdd711f6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,9: [240, 256, 123, 99, 55, 39, 109, 228, 1024], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4615d9be81bb4a36b230f7d1b1eac4e0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,10: [81, 512, 248, 138, 342, 101, 38, 240, 128, 111], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e5cadf09034242ea85e0834b04be8d26", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9553f82f09b544dca78b54ecab8f8d6b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,1: [1536], 0.256\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3e1bdb581e7a4291bda9e5a5737aa79c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,2: [85, 3072], 0.788\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1f163f751820437bae84f95f4d3fa491", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,3: [123, 1536, 276], 0.924\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "49e5d3d739c34198b4400219ce725caf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,4: [3072, 138, 172, 75], 0.966\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dc7a27c8b40e43b7a52d8c8c28d157fd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,5: [99, 123, 768, 56668397794435742564352, 178], 0.986\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8cc69b73e3ca48c9a0aafe894d8a1433", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,6: [325, 1024, 56, 248, 59, 162], 0.992\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fb58d0dadb0f49fb94c7dbeba4c1fae0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,7: [85, 131, 1536, 296, 123, 53, 329], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "19b6cdf27dc047eeaacaaa4770b94aaf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,8: [329, 192, 89, 128, 1024, 29, 172, 55], 0.998\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7c87e7b7d3a14a67975681fdbb97a95d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,9: [3072, 1176956575385002643219210516851437453019191645837006471168, 59, 44, 75, 131, 102, 336, 80], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b94d48c36d3d437db34f90b0bf793436", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,10: [85, 33, 109, 72, 53, 2048, 192, 101, 21711016731996786641919559689128982722488122124807605757398297001483711807488, 12288], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f74f5098e2fd4ed6b31ee406deb2ca06", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9ecb8265f3c94043a104bae25418f89f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,1: [1536], 0.276\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60eb13c750fb472fb0f700b4c3d5ae63", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,2: [109, 768], 0.802\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3dc188dccdc242a8abb170d35a535a56", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,3: [79, 3072, 123], 0.96\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a7b7a7553ba745ad8a6b305194c9ad0a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,4: [1536, 342, 248, 111], 0.984\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "07ab85befc804fac997f67d52d5ec706", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,5: [105, 224, 2048, 157, 65], 0.992\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b9fab30ec79b489798c1de65f48cd074", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,6: [99, 1536, 85, 123, 83, 256], 0.996\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d074bd88105845798d7dc834490542dc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,7: [144, 216, 125, 65, 25, 1536, 35], 0.998\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2ce91fc1a7ee44539344530bdd036991", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,8: [105, 6, 20, 196, 342, 85, 35, 768], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7d549274041244ab85aca0d5183b7869", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,9: [276, 65, 512, 228, 192, 16384, 173, 21, 162], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "357645380ba9440b9fe6f7918e7bb98f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "retries: 0%| | 0/500 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,10: [172, 165, 12, 72, 768, 173688133855974293135356477513031861779904976998460846059186376011869694459904, 123, 84, 173, 1024], 1.0\n" + ] + } + ], "source": [ "simulations = 500\n", - "retries = 200\n", - "nfeats = trange(1, 11, leave=False, desc=\"nfeats\")\n", - "nattack = trange(50, 350, 50, leave=False, desc=\"nattack\")\n", + "retries = 500\n", + "nattack = range(50, 350, 50)\n", + "nfeats = range(1, 11)\n", "num_workers = 30\n", "\n", - "selected_random_bayes = find_features_random(feats_in_tree, nfeats, nattack, num_workers, retries, simulations, bayes)" + "bayes_classifier = BayesClassifier()\n", + "tree_random_subsets = RandomFeatures(sorted(feats_in_tree), distributions_mults, num_workers,\n", + " simulations, bayes_classifier, top_5_scorer, retries)\n", + "\n", + "bay = feature_search(nfeats, nattack, tree_random_subsets, restarts=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "id": "b7d1f703-5dc6-4c00-b739-11b47205ed75", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3ed5e39fd1264f2585bd2f51d8c2190e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Evaluating: 0%| | 0/60 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAHHCAYAAACY6dMIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnWd4VEUXgN/dzdb0ntCSEHoJJfQWmjRpfipNaQpiQRSwoYJ0BKVLEaQoxYIiIFJEqiC9KxZKgJCekF52k937/QjZsGQDaZCNzPs894HcPTP3zNm5d889c2ZGJkmShEAgEAgEAkE5QF7WCggEAoFAIBAUFuG4CAQCgUAgKDcIx0UgEAgEAkG5QTguAoFAIBAIyg3CcREIBAKBQFBuEI6LQCAQCASCcoNwXAQCgUAgEJQbhOMiEAgEAoGg3CAcF4FAIBAIBOUG4bjYCDKZjNGjR5e1GoL/EAkJCQwcOBAvLy8UCgXXr1+/r/ywYcNwcHB4NMoVguvXr6NQKPD09GTAgAEkJiYWuQ6TyUS9evWYMWNG6StYzpg8eTIymazMrn/gwAFkMhkHDhywOL9u3Tpq1aqFUqnExcUFgPbt29O+fftSvX58fDz29vbs2LGjVOsVPHoeW8fl999/Z/LkycV6GAoE5YH58+fzzTff0Lt3b7744gs8PT3Nn12/ft3qj0hhaN++PcOGDSu2XjKZzOrx8ccfW8h5enqyatUqBgwYwLfffsu8efOKfK2vv/6asLAwi5eCtWvX5ru2l5cXHTp0YOfOncVuV1mRmZnJ/Pnzad68Oc7Ozmg0GmrUqMHo0aP5999/y1q9+/L3338zbNgwAgMDWblyJStWrHho13J3d2fEiBFMnDjxoV1D8GiwK2sFyorff/+dKVOmMGzYMLOXLxD8lzhz5gweHh6sXLmyTN+0rfHEE08wZMgQi3ONGjWy+Nve3p5hw4YxbNgwdu/ezblz54p8nU8++YQBAwbg7Oyc77OpU6cSEBCAJElER0ezdu1aevTowU8//UTPnj2LfK2yIC4ujm7dunH69Gl69uzJoEGDcHBw4J9//uGbb75hxYoVGAyGslYTgHbt2pGRkYFKpTKfO3DgACaTiYULF1KtWjXz+V9++eWh6PDyyy+zaNEi9u3bR8eOHR/KNQQPn8fWcRGUPSaTCYPBgEajKWtVbJa0tDTs7e2LXdbLy8vmnBaAGjVq8Pzzzxda3sfHh5SUlCJd4+zZs5w/f565c+da/bx79+40adLE/PeLL76It7c3X3/9dblxXIYNG8bZs2f5/vvvefrppy0+mzZtGh988EEZaZYfuVye716PiYkByPfyeLdzU1Lufs7Url2bevXqsXbtWuG4lGMey6GiyZMn8/bbbwMQEBBgDhfn5gBkZ2czbdo0AgMDUavV+Pv78/7776PX6y3q8ff3p2fPnvzyyy80bNgQjUZDnTp12Lx5c6noOX36dORyOYsXLy50ma1bt/Lkk09SoUIF1Go1gYGBTJs2DaPRmE/2+PHj9OjRA1dXV+zt7QkKCmLhwoUWMn///Tf9+vXD09MTrVZLzZo1LR6Gw4YNw9/fP1/d1sbTc/N4NmzYQN26dVGr1ezatQuATz/9lFatWuHu7o5WqyU4OJjvv//eahvXr19Ps2bN0Ol0uLq60q5dO/Mb2tChQ/Hw8CArKytfuS5dulCzZs37G/AuoqKiGD58OJUqVUKtVuPr60ufPn3y5Yrs3LmTkJAQHB0dcXJyomnTpmzcuNFCZtOmTQQHB6PVavHw8OD5558nPDzcQiY3x+Tq1av06NEDR0dHnnvuOSDn4btgwQLq1q2LRqPB29ubUaNGkZCQUKD+kiSV2Gk5d+4cnp6etG/fntTU1ALlbt68yd9//12kujMyMsjMzCyUrFwup6gb2W/ZsgWVSkW7du0KJe/i4oJWq8XOzvJ9rjB9MyQkhAYNGlitt2bNmnTt2tX8d2G/y1OnTtG1a1c8PDzQarUEBATwwgsvmD8/fvw4P//8My+++GI+pwVArVbz6aef3rfNa9asoWPHjnh5eaFWq6lTpw7Lli3LJ/cgXQC++eYbgoODzfdB/fr1LZ4n9+a4+Pv789FHHwE5w4IymYzJkycD1nNc9Ho9H330EdWqVUOtVlO5cmXeeeedfM/l+z1nICfa99NPPxW5Pwlsh8fScfnf//7HwIEDgZw8gHXr1rFu3TpzDsCIESOYNGkSjRs3Zv78+YSEhDBr1iwGDBiQr67Lly/Tv39/unfvzqxZs7Czs+PZZ59lz549JdLxww8/ZNKkSXz++ee8/vrrhS63du1aHBwcGDduHAsXLiQ4OJhJkybx3nvvWcjt2bOHdu3acenSJd544w3mzp1Lhw4d2L59u1nmwoULNG/enH379jFy5EgWLlxI3759+emnn4rdrn379jF27Fj69+/PwoULzU7PwoULadSoEVOnTmXmzJlmO/78888W5adMmcLgwYNRKpVMnTqVKVOmULlyZfbt2wfA4MGDiY+PZ/fu3RbloqKi2LdvX5He8p9++ml+/PFHhg8fztKlSxkzZgwpKSncvHnTLLN27VqefPJJbt++zYQJE/j4449p2LChxYNy7dq19OvXD4VCwaxZsxg5ciSbN2+mTZs2+XKssrOz6dq1K15eXnz66afmH6RRo0bx9ttv07p1axYuXMjw4cPZsGEDXbt2teqkQc4PpFxe/Fv85MmTdOzYkUaNGrFz5877Ju4OGTKE2rVrF7rutWvXYm9vj1arpU6dOvkcvXuRyWSYTKZC1w85w8H16tVDqVRa/TwpKYm4uDhiY2P5888/eeWVV0hNTc3XRwrTNwcPHsyFCxf4448/LMqePHmSf//916LOwnyXMTExdOnShevXr/Pee++xePFinnvuOY4dO2auZ9u2beZrF5dly5bh5+fH+++/z9y5c6lcuTKvvvoqS5YsMcsURpc9e/YwcOBAXF1dmT17Nh9//DHt27fnyJEjBV57wYIFPPXUU2Y91q1bx//+9z+rsiaTid69e/Ppp5/Sq1cvFi9eTN++fZk/fz79+/fPJ1/QcwYgODiYxMRE/vzzz6KaS2ArSI8pn3zyiQRIoaGhFufPnTsnAdKIESMszr/11lsSIO3bt898zs/PTwKkH374wXwuKSlJ8vX1lRo1alQkfQDptddekyRJksaPHy/J5XJp7dq1RWyVJKWnp+c7N2rUKEmn00mZmZmSJElSdna2FBAQIPn5+UkJCQkWsiaTyfz/du3aSY6OjtKNGzcKlBk6dKjk5+eX75offfSRdG/3AiS5XC79+eefD9TbYDBI9erVkzp27Gg+d/nyZUkul0tPPfWUZDQarepkNBqlSpUqSf3797f4fN68eZJMJpOuXbuW79rWSEhIkADpk08+KVAmMTFRcnR0lJo3by5lZGRY1cdgMEheXl5SvXr1LGS2b98uAdKkSZPM54YOHSoB0nvvvWdR12+//SYB0oYNGyzO79q1y+r5XAIDA6W2bdsWqr2517e3t5ckSZIOHz4sOTk5SU8++aS539yPkJCQfN93QbRq1UpasGCBtHXrVmnZsmVSvXr1JEBaunRpgWX69OkjVatWrXANuUOlSpWkp59+Ot/5NWvWSEC+Q61WW73nCtM3ExMTJY1GI7377rsWsmPGjJHs7e2l1NRUSZIK/13++OOPEiCdPHmywPY99dRTEpDvHi4Ia/ektedF165dpapVq5r/Lowub7zxhuTk5CRlZ2cXKLN//34JkPbv359Pp9jYWAvZkJAQKSQkxPz3unXrJLlcLv32228WcsuXL5cA6ciRI+Zz93vOSJIk/f777xIgffvttwXqKrBtHsuIy/3InSo3btw4i/Pjx48HyBcBqFChgvmtAcDJyYkhQ4Zw9uxZoqKiinRtSZIYPXo0CxcuZP369QwdOrTI+mu1WvP/U1JSiIuLo23btqSnp5tD+WfPniU0NJQ333wz39hy7tBCbGwshw4d4oUXXqBKlSpWZYpDSEgIderUua/eCQkJJCUl0bZtW86cOWM+v2XLFkwmE5MmTcoXScjVSS6X89xzz7Ft2zaLnIgNGzbQqlUrAgICCqWnVqtFpVJx4MCBAodj9uzZQ0pKCu+9916+sftcfU6dOkVMTAyvvvqqhcyTTz5JrVq18vUngFdeecXi702bNuHs7MwTTzxBXFyc+QgODsbBwYH9+/ebZbOysggLC2PRokVcvXqVzp07F6q9d7N//366du1Kp06d2Lx5M2q1+oFlDhw4UOjQ+5EjR3jjjTfo3bs3L7/8MqdPn6ZevXq8//77ZGRkWC0TEhLClStX+OyzzwgLCyswynQ38fHxuLq6Fvj5kiVL2LNnD3v27GH9+vV06NCBESNG5BvqLUzfdHZ2pk+fPnz99ddmOxiNRr799lv69u1rzlMq7HeZe19u3769wLYmJycD4Ojo+EBbFMTdbcuNQIWEhHDt2jWSkpIKrYuLiwtpaWkljjQXxKZNm6hduza1atWysFtunsrd9wAU/JwBzH0iLi7uoegqeASUseNUZhQUcRk1apQkl8slg8GQr4yLi4v0zDPPmP/28/OT2rVrl09u1apVEiAdPXq00PoAkoODgwRIy5YtK3xD7uGPP/6Q+vbtKzk5OeV7ozx48KAkSZL0zTffSIC0Z8+eAus5duyYBEgrV6687/WKGnF54YUXrNbz008/Sc2bN5fUarWFzjKZzCzz8ssvS3K5XNLr9ffV6c8//5QA6csvv5QkSZL+/vtvCZCWL19+33L3Mn/+fEkul0tKpVJq27atNHv2bCkyMtL8+ccffywB0uXLlwus4+uvv5YAae/evfk+69u3r+Th4WH+e+jQoZKdnV2+aFL37t2tRghyj969e5tlc99qAalPnz73fQO+l6FDh0oKhULSarVSmzZtpKysrEKXLSm5b873vlHnYjQapWeffdbctrvf2gtCq9VKL774Yr7zuRGXeyMIRqNRCgoKknx9fS36WGH6piRJ0s8//2xxn+VGUXbt2mWWKex3aTKZpKeffloCJCcnJ6l3797S6tWrLaJfpRFxOXz4sNSpUydJp9Pl0yU30loYXaKjo6XatWtLgFSxYkVp+PDh0s6dOy2uVZKIS27dBR1jxowxy97vOSNJknTp0qUHRvgEto2YVVQAZTETo3Xr1pw7d47PPvuMfv364ebmVqTyiYmJhISE4OTkxNSpUwkMDESj0XDmzBnefffdIucIFIaC7GQtGRgs3/By+e233+jduzft2rVj6dKl+Pr6olQqWbNmzQNzH6xRp04dgoODWb9+PUOGDGH9+vWoVCr69etXpHrefPNNevXqxZYtW9i9ezcTJ05k1qxZ7Nu3L9/U3dJCrVbniyaZTCa8vLzYsGGD1TJ3r8/SoEEDtm3bxq5du1i6dCmLFy/mzTffLNL1e/TowdatW9m1a9cjm11TuXJlAG7fvm318zVr1rBp0yZGjx5Nly5dCkyEvRt3d/f7Ji/fi1wup0OHDixcuJDLly9Tt27dIvXNrl274u3tzfr162nXrh3r16/Hx8fHIupV2O9SJpPx/fffc+zYMX766Sd2797NCy+8wNy5czl27BgODg7UqlULgIsXL9K2bdtCtzOXq1ev0qlTJ2rVqsW8efOoXLkyKpWKHTt2MH/+fPPzojC6eHl5ce7cOXbv3s3OnTvZuXMna9asYciQIXz55ZdF1u1eTCYT9evXL3Atn9z+k4u150wuuX3Cw8OjxHoJyoiy9pzKik8//dRqxGXmzJkSIF26dMnifFRUlARI48ePN5/z8/OTKlSoYJHzIUmS9O6770qAxdv5g+BOjsv58+clV1dXqWnTplJycnKR2pQ7Fp37xpfLihUrLN50Tp48KQHS/PnzC6wrJiZGAqQ33njjvtccO3as5OzsnO/84MGDrUZccvN47uaNN96QtFptvlyKQYMGWdSRGyU7e/bsfXWSJElauHChpFAopIiICKlq1arSU0899cAyD+Lff/+VdDqd9Nxzz0mSJEmbNm2SAOnHH38ssEzueLq1t7vatWtLwcHB5r/vzjG5m1dffVVSKBRW8xHuh5+fn9SmTZtCy+deX6/XS926dZM0Gk2hIhulweLFiyVA+v33361+3rt3bykgIKBIdXbu3NlqrllBERdJkqTXXntNAqRjx45JklT4vpnL2LFjJVdXV+n27duSg4ODNHbsWIvPi/tdSpIkbdiwwSIKmtu3XnrppUKVvzfiMn/+fIvISi7vv/++1Wfj/XS5F6PRKI0aNcoiIlmSiEuPHj2kihUr5nvWWqOg50wu69evlwDp4sWLD6xLYJs8tjkuuWPO987q6NGjB5CT8X43uZ7+k08+aXE+IiKCH3/80fx3cnIyX331FQ0bNsTHx6fIegUFBbFjxw7++usvevXqVeCYvzUUCgWARa6BwWBg6dKlFnKNGzcmICCABQsW5Gt/bllPT0/atWvH6tWrLWbR3Ft/YGAgSUlJXLhwwXwuMjLSwiaF0Vsmk1lEaa5fv86WLVss5Pr27YtcLmfq1Kn5okfSPfkVAwcORCaT8cYbb3Dt2rUizSYCSE9PzzdVNzAwEEdHR/P0yy5duuDo6MisWbPyyebq06RJE7y8vFi+fLnFtM2dO3fy119/5etP1ujXrx9Go5Fp06bl+yw7O7vA1Z+rVKlSrJWhVSoVmzdvpmnTpvTq1YsTJ048sExhp0PHxsbmO5eSksKCBQvw8PAgODjYarnk5GQqVar0YOXvomXLlvzxxx/5pssWRFZWFr/88gsqlco8Q6qwfTOXwYMHk5CQwKhRo6zOUCrsd5mQkJCvTzds2BDA3J6WLVvSrVs3vvjiC6v6GAwG3nrrrQLba+15kZSUxJo1ayzkCqNLfHy8xedyuZygoCALmZLQr18/wsPDWblyZb7PMjIySEtLK3Rdp0+fxtnZmbp165ZYL0HZ8NgOFeU+ID/44AMGDBiAUqmkV69eNGjQgKFDh7JixQrz0MuJEyf48ssv6du3Lx06dLCop0aNGrz44oucPHkSb29vVq9eTXR0dL6bvyi0aNGCrVu30qNHD5555hm2bNlS4JTOu2nVqhWurq4MHTqUMWPGIJPJWLduXb6HjlwuZ9myZfTq1YuGDRsyfPhwfH19+fvvv/nzzz/NU4kXLVpEmzZtaNy4MS+99BIBAQFcv36dn3/+2byK6YABA3j33Xd56qmnGDNmDOnp6SxbtowaNWpYJC/ejyeffJJ58+bRrVs3Bg0aRExMDEuWLKFatWoWDlG1atX44IMPmDZtGm3btuV///sfarWakydPUqFCBWbNmmWW9fT0pFu3bmzatAkXF5dCOQh38++//9KpUyf69etHnTp1sLOz48cffyQ6Oto8Ld7JyYn58+czYsQImjZtyqBBg3B1deX8+fOkp6fz5ZdfolQqmT17NsOHDyckJISBAwcSHR1tnqI5duzYB+oSEhLCqFGjmDVrFufOnaNLly4olUouX77Mpk2bWLhwIc8880y+csVZ+yQXrVbL9u3b6dixI927d+fgwYPUq1evQPkhQ4Zw8ODBB15vyZIlbNmyhV69elGlShUiIyPNzvG6desKXHhMkqQiT+3u06cP06ZN4+DBg3Tp0iXf5zt37jQ7WzExMWzcuJHLly/z3nvv4eTkBBS+b+bSqFEj6tWrZ04mbdy4scXnhf0uv/zyS5YuXcpTTz1FYGAgKSkprFy5EicnJ/PLFcBXX31Fly5d+N///kevXr3o1KkT9vb2XL58mW+++YbIyMgC13Lp0qULKpWKXr16mR2tlStX4uXlRWRkpFmuMLqMGDGC27dv07FjRypVqsSNGzdYvHgxDRs2LNI0+YIYPHgw3333HS+//DL79++ndevWGI1G/v77b7777jt2795tsZjg/dizZw+9evWyyYUZBYWkbAI9tsG0adOkihUrSnK53CI0mpWVJU2ZMkUKCAiQlEqlVLlyZWnChAn5wsV+fn7Sk08+Ke3evVsKCgqS1Gq1VKtWLWnTpk1F1gUr4c2tW7dKdnZ2Uv/+/fMlbBbEkSNHpBYtWkharVaqUKGC9M4770i7d++2mtB4+PBh6YknnpAcHR0le3t7KSgoSFq8eLGFzB9//CE99dRTkouLi6TRaKSaNWtKEydOtJD55ZdfpHr16kkqlUqqWbOmtH79+gKTcwsK4a5atUqqXr262YZr1qyxWockSdLq1aulRo0aSWq1WnJ1dZVCQkKsJhp/9913RQql301cXJz02muvSbVq1ZLs7e0lZ2dnqXnz5tJ3332XT3bbtm1Sq1atJK1WKzk5OUnNmjWTvv76awuZb7/91qyzm5ub9Nxzz0m3bt2ykCloqCiXFStWSMHBwZJWq5UcHR2l+vXrS++8844UERFhVb5jx45SYGBgodts7fpxcXFSnTp1JB8fn/smIRd2OvQvv/wiPfHEE5KPj4+kVColFxcXqUuXLlaTl++mWbNmUqdOnQrXkLsICgrKl6BrbTq0RqORGjZsKC1btizfcERR+qYkSdKcOXMkQJo5c2aBej3ouzxz5ow0cOBAqUqVKpJarZa8vLyknj17SqdOncpXV3p6uvTpp59KTZs2lRwcHCSVSiVVr15dev3116UrV66Y5azpvG3bNikoKEjSaDSSv7+/NHv2bGn16tUWz8PC6PL9999LXbp0kby8vCSVSiVVqVJFGjVqlMVweUmGiiQpZxr67Nmzpbp165rv/eDgYGnKlClSUlKSWe5+z5m//vpLAqRff/3V6ueC8sFj7biUlFzHRWCbbNmyRQKkQ4cOlbUqZcLgwYMlhUIhbd++XYqMjCy082srGI1GKSoqStq/f7+k1WqlIUOGFLmOr776SnJ0dCz0zJvSYMGCBZJMJsuXOyIoe9544w2pUaNGhcqVEdguMkkS6x4XF39/f+rVq2ex2qzAdujZsyd//fUXV65ceSzDwkePHqV79+7m9ThCQ0Otbs9gq1y/ft287o6zszO7du2iRYsWRarDZDIRFBTEwIEDH8m+PZIk0aBBA9zd3fOtLSIoW+Lj4/Hz8+O7776zGG4TlD8e2xyXR8WDFqHTarVWd669l9jY2AKnGENOQmVRp0//V/nmm2+4cOECP//8MwsXLszntCQlJT0w6bk4idW2RsuWLYmKiuLSpUskJiaWuzb5+Piwd+9ecyJlcTbjlMvl+ZbhfxikpaWxbds29u/fz8WLF9m6detDv6agaLi7u993vy1B+UFEXEpAYSIuD3rTHzp0KGvXri3UtW7cuFHg5yEhIebNyx53ZDIZDg4O9O/fn+XLl+fbNG/YsGEPXFtC3BaCopAbHXJxceHVV19lxowZZa2SQPCfRTguD5lff/31vp9XqFChwKWp7+bIkSP3jRK4uroWOJVUYMmlS5eIiIi4r0xxlsoXCAQCwcNHOC4CgUAgEAjKDY/tAnQCgUAgEAjKH//55FyTyURERASOjo6P5cwSgUAgEBQeSZJISUmhQoUKRV70sChkZmZiMBhKXI9KpSpW4np55j/vuEREROTbgEsgEAgEgvsRFhZW5G0mCktmZiYBfg5ExRQ8U7Sw+Pj4EBoa+lg5L/95x8XR0RGAFb/VQeugKGNtypYe9mIqIEC6qeRvOf8FdHLry+s/bsgRkdhcsqSS/5CWd1JSTQQGh5l/Ox4GBoOBqBgjN0774+RY/KhOcooJv+DrGAwG4bj8l8gdHtI6KNA5Pt6Oi5O9SGkCsDMJOwDoHmIYvDwhF6l+ZrLEXA0zjyK1wMFRhoNj8a9jekyd7v+84yIQCAQCgS1ilEwYS+ArGiVT6SlTjhCOi0AgEAgEZYAJCRPF91xKUrY8I2KkAoFAIBAIyg0i4iIQCAQCQRlgwkRJBntKVrr8IhwXgUAgEAjKAKMkYSxBQnRJypZnxFCRQCAQCASCcoOIuAgEAoFAUAaI5NziIRwXgUAgEAjKABMSRuG4FBkxVCQQCAQCgaDcICIuAoFAIBCUAWKoqHiIiEsx2LkulpdD/mRAnfO89/S/XD6fdl/57WtieP2JvxhY9zwvtfmTNdPDMejzprFlpBpZPf0Wo9r9ycC653n/2X+5ciH9YTejVFi6JolqTW/g4H+NVj1uceJsZoGyWVkS0+fdpmaLHPnGncLYvc+ynSmpJsZNjCOwyQ0cA67RttctTp4ruE5bYeXaFOo3j8Crahgde0Zz+qy+QNmsLInZ85No0CpHvnXnKH7dn2EhYzRKTJ+TRP0WEXgH3qJBqwjmzE9CsvFZBKI/wKGjGfQeEkGlhtdQ+F5my84H7xF24Pd0mjxxE63fFWq0vM7ab5PzySxdk0jVpqHo/K/QssfN+9rWVli+JpkazcJwDrhO2ycjOPmA+2LGvARqt8yRb9o5nF/25+8Pb02Kp3rTm7hUvU77XhGcOldwnbZO7qyikhyPI2XquBw6dIhevXpRoUIFZDIZW7ZssfhckiQmTZqEr68vWq2Wzp07c/ny5bJR9g5Hfk5g7cwI+r3uwydba+JXS8u04ddIis+yKv/btgTWfxJJv9d9WLi7Fq/OqsyRHQls+DTSLLP0/TDOH05lzKd+zPu5Fg3aODJlyBXio2x7M8Dvtqby9uQ4PhzvyondlQiqo+LJgZHExGVblZ80+zYr1yWzYIYHFw5W5qUhTjzzYhRnL+Y9eEaNj2HvoXTWLvbi7L7KPBGio1u/SMIjrddpC/ywNZ33pyTy7jgnDu3yoV4dJU89F0tsnPUN66bNSWLN+jQ+mebK8f2+DB/swHMj4jn/R973PX9JCqu+SuXT6a6cOODDlPddWLgshc9X2+5GmaI/5JCWbqJBHRWLZ3oVSj70Zha9no+gfWstZ/ZU4Y2RLrw0Pprd+/NeiL7dmsL4yXFMHO/Gqd2VCaqjpvvA8AJtawts2prKO1Pi+WCcC8d2V6B+HRW9BkURU8B9MXl2AqvWpzB/ujtnD1Rk5GBH+r0Yw7m7+sMr4+PYeyiD1Ys9Ob23Ip1CtPTob9v9QVD6lKnjkpaWRoMGDViyZInVz+fMmcOiRYtYvnw5x48fx97enq5du5KZWXZvGj+tjqVzf3c6PuNO5eoaRk2rhForZ++m21bl/z6TRq1ge9r2dsWrkpqGbZ1o09PVHFHRZ5o4tjuRIe/6UreZA77+avq/4YuPn5rdG+MfZdOKzILPE3nxOSeGDXCiTk0VS+d4otPKWPt1ilX5Dd+n8O4YV7p3sqeqn5KXhzrTvaOO+csTAcjIMLH55zRmTXSnbUst1QKUTHrLjUB/Oz7/MukRtqxoLFmZwtBBDjzf34FaNZQs+NgVnVbOum+sR+K+/SGN8a870qWTlgA/O0YMdeCJjho++zzPbidO6enRVUvXzlr8KtvRt6eODiEaTp+zXWdW9IccuneyZ9p7HjzVw6FQ8p9/lURAFSWfTvakdg0Vr73gwtM9HViwItEss+DzBEY858TwAc7Uqalm2RwvdFoZa77OH5mxFRatSOaFQY4MHeBI7RoqPpvtjk4r48sC+sPGH1J553UXunXSUdVPyUtDnejWUcuCz3O+64wMEz/uSGPmh260baElMEDJxLdcCfRXsuIr27XD/TCVwvE4UqaOS/fu3Zk+fTpPPfVUvs8kSWLBggV8+OGH9OnTh6CgIL766isiIiLyRWYeFVkGE1f/SCeodd4DSS6XEdTKgX/PWv+RqtXYnqt/pJuHk6Ju6jlzMJnGIU4AmLIlTEZQqi2/CpVGzt+nbPft2mCQOHNBT6e2OvM5uVxGx7Zajp227ljqDRIateVuphqNjN9P5MhnG8FoJJ+MViPnyAnbDIsbDBLnLhho31ZtPieXy2jfRs3J09ZD2Ho9qPO1UcaxE3nyzZqoOXQ4kytXcyJ5F/80cOyEnic62ObW9aI/FJ9jpzIs7AbQpb3ObDeDQeK0Fdt2aqvjaAG2LWty+0PHtlrzOblcRoe2Wo4XdF8YpHz3RU5/yJHP7Q/3kylvGO/MKirJ8ThiszkuoaGhREVF0blzZ/M5Z2dnmjdvztGjR8tEp5QEIyYjuLgrLc47eyhJLCBk27a3KwPe9OXDAVfoV+scr3X8i7rNHXj6VW8AtA4KajbS8f1nUdyOzsJolDi45Tb/nk0jIdZ2w59xt40YjeDlqbA47+1pR1SM9VBwl/Y6Fn6eyOVrBkwmiV8PprNlRxqRMTntdHSQ06KJmhnzE4iIysZolNjwfQrHTmcWWGdZE3/blGMHD0s7eHoqiI61/j7Uqb2GJStSuHotC5NJYt+hTH7akWHRxnGjHflfHx1NQqJw9wujbddoXhnhSL//2T/U9hQX0R+KT1SsEW8rdktOMZGRYTLb1ppMdIxtPiMK7A8eCqJjrX93nUO0LFqRxJU798WvBzPYuiOdqLv7Q7CaWQsSzf1h4w+pHD+tJyq6fPYHo1Ty43HEZh2XqKgoALy9vS3Oe3t7mz+zhl6vJzk52eIoS/48nkbm9eb8+OunzPupPu8s9efM/mQ2fZbXhjGf+iFJMLJ1TsLvjq/iaNPTFZnNfjvFY95UD6oFKKnXNgxdlWu88UEcQwc4IpfnvUGtXeyNJIFfoxvY+13js1VJ9O/rgFx2n4rLGbOnuhAYoKRJSBQe/rd4+4MEnutvb2GHzT9lsGlzOl8scefQLm+WL3Bj8fIUNn53/0Tw8oToD4K7mTvNnWoBSoLa3cLR7zpjP4hnSH8Hi/6warEnkgRVG4fh5H+dpauS6NfXHvl/7FkpuD//uenQs2bNYsqUKQ+lbkdXBXIFJN6TiJsUl4WLh3VTfj0/guMHjuNo78resONUqv4vmekmln8YxtOveiOXy/DxUzPt6+pkphvJSDXh6qVk7pjreFdWW63TFvBwU6BQQMw9b0/Rsdn4eCmslvH0UPDDWl8yM03EJ5io4KPg/Rm3qVolz3aB/kr2/ViRtHQTySkmfL3tGDQqigA/pdU6yxp3N3mOHe5JOIyNNeLtaf1p6uGuYONqDzIzJW4nGPH1UfDRzCT8q+TZbdK0RMaOduSZPjnDA3Vrqwi7lc28z5IZ1M/2oi6iPxQfH8/8UYjo2GycHOVotXIUChkKBVZlvL1s8xFeYH+Iyx9dysXTXcGmNd4W/eHDGQkE3NMfft3sa9Efnh8VQ4CfbdrhQZQ0T0XkuNgYPj4+AERHR1ucj46ONn9mjQkTJpCUlGQ+wsLCSk0npUpOYD0dF3/Pyz0xmSQu/J5KjUbWf0z0GSZu3LoEgLO6JgByRc4bxL0z2TQ6Ba5eSlKTsjn3WzJNOzuVmu6ljUolo3GQmn2H86YrmkwS+w9n0CL4/nkYGo2cir52ZGfDjz+n0qtrftvZ6+T4etuRkGjklwMZVmVsAZVKRsMgFQcP542xm0wSBw/raRp8f8dTo5FR4Y4dtu3IoEeXvHyA9AwJmcwyrCBXyDDZ6JNK9Ifi06KJ1sJuAL8eSjfbTaWSEWzFtvsOZ9DyAbYtK3L7w/7DeTk4JpPEgcMZNH/gfXFXf9iRRs+uunwyd/eHPQczrMqUB0zIMJbgMPF4hh5t1k0NCAjAx8eHvXv30rBhQwCSk5M5fvw4r7zySoHl1Go1avXDi1T0esGTxW/fJLC+jupBOravjUWfYaLjM24ALHrrBm7eSp5/uwIATTo6cXDvaerVbI1SX5Xzh1P4Zn4kTTo6o7jjwJw9lAwSVKiqJuqGga9mh1OxqoaOT7s/tHaUBm+OcuGFN2IIbqCmaUMNi1YmkZYuMXSAIwDDXo+moo8dMz7IacfxM5lERGbToJ6aiMhsps5NwGSCt15zMdf5y/50JAlqVFNyNTSLd6fFU7OakmF36rRFXhvpyCtj42kUpCK4kYqlK1NIyzDxfP+cH9dRY+Lx9VUweYILAKfO6ImIMlK/rorIKCOz5iZhMkm88Wqeo9r9CQ1zFyVTuaKCWjWVXPjDwJIVKTw/wHZ/sEV/yCE1zcSV0Lyo7PWbWZz7Q4+bi5wqlZS8PyOO8Khsvlyc8wI2aogzS1Yn8u60OIYPcGL/kXQ2bUvlp3UVzHW8OcqV4W9EE9xAQ7OGGhauTCAt3cSwAbb7cjPmJSdGvBlH4wYqmjZSs3hlMmnpEkPufHcvjImlgo+C6e/nPDtPnMkkIspIUF0VEVFGpt/pD+NfdTbXuedATn+oHqjkamg270+7Tc1qSob2t93+ICh9ytRxSU1N5cqVK+a/Q0NDOXfuHG5ublSpUoU333yT6dOnU716dQICApg4cSIVKlSgb9++ZaZz6yddSYrP5psFkSTGZhNQR8uHq6vi4pETuo6LMFjkpjzzmg+3z1wHIP5yJZZOuEmTjs4MGp8XNUpPMbLh00jio7JwcFHQoqsLg8b7Yqe0bW+6Xx8HYuONTJmTQFRsNg3qqtm+0Rdvz5xuFRaebTE+rc+U+Gj2ba7dzMZBJ6NbJx1rF3vh4pwXOk5KMfHhzHhuRWbj5qLgqSftmfaeG0obtsXTfXTE3zYy89MkomNzHJLN6z3NiYm3IowWY/CZ+pzF5a7fzMZeJ6dLRw0rFrnj4pwnNGe6KzPmJDH+/QRi4034eMsZ/rwD74613R8q0R9yOHU+k05Ph5v/Hj85DoAh/RxZs9CHyJhswsLzkmoDqij5aX0Fxn8Ux6IvEqnka8eKud507ZDnpPbv40hcvJHJc+KJijXSsK6KHRsrmm1rizzbx4G4eBNTP0kgOtZIg7pqtm3wNg8V5fSHPPlMvcTk2QmE3ukPXTvpWL3I07I/JJuYOCuB8Dv9oW8PHVNsvD/cD5OUc5Sk/OOITCrDpTgPHDhAhw4d8p0fOnQoa9euRZIkPvroI1asWEFiYiJt2rRh6dKl1KhRo9DXSE5OxtnZmXVn66NztD62+rBxUdehY6UN6I0J/Hy9Y5noANDb3vr6CY8b6SbbXQvlUaKTq8paBZtAbrsj5o+cLMk2Zyk9SpJTTHjVvEFSUhJOTg/nRSH3d+n4nz44OBa//6WmmGheN+qh6mqLlKm73r59+/suYS6TyZg6dSpTp059hFqVPsmGq0iSEbXCFY3Ck0xjbFmrJBAIBAJBuUS8ajwCTJKelKzrQF6CrkAgEAgeb0qSmJt7PI4Ix+URkaj/BwBnVeGHuQQCgUDw38UkyUp8PI4Ix+URkWTIcVxc1MJxEQgEAoGguNhuSvp/jCRzxKVWGWsiEAgEAlugpMM9j+tQkXBcHhFJhn8BcFBWxk6mI1tKf0AJgUAgEPyXMSLHWIKBj/K5Q1PJEUNFjwi9MYGM7BhkMjlO6uplrY5AIBAIyhiphPktkshxETxsEvV/A+AihosEAoFAICgWwnF5hJgdF7VwXAQCgeBxR0yHLh4ix+URkqj/CxCOi0AgEAjAKMkxSiXIcXlMl/wXEZdHSOKdKdFOqkDkKMtYG4FAIBAIyh/CcXmEZGRHojcmIJcpcVJVK2t1BAKBQFCGmJBhQl6C4/EcKhKOyyMmL8+ldhlrIhAIBIKyROS4FI/HJselivI2Dsqy99OkrLNASyprAyAz/pFeOzRb7PwK4Ckvm13CbQ2jZCprFWyDx/PZbxWFrOyfkWWN4jHoD0uWLOGTTz4hKiqKBg0asHjxYpo1a2ZVNisri1mzZvHll18SHh5OzZo1mT17Nt26dXvEWucheukjJt1wEQCdqn4ZayIQCASCsiQ3ObckR1H59ttvGTduHB999BFnzpyhQYMGdO3alZiYGKvyH374IZ9//jmLFy/m0qVLvPzyyzz11FOcPXu2pM0vNsJxecTkOi5aVS1kIkFXIBAIHltyclxKdhSVefPmMXLkSIYPH06dOnVYvnw5Op2O1atXW5Vft24d77//Pj169KBq1aq88sor9OjRg7lz55a0+cVGOC6PGIPxJtnGROQyNRplzbJWRyAQCATlnOTkZItDr9dblTMYDJw+fZrOnTubz8nlcjp37szRo0etltHr9Wg0GotzWq2Ww4cPl14DiohwXMqA3KiLvbpBGWsiEAgEgrLCdGevouIepjs/4ZUrV8bZ2dl8zJo1y+r14uLiMBqNeHt7W5z39vYmKirKapmuXbsyb948Ll++jMlkYs+ePWzevJnIyMjSNUYReGySc22JdMMFnLRt0amCgA1lrY5AIBAIyoCSL0CXswJdWFgYTk5O5vNqtbrEuuWycOFCRo4cSa1atZDJZAQGBjJ8+PACh5YeBSLiUgakG84D3HFcBAKBQPA4UrI1XPIiLk5OThZHQY6Lh4cHCoWC6Ohoi/PR0dH4+PhYLePp6cmWLVtIS0vjxo0b/P333zg4OFC1atXSNUYREI5LGZB2x3HRKmsik5WeZywQCAQCQUGoVCqCg4PZu3ev+ZzJZGLv3r20bNnyvmU1Gg0VK1YkOzubH374gT59+jxsdQtEDBWVAVnGSLKMMSgVXuiU9UgznC5rlQQCgUDwiDFKMoxS8ReOKU7ZcePGMXToUJo0aUKzZs1YsGABaWlpDB8+HIAhQ4ZQsWJFc57M8ePHCQ8Pp2HDhoSHhzN58mRMJhPvvPNOsfUuKcJxKSPS9Odx0T2BTt1AOC4CgUDwGJKbZFv88kXfZbF///7ExsYyadIkoqKiaNiwIbt27TIn7N68eRO5PE+nzMxMPvzwQ65du4aDgwM9evRg3bp1uLi4FFvvkiIclzIi3XAOF90T2KsaEFvWyggEAoHgsWH06NGMHj3a6mcHDhyw+DskJIRLly49Aq0Kj3Bcyog0c4JuozLWRCAQCARlgUmSYyrBrCKTVPSIy38B4biUEbkzizRKfxRyF4ymxLJVSCAQCASPlLIYKvovIGYVFYPvvkyhZ+sIWtYIY0ifaP44Z32VQoCsLIkVC5Po3TZHfkC3KH4/kIHRlERm1jUAzhyuRf+uUbSre4t2dW8xrG80R/ZnPKrmlIj1a9Po0DKGetUieaZXHOfPGgqUzcqS+GxBCp1a58j36hLLof2ZFjKL5qVQo3KkxdG1vfU9NGyJlWtTCWoeiU/VW3TuGc3pB9hhzvxkGrXKkW/TOZpf77GD0SgxY04SDVpE4ht4i0atIvlkfjKSjb9hLV+TTI1mYTgHXKftkxGcPHv/e2PGvARqt8yRb9o5nF/2p1vIpKSaeGtSPNWb3sSl6nXa94rg1H3uN1th6ZokqjW9gYP/NVr1uMWJs5kFymZlSUyfd5uaLXLkG3cKY/e+/HYYNzGOwCY3cAy4Rttetzh5ruA6bQVhB8HDwOYdl5SUFN588038/PzQarW0atWKkydPlpk+v/yUzrzpibz0hhMbtvtQo7aS0YNjuR1ntCq/7NMkNm9I450prmz61Zenn3PgrZfi+fsPA2mGcwDUrtmE1991Zv12b9b95E3TVmrGjYzj6r9Zj7BlRefnbRnMmpbM6Dcd2LLDg1p17Hhx8G3iC7DFgk9S+GZ9OhOnObFjrycDn9fx2sgELv1h2c7qNew4ctrLfHy92eNRNKfYbN6azodTEnl3nBMHdnlTr46Kp5+LJbYAO0yfk8Ta9anMnubCsf0+DB9sz+ARcVz4I8/ZWbAkhdVfpTFnugvHD/gw+X1nFi1LYcXq1EfVrCKzaWsq70yJ54NxLhzbXYH6dVT0GhRFTAF2mDw7gVXrU5g/3Z2zByoycrAj/V6M4dzFPMfklfFx7D2UwerFnpzeW5FOIVp69I8kPNJ2dzr/bmsqb0+O48PxrpzYXYmgOiqeHBhJTJx1nSfNvs3KdcksmOHBhYOVeWmIE8+8GMXZu+wwanwMew+ls3axF2f3VeaJEB3d+gk7lAc73A8TeTOLinM8rvu727zjMmLECPbs2cO6deu4ePEiXbp0oXPnzoSHh5eJPuu/SOGpAQ707udA1RpK3p/pikYrZ+t3aVblf96cxguvOdKmo5ZKVex4drADrTtoWL8yhTT9GQBq12pKm45aqgQo8auq5LV3XNDp5Fw8Y9tvlmtWptFvoI6n++uoVkPJ1FnOaDQyvv/WerRo6w8ZvDzagfYdNVTxs2PQEHtCOmpYvcLyx1hhB55eCvPh5mbb3XTpyhSGDLLnuf721KqhZN7HLui0MtZ/Y71PfPdDOmNfd6JLJy3+fna8ONSBJzpq+ezzPDucOGWgR1cNXTtrqVLZjj49dXQI0XD6nO06s4tWJPPCIEeGDnCkdg0Vn812R6eV8eXXKVblN/6Qyjuvu9Ctk46qfkpeGupEt45aFnyeBEBGhokfd6Qx80M32rbQEhigZOJbrgT6K1nxVfKjbFqRWPB5Ii8+58SwAU7Uqali6RxPdFoZawuww4bvU3h3jCvdO9lT1U/Jy0Od6d5Rx/zliUCOHTb/nMasie60bamlWoCSSW+5Eehvx+dfJj3ClhUNYYcHU1oL0D1u2HSrMzIy+OGHH5gzZw7t2rWjWrVqTJ48mWrVqrFs2bJHrk+WQeLviwaatclbNE4ul9GsjbpAJyPLACq15Vx7tUbGuVN60vQ524LbqxrBnV0+jUaJ3dvSycgwEdTYdhenMxgk/ryYRat7bNGqrZpzp60PkxgMEmqNpS00Gjh90vLH+EaokTbB0XRsHcP41xOICLf+xm4LGAwS5y5k0b5t3iZkcrmMkDYaThZgB70eNOp77SDj2Im8PtSsiYqDh/VcuZpjm4t/Gjh2Qk/nDpabndkKBoPEmQt6OrbVms/J5TI6tNVy/LT1e0NvkFBbscPvd+yQbQSjkfvK2Bq5dujUVmc+J5fL6NhWy7HT1oc09AbJan/4/USOfK4d7pXRauQcOWGbwyTCDoKHiU07LtnZ2RiNRpvZmTIxwYTRCO4eCovz7h4K4mKtB+1atNOw4YsUboZmYTJJHPstk327MoiLMZKR9RcmUyZ2CheiblaiTe1btKx+i5kf3ObTzz2oWkP5KJpVLBJu59jCw9OyC3l4yIktwBZtQtSsWZnG9dBsTCaJI4f0/LIzk5iYPMekQSMlH89z5ov1bkyZ4cytMCODno4nNdU2g6Lxd+zg6WFpB09POTGx1h2uju3VLF2RwtVrOX1i/6FMtu/IIPouO4wd7cj/+uhoFhKNp98tQrrG8PIIB/r9T2e1zrIm7rYRoxG8PC3vDW8PBdEF2KFziJZFK5K4cscOvx7MYOuOdKJicsL+jg5yWgSrmbUgkYiobIxGiY0/pHL8tJ6oaNt0Zgu0g6cdUTHWde7SXsfCzxO5fM1wxw7pbNmRRuTddmiiZsb8BLMdNnyfwrHTmQXWWdYIOxSO3L2KSnI8jth0qx0dHWnZsiXTpk0jIiICo9HI+vXrOXr0aIE7U+r1+nxbfJclb092oXKAkqc7RtGi2i3mTEqg97P2yGUyIJt0wwUAalZvztc7vflyqzfPPO/AR+Nvc83Gc1yKyodTnPDzV9CtfSx1q0YxdWIS/+unQ37XC1RIBw3de2qpVVtJ2/ZqVn7pRnKyiZ3b/ztvVB9PdaFqgB3NQqLx8g/nnQ8SGdRfx11rPvHjTxls2pzOyiVuHNjlzdIFrny2PJWvCxiSLI/MneZOtQAlQe1u4eh3nbEfxDOkvwPyuzrEqsWeSBJUbRyGk/91lq5Kol9fewtblXfmTfWgWoCSem3D0FW5xhsfxDF0gKOFHdYu9kaSwK/RDez9rvHZqiT693WwuHfKO4+jHUzISnw8jtj87b9u3TokSaJixYqo1WoWLVrEwIEDLVb2u5tZs2ZZbO9duXLlUtPFxVWOQkG+5NP4OGO+yEMuru4K5q304PBfldj+uy8/7PNBZy+jYpWcN5E0Q06ei5OuMZX9ldSur+L1d12oUVvJ12usjwXbAq5uOba4N9IUF2fCswBbuLkrWLbKjfP/+LD/qBe7Dnhiby+jsl/Bs/KdnOX4B9hx47ptJt+537FDbJylHWJjTfneNnPxcFewYbUH4ZcrcuG4LycOeWNvL8O/Sp4dJk1L4s3RjjzdR0fd2koGPGPPqyMdmP+ZbfYJDzcFCgX5okzRcUa8C7CDp7uCTWu8uX3Fj39PVObCbxVxsJcTcJcdAv2V/LrZl/grflw5VZnDOyqSnQUB9+kzZUmBdojNxserADt4KPhhrS9JVwO4etKPP36rjIO9nKr32GHfjxVJvBpA6Gk/ju6sRHa2RICfbUZlhR0Kh4i4FA+bb3VgYCAHDx4kNTWVsLAwTpw4QVZWVoE7U06YMIGkpCTzERYWVmq6KFUyatVXcfJI3vi6ySRx8oie+g/IR1FrZHj52JGdDXt3ZhDSJScXIDdB117d2ELeZMoZJ7ZVVCoZdesrOXqPLY4e1tMwWHXfsmqNDB9fBdnZsHtHJp2eKNh2aWkmwm5k41XAw66sUalkNAxScvBwXkTIZJI4dFhP0wfYQaORUeGOHX7akUH3Lnn5IRkZUr63SLkip1/YIiqVjMZBavbfY4cDhzNoHnz/e0OjkVPRN+fe+HFHGj275h8Os9fJ8fW2IyHRyJ6DGVZlbIFcO+w7nDeN12SS2H84gxbB989PsrDDz6n06mqfT+ZuO/xyIMOqjC0g7CB4mNjma4sV7O3tsbe3JyEhgd27dzNnzhyrcmq1usAtvUuD50c48tH4eGoHqajXQMXG1SlkpJvo/WzOjTNpbDyePgpef9cFgItn9cRGGalRV0VslJHP5ychmSSGjnICIPWO46JR1iQmQkNScjK7tqZz+piez9Z5PrR2lAbDR9rz7rhE6gUpCWqo5MtV6WRkSDzdL+cH+O03E/H2kfPWezltPX/WQFSUkdp1lERHmVg8PwWTBCNfcTDX+fG0ZDp2VlOhkoKYaBOL5qUgV8jo2cc2k1IBXh3pyKtjb9MoSEXjRiqWrUwlLcPEc/1z+sTLY27j66vgownOAJw6oycyykT9ukoioozMnpuMyQRvvOporrPbExrmLUqhUkUFtWsqufBHFktXpPLcANv8wQYY85ITI96Mo3EDFU0bqVm8Mpm0dIkhA3La9cKYWCr4KJj+vhsAJ85kEhFlJKiuiogoI9PnJmAywfhXnc117jmQjiRB9UAlV0OzeX/abWpWUzK0v6NVHWyBN0e58MIbMQQ3UNO0oYZFK5NIS5cYescOw16PpqKPHTM+cAfg+JlMIiKzaVBPTURkNlPv2OGt11zMdf6yP8cONaopuRqaxbvT4qlZTcmwAcIOtm6H+1HyBehsPvbwULB5x2X37t1IkkTNmjW5cuUKb7/9NrVq1TLvZPmo6dJLR0K8keXzkoiPNVKjjorFX3nificcHhVhRHZXXzLoJZZ+mkR4WDZanZw2HTRMW+COo3OOULYphuiY63h7+bNgShVOnNxP9VpKPlvnSYu2tvtjDfBkby23b5tYNDeV2Ngch2TVOjc87tgiMtxoETXQZ0os+CSVsJvZ6HQyQjpq+GSBC07OeQaLijQybnQiCYkm3NzkBDdVsWmrO27uthlxAfhfHx1xt03M/DSZmFgj9esq+X69h3mo6FZEtkVOhl4PM+Ykcf1mNvY6OU901LB8kRvOd9lh9nQXZs5J5q33E4mLN+LjrWDY8/a8M9bpUTev0Dzbx4G4eBNTP0kgOtZIg7pqtm3wNg8VhYVb2iFTLzF5dgKhN7Nx0Mno2knH6kWeuDjnfddJySYmzkogPDIbNxcFfXvomPKeG0ql7Y7t9+vjQGy8kSlzEoiKzaZBXTXbN/ri7ZnzuM2xQ57++kyJj2bf5todO3TrpGPtYi9LO6SY+HBmPLfu2OGpJ+2ZJuxQLuxwP0ySDFMJdocuSdnyjEyy8aU4v/vuOyZMmMCtW7dwc3Pj6aefZsaMGTg7Oz+4MJCcnIyzszMH/6iIg6Nteqf+7gtxs3+KiMS5RCUvfGjXcZTbZp7Io8ZTbrtO0KNEKyufeQGljUJmm88FQdmQnGLCvUYoSUlJODk9nBeF3N+lOSfbonUofvwgIzWbd5r+9lB1tUVsPuLSr18/+vXrV9ZqPFRS9adxs38KB3WTslZFIBAIBI8IUwmHih7XBehs3nF5HEjTnwZyE3Tl8Ngu5CwQCASPDyXfHfrxdFwez1bbGBlZf2M0paCQO6JV1ixrdQQCgUAgsFmE42ITGO+aFt20jHURCAQCwaPAiKzEx+OIcFxshFR9zo7XDsJxEQgEgseC3KGikhyPI49nq20Q4bgIBAKBQPBgRHKujZBmOIskZaGyq4BKUQmD8VZZqyQQCASCh4gRSjTcUz63liw5IuJiI0hSJumGiwA4aJqXsTYCgUAgeNiIoaLi8Xi22kZJ1Z8AwEHdrIw1EQgEAsHDRmyyWDwez1bbKMJxEQgEAoHg/ogcFxsiNfMkkmRCowzETu5BtimurFUSCAQCwUNCQoapBDkukpgOLShrjFISGVl/AeCgaVHG2ggEAoHgYSKGiorH49lqGyZ3uMhRLRJ0BQKBQCC4l8dmqOhoRjU0CttvbqD8Bj0dQaZqx2/pNUq17h4Ol0q1vvKKWmb7/UDw6DBKYm+wXMRO2Y8WkyTDJBV/uKckZcsz4gluY4RnXADAQx2AVuFChjGxbBUSCAQCwUPBWMLdoUtStjzzeLbahsk0JhOXGQpARV1QGWsjEAgEAoFtIRwXG+RW+jkAKukalK0iAoFAIHho5A4VleR4HBGOiw2S57g0LFM9BAKBQPDwMCEv8fE48ni22sa5lX4BSTLhrvZDp3Ata3UEAoFA8B9iyZIl+Pv7o9FoaN68OSdOnLiv/IIFC6hZsyZarZbKlSszduxYMjMzH5G2+RGOiw2iN6UQq78KQGX7RmWsjUAgEAgeBkZJVuKjqHz77beMGzeOjz76iDNnztCgQQO6du1KTEyMVfmNGzfy3nvv8dFHH/HXX3+xatUqvv32W95///2SNr/YCMfFRglLOwuI4SKBQCD4r1IWOS7z5s1j5MiRDB8+nDp16rB8+XJ0Oh2rV6+2Kv/777/TunVrBg0ahL+/P126dGHgwIEPjNI8TITjYqPk5rlU1omIi0AgEPwXkUq4M7R0Z+Xc5ORki0Ov11u9nsFg4PTp03Tu3Nl8Ti6X07lzZ44ePWq1TKtWrTh9+rTZUbl27Ro7duygR48epWyNwiMcFxslPP0CRikbZ5UvTkrfslZHIBAIBDZK5cqVcXZ2Nh+zZs2yKhcXF4fRaMTb29vivLe3N1FRUVbLDBo0iKlTp9KmTRuUSiWBgYG0b99eDBUJ8pMlZRKVkbPSbRVd4zLWRiAQCASljRFZiQ+AsLAwkpKSzMeECRNKTccDBw4wc+ZMli5dypkzZ9i8eTM///wz06ZNK7VrFBWxcq4NczPtDBV1QVS2b8wfST+XtToCgUAgKEVMUsmW7TdJOf86OTnh5OT0QHkPDw8UCgXR0dEW56Ojo/Hx8bFaZuLEiQwePJgRI0YAUL9+fdLS0njppZf44IMPkMsfffxDRFxsmLD0M0DOzCKZ+KoEAoFAUAJUKhXBwcHs3bvXfM5kMrF3715atmxptUx6eno+50ShUAAgSdLDU/Y+iF/DYvDbhjCmdDrCWw32M6//SW5cSLqv/IEvbzKj+1HebrifyR0O8+Osf8nSG82f7/zsGm/W3mtxzOxxlKiMv9Eb09AqnPDUVHvYzSoW69em0aFlDPWqRfJMrzjOnzUUKJuVJfHZghQ6tc6R79UllkP7LdcCWDQvhRqVIy2Oru2tT9OzJZavSaZWszBcA67T7skITp61nhwHOXaYOS+Rui1v4Rpwneadw/llf7qFTEqqibcnxVOzaRhuVW/QoVckp84VXKetsHxNMjWaheEccJ22hbDDjHkJ1G6ZI9+0ADu8NSme6k1v4lL1Ou17RQg7lCM7LF2TRLWmN3Dwv0arHrc4cbbgtT+ysiSmz7tNzRY58o07hbF7X347jJsYR2CTGzgGXKNtr1ucPFd264mUlJIk5uYeRWXcuHGsXLmSL7/8kr/++otXXnmFtLQ0hg8fDsCQIUMshpp69erFsmXL+OabbwgNDWXPnj1MnDiRXr16mR2YR41NDxUZjUYmT57M+vXriYqKokKFCgwbNowPP/wQmaxsljo+syOaLbMv029yLfyCnDj4VRjLR57j/R0tcXRX5ZM/vT2K7fOuMnBGbfwbORN7PZ2NEy6BDJ56L2/3Z59q9ry6Om8GkdxOhoSJW+nnCHRsTRVdMDGZ/z6SNhaWn7dlMGtaMlNnOtOgkZK1q9J4cfBtdh/wxN0jf4de8EkKWzdnMH2OM1UD7Th8UM9rIxP4dosHdeopzXLVa9ix9ms3898KO9te1vr7rWm8N+U2iz52p2ljNZ+tTKbPoGjO/VYRLyt2mDI7ga83p7HkE3dqVlOy50AGA16MZd9WHxrWVwPw6vg4Lv2TxarFnvh6K/j6h1R69o/i9IGKVPS1zdt209ZU3pkSz+KPPWjWWM3ilcn0GhTFhd8qWbXD5NkJfL05laWfeFCjmpJfD2TQ78UYDmz1NdvhlfFx/PmPgdWLPangbcfGH1Lp0T+SswcqCTvYuB2+25rK25PjWDLbk2aNNCxamciTAyP583BlvDzy6zxp9m02/pDC8k89qVlNxS8H0nnmxSgObatIozt2GDU+hj//NrB2sRe+PnZs/CGFbv0iuXCwss3a4X6YkGGiBENFxSjbv39/YmNjmTRpElFRUTRs2JBdu3aZE3Zv3rxpEWHJ/b398MMPCQ8Px9PTk169ejFjxoxi611SZFJZxXoKwcyZM5k3bx5ffvkldevW5dSpUwwfPpwZM2YwZsyYQtWRnJyMs7MzH58MQeNQ8o49r/9JqtRz4pmJNQEwmSSmdDhC2+cr0Xmkfz7576f9Q/S1NF5bk5dgu2X2ZW5cSOKNDU2AnIjLxb2xvPNj83zlg1x608FnDGFp59gc9laJdO/hcKlE5e/lmV5x1G+g5KPpzkCOLdo1i2HwcHtGveaQT75NcDQvv+7A88PszedGv5SARgOfLspZIXjRvBR+3Z3Jtt2eparr3VRSqEu1vnZPRhDcQM38me5Ajh2qN7nFK8Mdeet1l3zyVRuF8c4YZ14enjcmPXBEDFqNjNWfeZKRYcKrxk2+W+NF9846s0yrrhF06ahl8ruls5qyvAQPTGu0fTKC4AYqFsz0AHLsUK1JGK8Md+JtK3YIaHSTd8e4WNhhwIhoNBoZaz/zIiPDhEeNG3y/xtvCDi27htOlo5Yp77rlq9MWKM92UMhKLwjfqsctmjRUs2hmzr1sMkkEBN/gtReceef1/H24SsPrvPeGK68Odzaf6/diFBqNjK+WeJORYcK1eiib1/rQo3PeM6RZlzC6ddQx9T33UtE7OcWEe41QkpKSCpU3Uqxr3PldGrx/ICqH/C+8hcWQamBdh68fqq62iE0PFf3+++/06dOHJ598En9/f5555hm6dOlSZgvfZBtM3PozhRot8x4UcrmMGi1duX7O+nBRQCNnwv5MMQ8nxYVlcOlQHHXaeVjIxd1IZ1K735j2xBHWvf0HCRE54c8baacAqKCri1KmeRjNKhYGg8SfF7No1SbPCZDLZbRqq+bcaevDRQaDhFpj+WOp0cDpk1kW526EGmkTHE3H1jGMfz2BiHAjtorBIHH2goEObfO+G7lcRse2Go6fLmgtBQmN2tIOWo2M30/kfOfZRjAasSpz9IRthsUNBokzF/R0bKs1n5PLZXRoqy3QDnqDhFp9b3+Q8fuJHPlcO9xPxtYQdsgh1w6d2uY5Wjn3hZZjp633Yb2V+0JTqPtCzhEbvS8eRFmsnPtfwKYdl1atWrF3717+/TdniOT8+fMcPnyY7t27l4k+aYlZmIxSviEhR3cVyXHWf6yDe/rQ/fWqLHr+NOPq72N6l9+p1tSVJ0b5m2X8gpwYNLMOL69syDMf1SL+ViaLnj9NZlo2SVkRJBoiUMiUVLJv+BBbVzQSbpswGsHD07ILeXjIiY01WS3TJkTNmpVpXA/NxmSSOHJIzy87M4mJyXNMGjRS8vE8Z75Y78aUGc7cCjMy6Ol4UlOt11nWxN02YjSCt6flEICXh4LoWOsOV+cQLYtXJHPlWhYmk8Tegxls3ZFO1B07ODrIaR6s5uMFiUREZWM0Snz9QyrHT+uJirZNJy7XDl732MH7AXZYtCLJbIdfzXbIBnLs0CJYzay77LBR2KF828HTztzP76VLex0LP0/k8jXDHTuks2VHGpF326GJmhnzE8x22PB9CsdOZxZYp61TFjku/wVsutXvvfceAwYMoFatWiiVSho1asSbb77Jc889V2AZvV6fbxXBsuTKiUS8ktqw6+jXvL8lhBcW1efSoTh2Lw01y9Rp50HDbt5UqOlI7TbuvPR5AzJSsji3Mycp9eadqIuffdMyaUNp8eEUJ/z8FXRrH0vdqlFMnZjE//rpkN/10hDSQUP3nlpq1VbStr2alV+6kZxsYuf28vlGZY1PprkRGGBHw3bhOPvdYNwH8Qzu74D8LkOsWuyBJEG1xrdw8b/B0lXJ9OtrbyFT3pk7zZ1qAUqC2t3C0e86Yz+IZ0g+O3giSVC1cRhO/tdZuirpjh3KUPFSRtghh3lTPagWoKRe2zB0Va7xxgdxDB3gaGGHtYu9kSTwa3QDe79rfLYqif59HfgP3RaCQmDT2UzfffcdGzZsYOPGjdStW5dz587x5ptvUqFCBYYOHWq1zKxZs5gyZcpD0cfeRYlcISMl3jK6khJvwMnD+jjljkVX+H33FrzdK5F08yQegecwZBj59qO/eeJlf6s/RDonJZ7+OmJv5mTUX087SZBrb/zsm5R+o4qJq5schQLi7omuxMWZ8PS0/jR1c1ewbJUb+kyJhAQT3j5yPp2VQmW/gruhk7Mc/wA7blzPLlX9SwsPNwUKBfnepmPijPmiMLl4uiv4bo03mZkm4hNMVPBRMHFGAgFV8uxQ1V/JL5t9SUs3kZxiwtfbjsGjYvC/j63Kklw7xNxjh+gH2GHTPXb48B47BPor+fUeOzw/KoYAYYfyaYfYbHy8CrCDh4If1vpa2OH9Gbepeo8d9v1Y0cIOg0ZFEeCntFqnrWOiePsN3V3+ccSm/fW3337bHHWpX78+gwcPZuzYsQUuZwwwYcIEixUEw8LCSk0fO5WcSnUduXzstvmcySTx77EE/Bs6Wy1jyDDx55Wc9Vh8tXUBkCnudLYC0qL1adnEh2Xg5JmTP3Ir/RxGKQsXVUWclRVKqTUlQ6WSUbe+kqNH8sbYTSaJo4f1NAy+f7KZWiPDx1dBdjbs3pFJpycKTpZNSzMRdiMbrwIedmWNSiWjUZCKA4fzIkImk8T+w5k0D75/ErBGI6eirx3Z2bBlRzpPdtXlk7HXyfH1tiMh0civBzPoaUXGFlCpZDQOUrP/HjscOJxRJDv8uCPNahvvtsMeYYdyY4d9h/OmM+fcFxm0CL5/rp6FHX5OpVdX+3wyd9vhlwMZVmXKA9KdWUXFPaTH1HGxTXf9DgUtfGMyFZzvoFarUatLd9bI3bQfWoWNEy5RuZ4TVeo7cfCrmxgyjDR/Kmc/ofXv/omzt5pe43LWXanbwYOfNu2lY/PeeMpq8c+ReHYuukbd9h7I7zgwW+dcpm57D1wrakiO0bNzcSgyuYzgJ3Omp2WZMohIv0hl+8b4OzTjfMKWh9a+ojB8pD3vjkukXpCSoIZKvlyVTkaGxNP9chIT334zEW8fOW+9l5Ptfv6sgagoI7XrKImOMrF4fgomCUa+kjcD6eNpyXTsrKZCJQUx0SYWzUtBrpDRs4/tJCbfy5iXnBn5ZiyNG6hp0kjFZyuTSU+XGDzAEYARY2Kp4GPH1PdzZlKcOKMnIiqbBnVVREQZmTE3EZMJxr2aNytgz4EMJEmiRqCSq6HZvD/tNjWqKRnSP/9sLVthzEtOjHgzjsYNVDRtlDMNOC1dYsgdO7wwJpYKPgqmv5+T3H7iTCYRUUaC7thh+twETCYY/2reS8CeA+lIElS/yw41qykZ2t+xTNpYGIQdcnhzlAsvvBFDcAM1TRtqWLQyibR0iaF37DDs9Wgq+tgx44Oc2UDHz2QSEZlNg3pqIiKzmXrHDm+95mKu85f9OXaoUU3J1dAs3p0WT81qSoYNsF073I/i7vB8d/nHEZt2XHLnilepUoW6dety9uxZ5s2bxwsvvFBmOjXu4U1agoGdi66RHKenYm1HRq1oiKNHjrOUEJmJ7K7hny4v+xO6IyefxdOuNt9M+pu6Ie70eDPQLJMYlclXb/1BWmIWDm4qqjZ2Zuw3TXBwy4tcXE87meO42NuO4/Jkby23b5tYNDeV2Ngch2TVOjc87oTEI8ONFmPP+kyJBZ+kEnYzG51ORkhHDZ8scMHJOc85jYo0Mm50IgmJJtzc5AQ3VbFpqztu7rYZcQF4po89sfFGpn2SQHRszg/Qlg3e5qGBsPBsi1wEvV5i6uxEQm9m4aCT07WTli8WeeDinNfG5GQTk2YlEB6ZjauLgr49dEx+zxWl0nYfVM/2cSAu3sTUO3ZoUFfNtvvYIVMvMXl2AqE3s3HQyejaScfqRZ4WdkhKNjHxjh3c7thhyntuwg7lwA79+jgQG29kypwEomKzaVBXzfaNvnh75vzs5NghT399psRHs29z7Y4dunXSsXaxl6UdUkx8ODOeW3fs8NST9kyzcTsISh+bXsclJSWFiRMn8uOPPxITE0OFChUYOHAgkyZNQqUq3Nz30l7HpTjIkPNyja2o5FrWh44kXh/64EL34KaqwuCqq8k2Gfj88lNkS0WfBlna67iUV0p7HZfySmmv4yIo/5TmOi7llUe5jstTe4ajtC/+Oi5ZaQZ+fGLNY7eOi01HXBwdHVmwYAELFiwoa1VKhISJ6Iy/qGzfmArausVyXG4bbpKcFYWT0ofKuoaEph1/CJoKBAKB4FEhhoqKh3CvHxERGX8AUEFbr9h1XE/NWXjP3yH/CrsCgUAgEDwOCMflERGRfsdx0RXfcQlNzYmyBDi0KBWdBAKBQFB2lGRGUUn3OSrPCMflERGZ+RcmyYiT0gcHu+LtwxOWfpYsUyaOSi881AGlrKFAIBAIHiW5Q0UlOR5HhOPyiMgyZRCbeQWAirr6xarDKBkISz8LiKiLQCAQCB5PhOPyCAnPuAhABW3xHBeA0NRjAAQ4tCwVnQQCgUBQNoiIS/Gw6VlF/zX+SdpLvP66OWpSHHIdFx9NLXQKF9KNiaWknUAgEAgeJWJWUfEQEZdHSIz+MpeSdpGSFV3sOtKy44nO+AeZTC6GiwQCgUDw2CEcl3LItdTfAajq0KqMNREIBAJBcRFDRcVDOC7lkKt3HJcq9sHYyWx3Dx+BQCAQFIxEyaZE2+yy9w8Z4biUQ+L1oSQZIrGTq/GzDy5rdQQCgUBQDETEpXgIx8UmKHrnu5p6BIBAxzalrYxAIBAIBDaLcFzKiBqOHajm2BZvTU0oRsDvasphIGc9Fzm2u3OyQCAQCKwjIi7F47GZDu2uSEVnZzs/8HWdW+GsCiA87RCOHs8QlrqfyPRjGEwpSJgeWD476ziZ2bfR2LlRx7E60RknH1gmLNuxNFQv99jLUspaBZvAXS7yowSWyMW7LPJHmDkipkMXD9FLHzGyO9GRJMNVbqbu5Vz8Ei7eXoVS4UjnSp8T5P5yoeqRMHEr7RAAVRw6PDR9BQKBQCCwJYTj8oiRMAJwPWUXle1D8NDUp4J9KyroWpKRHYevrvBrs4Sl7Qegkn0IMvFVCgQCQblCDBUVj8dmqMiWqOk8AHdNHRyUlWjg/gpJhlAi04+RoL9MenY0Ocm6Dw5XRqefwmBMQWvngYcmiNjMcw9bdYFAIBCUEpIkQyqB81GSsuUZ4biUAUq5jvjMS+jsfAhN3sm1lJ8AkKNELrOjsMm6JrIJT/uNAKceVHHoKBwXgUAgEPznEY5LGfBP0ndkmVKJyjhJJft2NPV8lwq6lshlSsLTDhOdcZobqb8Uqq6bqfsIcOpBZYcOnI6bT3FmKAkEAoHg0ZO7kFxJyj+OCMelDMgypSJHSX23EbiqaxCdforjMTNJNFzBU9OQIPeX7swwSn5gXZEZxzEYU9HZeeGhqU9c5oVH0AKBQCAQlBQxq6h4iIzOMqKW6yAyjbfZcXMQJ2JnEZVxgkxjAmFp+0jNiqCCfetC1WOSDITfmV3k59D5YaosEAgEAkGZIxyXMsJZFUCC/jJGSX/XWQlXdS2MkoEUw41C13UzdS8AlR06itlFAoFAUE7ITc4tyfE4In7lyoiYjHNUtm+PkzIAH21zarkMpKXXR7T0mkRaVgTx+r8KXVdk+nEMxmR0dp54aho8RK0FAoFAUFqU1XToJUuW4O/vj0ajoXnz5pw4caJA2fbt2yOTyfIdTz75ZHGbXWJEjksZcT1lJzLkdKiwkJSsG6RkhZFouMpfiRtJNFwuUl0msghLO0CgU2/8HJ8gJvPsQ9JaIBAIBKVFWUyH/vbbbxk3bhzLly+nefPmLFiwgK5du/LPP//g5eWVT37z5s0YDAbz3/Hx8TRo0IBnn3222HqXFBFxKSOMkp4ryZvZeqM3+yJe53TsPP5J/JYMY84idPZ2vkWq70bKHiB3uMh2tjYQCAQCge0wb948Ro4cyfDhw6lTpw7Lly9Hp9OxevVqq/Jubm74+PiYjz179qDT6crUcRERFxvAXV2Pas598dE2QWPnTqL+KsmG0DsRmPWFqiM64zQZ2bfR2rnho2tKZPqxh6y1QCAQCEqCVMJZRUWNuBgMBk6fPs2ECRPM5+RyOZ07d+bo0aOFqmPVqlUMGDAAe3v7Il27NBERl2Lwy/po3mh/jmF1TzLp6T+5ej71vvI710TxVpcLDKt3ktfbnmPdjBsY9DkbKbqqatDQfTTX/0xj4MDn0Wo11KnRiNVrVlLVqWehdZIwEnYnSdffoWvxG1dEtnyVyKA21+hW8zKv9b3J3+cyCpTNzpL4alE8z4eE0q3mZUZ2v86Jg2kWMheOp/PBi+H0a36VTgH/cviX+9vWVli7No3mLWKoGhhJz55xnD1rKFA2K0ti/vwUWrXOke/8RCz792fmk4uMNPL66wnUrRdFYGAknTrFcv58wfXaAsvXJFOjWRjOAddp+2QEJ8/qC5TNypKYMS+B2i1z5Jt2DueX/ekWMimpJt6aFE/1pjdxqXqd9r0iOHWu4DptBWEHOHQ0g95DIqjU8BoK38ts2fnge/nA7+k0eeImWr8r1Gh5nbXf5l8SYumaRKo2DUXnf4WWPW5y4mz+e6e8IAGSVILjTj3JyckWh15vvW/ExcVhNBrx9va2OO/t7U1UVNQD9T1x4gR//PEHI0aMKGHLS4bNOy7+/v5WE4Nee+21MtHn6M/xbJh5k/+Nrsj0LfWoUlvHxy/8Q1J8llX5I9vi+PbTMJ4aXYFPdgUxcmYAx3bc5ru5YciQU999JNt+/pa+Tw6mZtdbfLIriAFvV+bTD7aREJeGu7puoXW7nrobgEoOIShk6lJp7/3Yvz2F5TNiGfKGO8u3VyGwtpp3h4aTEJdtVX713Di2b0zk9cmerN7jR6/nXPhoVASX/8x78GRkSATWVjNmav6xVltl67YMpkxNZtxYB3bt9KBOHTuee/42cXFGq/Jz5qSwfn0606Y6sX+fJ4MH6xgxIoE//sjrQ4mJJvo+FY+dUsb6dW7s3+/JpElOODvb7i27aWsq70yJ54NxLhzbXYH6dVT0GhRFTAF2mDw7gVXrU5g/3Z2zByoycrAj/V6M4dzFvIfuK+Pj2Hsog9WLPTm9tyKdQrT06B9JeKT1PmYLCDvkkJZuokEdFYtnFu5eDr2ZRa/nI2jfWsuZPVV4Y6QLL42PZvf+vJebb7emMH5yHBPHu3Fqd2WC6qjpPjCcmAKeOY8LlStXxtnZ2XzMmjXroVxn1apV1K9fn2bNmj2U+guL7T4F73Dy5EkiIyPNx549ObkcZTW+tnN1FB36exLyjCeVqmt5Yao/aq2cg9/HWpW/fDaVGsGOtO7tgWclNUFtnWnZ052rF9KQMGEn03H0t/MEd3KhUQcXPCup6dirLp+vnse1a1dIMlwvtG5xmRdJzQpHKbenkn27UmpxwXz/RQI9+jvR7Vln/KureXOGF2qtjF2brC+c9+uPyQx61Z3mHRyoUEVF7+ddaN7Bnk0rE8wyzdvb88JbHrTp6vjQ9S8tVq5IY9BAHf3766hRQ8nHHzuj1cj45hvr0acfNmfw+usOdOqkwc/PjqFD7OnYUcPnn+e9kS5dmkqFCnLmz3OhUSMVVarYERKixt/fdkd3F61I5oVBjgwd4EjtGio+m+2OTivjy69TrMpv/CGVd153oVsnHVX9lLw01IluHbUs+DwJgIwMEz/uSGPmh260baElMEDJxLdcCfRXsuKrBy/OWFYIO+TQvZM9097z4KkeDoWS//yrJAKqKPl0sie1a6h47QUXnu7pwIIViWaZBZ8nMOI5J4YPcKZOTTXL5nih08pY87Xt2uF+5K6cW5IDICwsjKSkJPNx91DQ3Xh4eKBQKIiOjrY4Hx0djY+Pz311TUtL45tvvuHFF18sncaXAJt3XDw9PS0Sg7Zv305gYCAhISGPXJdsg4nQP9Oo18rZfE4ul1GvlROXz1oPg1Zv5EDoH2nm4aSYm5mcP5BIwxAXAKIzTvHSi68REvQiAfIXaOb5PnW1Y3HRVubMzfVkS2lW6y2I6yk5URd/x27FaGHhyTJI/PtHJo3b5I1zyuUyGre259IZ6z/YBoOESm05JqtSy/jjVMHDS7aOwSBx4WIWbdvmRbjkchlt2qo5fcb6sI5eL6G+xw4aDZw4mRdx+WWPnqAgFS+NSiCoQTRdusayYUP6vVXZDAaDxJkLejq21ZrPyeUyOrTVcvy09bC13mDNDjJ+P5Ejn20Eo5H7ytgawg7F59ipDDq11Vmc69Jex7HTORFZg0Hi9AW9hYxcLqNTWx1HT5fP4aLSWsfFycnJ4lCrrUfcVSoVwcHB7N2713zOZDKxd+9eWrZseV9dN23ahF6v5/nnny89AxQT2319s4LBYGD9+vWMGzcOmcx6UpJer7cY30tOLj1PPCUhG5MRnD0szebkriTiqvUbp3VvD1ISspky8C+QwJgt0WmgF31eqQDA34kb8fFsSe+nunJwy1kiIg9x+d/LeDa8QcfBmiLreD1lF/XcXsBX1wK13AW9KbHIdRSGpAQjJiO4eljOYHL1UBB21foPdtN29ny/KoGgZloq+Ck5cySdw7tTMZkeioqPhNu3TRiN4OFp+Q7g6SHn6hXr4ev2IWpWrEyjeXMV/v4KDh82sGNnpoUdbt7MZt26bEaOtGfM626cO5fFpElJKFXQ71md1XrLkrjbRoxG8PK07A/eHgr+vWJ9GLVziJZFK5Jo20JDVX879v2WydYd6RhNOSP3jg5yWgSrmbUgkVrVlXh7Kvh2SxrHT+sJ9Fc+9DYVB2GH4hMVa8T7Xrt52pGcYiIjw0RCUs69Zk3mnyu269TbGuPGjWPo0KE0adKEZs2asWDBAtLS0hg+fDgAQ4YMoWLFivmGm1atWkXfvn1xd3cvC7UtsPmIy91s2bKFxMREhg0bVqDMrFmzLMb6Kleu/OgUtMKl48lsWx7J8Ml+TN9SlzeXVOPcgUR+/CwcyJkW/f13P9Dlie7csFuJd8f9VGj7J98u+pNDm60PP92P5KwbxGdeQi6zw8+xS2k3p0S8NsmTiv5Khne+Ttcal1n8UQxdn3GiAB/0P8vUqU4EBCgIaR+Lf0AUH3yYRP/+OuR32cFkgnr1lEx4z4l69ZQ8/7yOQYN0rFv333lAz53mTrUAJUHtbuHod52xH8QzpL8D8rsMsWqxJ5IEVRuH4eR/naWrkujX1x55uXpy3R9hh8eXsliArn///nz66adMmjSJhg0bcu7cOXbt2mVO2L158yaRkZEWZf755x8OHz5sE8NEUM4iLqtWraJ79+5UqFChQJkJEyYwbtw489/Jycml5rw4utohV0DSPYlgyfFZOHtaf/P5fsEt2vRxp0O/nAS1KjV16DNMrPrwOn1erYBcLmPj7DB6jfKleY+cIaiK1T2IC9ez7fNI2v3Ps8h6hqbswF1ThwDHHvyb9F2RyxcGZ1cFcgUk3JNwmBBnxM3T+joyLu52TFtREYPeRFKCEQ9vO1bOjsO3Svl9a3Rzk6NQQFysZdgoNs6Ep5f1XxV3dwWrV7mRmSmRkGDCx0fOzJkpVPHLux29vBTUqG55e1arbseOHbYZEvdwU6BQQEysZX+Ijsv/Fp2Lp7uCTWu8ycw0EZ9gooKPgg9nJBBQJa/dgf5Kft3sS1q6ieQUE77edjw/KoYAP9t8dAk7FB8fTwXR99otNhsnRzlarRyFQoZCgVUZb6/yaYfc2UElKV8cRo8ezejRo61+duDAgXznatasiVQSRUuZcuOv37hxg19//fWB07DUanW+8b7Swk4lJ6CuPX8eTTKfM5kk/vg9meqNrCeg6TNMyOSWXrH5TepOPzBkGrlHBLlChmQqXke5kbIHk5SNu6Y2zqqAYtXxIJQqGTXqaTh7JC8CYDJJnP09nTqNtfcpCSq1HE8fJcZs+G1XKq2eKFzyni2iUskIqq/k8OG84UmTSeLwYT3BjVX3LavRyPD1VZCdDTt2ZNKlS964dNMmSq5es3SQr10zUrGSbS4uqFLJaBykZv/hPMfKZJI4cDiD5sH3n+Gm0cip6GtHdjb8uCONnl3zD4XZ6+T4etuRkGhkz8EMqzK2gLBD8WnRRMu+w5YRxV8PpdMiOGfIXKWSERyktpAxmST2Hc6gZXDRh9UF5Zdy46auWbMGLy+vMt0fAaD7Cz58/s41AurZExjkwK61UegzTIQ8nRMZWfb2VVy9VQx4KyfK07ijCztWR+FfR0dgAweib2Ty/YJbNOroglyR46006uDKlmURuFdQU6m6luuX0ti5OoqQZ4oebQHQmxIJTztCZYcQAhx7ci5+cek0/h6eGeHK7PFR1AhSU6uBhh9WJ5KZbqLrMznO4sfjIvHwsWPEOznt+OtsBnHR2QTWURMXlc1XC+ORTDBglKu5zow0E+E38nJkosKyuHIpE0dnBd4VbTMyM/Ile8aOTSSogZJGDZWs/CKdjAyJ/v1zHLgxbyTi6yNnwoQcu5w5YyAqykjdukqiokzMnZeCSYJXX8lz4EaOtKdP33gWLU6lV08N585lsWFDOnNmO1vVwRYY85ITI96Mo3EDFU0bqVm8Mpm0dIkhA3JmiL0wJpYKPgqmv+8GwIkzmUREGQmqqyIiysj0uQmYTDD+1bw27jmQjiRB9UAlV0OzeX/abWpWUzK0v+3OOhN2yCE1zcSV0Ly8nus3szj3hx43FzlVKil5f0Yc4VHZfLk4ZzbLqCHOLFmdyLvT4hg+wIn9R9LZtC2Vn9blRdjfHOXK8DeiCW6goVlDDQtXJpCWbmLYgNJ7QX2UlMWS//8FyoXjYjKZWLNmDUOHDsXOrmxVbvmkOym3s/l+YThJsVn41dbx7qqaOHvk/KjGRxgsEof7vloRZDI2zb/F7WgDTm5KGnV0od+4SmaZoZP8+H7BLdZMvk5yfBauXio6DvDif6MLHhJ7EKEp2+84Lt04H78UCetrSJSEDj0dSYrPZu28eBLijATWVvPx2oq4eeZ8RzER2RbRJoNeYvXceCJvZqG1l9G8vT3vzfPFwSkvivDPxUzGD7xl/nvZ9Jw8ny5PO/Hup/efrldW9Omt5Xa8iU8/TSU21kjdOkrWr3PD887QQES40SIXQa+XmPNJKjdvZqPTyejYUcOihS4Wa7Q0bKjiiy9c+XhWCgsWpFC5soIpk5343//uH80qS57t40BcvImpnyQQHWukQV012zZ4m4dIwsKzLeyQqZeYPDuB0JvZOOhkdO2kY/UiT1yc8/pDUrKJibMSCI/Mxs1FQd8eOqa854ZSabsPbGGHHE6dz6TT0+Hmv8dPjgNgSD9H1iz0ITImm7DwvKhiQBUlP62vwPiP4lj0RSKVfO1YMdebrh3yZi727+NIXLyRyXPiiYo10rCuih0bK+LtWS5+yvIhHJfiIZNsaeCqAH755RfzJlA1atQoUtnk5GScnZ1ZeSYYnaNthtlzkctU1Hcbga+2OXvCR2GUip/PIMeOvgHb0ShcORAxjoj0I/jYJZaesuWYWkrr62k8brjLRXhdYIlSVj4dgNIkOcWIa41rJCUllWqqgcU17vwu1dz4Hgpd8RcLNabr+WfQxw9VV1ukXOS4dOnSBUmSiuy0lDdMkgE/hydw09TCV1eylQlNZHM9ZScAgU69SkM9gUAgEAjKnHLhuDxOhKf9BkDFUlj59mryT3fqaotG4Vbi+gQCgUBQepRon6ISzkgqzwjHxcYISzsIQEX7NshK+PUkGa4Rl/kHcpkd/o7dS0M9gUAgEJQSOc5HSVbOLesWlA3CcbExYjPOoTcmoVG44qEJKnF9V5O3ARDo1LvEdQkEAoFAUNYIx8XGkDASnnYYgMoOJd+P6UbKHrJM6Tir/HFWB5e4PoFAIBCUDqW1V9HjhnBcbJBbaQcAqGTfvsR1ZUvp3EjJ2VG7omP/EtcnEAgEgtJBKoXjcUQ4LjZIZPpxsk0ZOCgr4KquWeL6riT/CICnfTfs5C4lrk8gEAgEgrJCOC42iFHSE5F+DIDKpRB1ua3/i9v6f1DI1Pg69C1xfQKBQCAoOWKoqHgIx8VGCUvdB0Blh46lUt+VpJyoS0XHAcDj2dkFAoHAphBjRcVCOC42SnjaEYwmfU5Srapqieu7nrKLbFMqOmUArpoWpaChQCAQCEpESaMtIuIisCWypTQi048DUMWhUynUl0FU6lYAKjoOKnF9AoFAIBCUBcJxsWFupu4FSsdxAQhP+RoAT10n1ArfUqlTIBAIBMVDrJxbPITjYsPcSvvtznBRAM6qwBLXl5Z1mYSM48hkCjE1WiAQCMoYkZxbPB6brUCjsp3RZJW/5l5LO0V1x9a46XryV9qXJaqrriqCpNQvcNU2p5JjP5KT5yKhLyVNyw+Gx/U15R4ypKyyVsEmUMrE+5sZcWuQJZnKWgXBAxB3rI3zT/IhAGo5lXwVXYCkjD0YssOxU7jjYi92jRYIBIIyIzfBtiTHY4hwXGycqynHyDJl4qqqiLemeinUaCQ+9SsAPByHl0J9AoFAICgOIseleAjHxcbJkjK5mpKzGF1tpw6lUmd86kZMpkx0qiDs1U1LpU6BQCAQCB4FwnEpB/yVfACAmk4hyErhKzOaEklI+x4AD8cRJa5PIBAIBMVALEBXLITjUg64nnaKTGMKjkoPKunql0qdsSmrAXDWdkNl51cqdQoEAoGg8IhZRcVDOC7lAKOUZU7SreNcOmu66LMvk5yxH5lMjofjC6VSp0AgEAgEDxvhuJQTLiXl7F1Uw7ENdjJVqdQZm7wCADf7/ihkzqVSp0AgEAiKgBgmKjLCcSknhGf8SZIhCrXCnkDHlqVSZ6r+MBmGSyjk9rg7Pl8qdQoEAoGgcIihouIhHJdyg8Sl5JwtAOqW0nARQGzy5wB4OL6ADHWp1SsQCASCByCSc4uFcFzKEX8m/gqAv30TdArXUqkzIX0bhuxwlAovXO2fLpU6BQKBQCB4WAjHpRyRmBVBePol5DIFdZw7llKt2cSmrATAy+llRJcQCASCR4WsFI7HD/ErVc74M2kPAPWcu5RanbdTvybbmIBaGYCzrkep1SsQCASC+yCGioqFcFyKwZGNN5nZ+RATGv7Kov7HuHkh6b7yv311gzk9DjOh0a9M73iQbR//TZbeaFV238pQ3q7zC1tn/W3183+SD5Jl0uOh8cdHU6PEbQEwSenE3VnXxdtpdJHKfvNlKt1bR9Ksxi2e7xPNxXOGAmWzsiQ+X5hMz7Y58v26RXPkQKaFzHfrUnm2azSt64bTum44Q/rGcHh/RtEb9Yj5am0abVrGULNaFH17xXPu7P3tsGhBKiGtY6lZLYruXeI4uD//ZpdRkUbeHJNIo/rR1KoWRbfOcVw4b9sbI65cm0pQ80h8qt6ic89oTj/ADnPmJ9OoVY58m87R/Lrfsj8ENY/EteKtfMdb7yc87KaUiM/XpFCnWTjuATdp/2QUp84WvJlpVpbErHlJ1G8ZgXvATVp0jmTPPX3eaJSYOieRus3D8agaRv2WEXw8PwnJxtd8X74mmRrNwnAOuE7bJyM4+QA7zJiXQO2WOfJNO4fzy/50C5mUVBNvTYqnetObuFS9TvteEZw69/htFPu4Y/OOS3h4OM8//zzu7u5otVrq16/PqVOnykyfczuj+Gn2PzzxaiBvft+CCrUc+eKl06TGW795zm6PZMe8yzzxaiBvb2/Ns9Pqcn5nNDsXXMknG3YxiWPfheFb06HA6+tNaVxOOQJAPZeupdMoIC51LUZTGlpVXRw1hRuG2v1TOnOnJzLqDSe+3u5NjdoqXh0cy+04607Zkk+T+H5DKu9OcWHzrz4885w9416K4+8/8n7cvH0VjHnXiY3bvdj4kxdNW6l5c2Q8V/613R/s7dsymDEthTfedGD7Dg9q17Fj6OAE4gqww9xPUtm4Pp3J05zYs9eD557XMWpkAn/+kdfGpEQTz/wvHqWdjDVfubJnnwfvT3TE2dl2Q8Obt6bz4ZRE3h3nxIFd3tSro+Lp52KJLcAO0+cksXZ9KrOnuXBsvw/DB9szeEQcF+7qD/t2ePH3WV/z8ePXHgD07al9JG0qDt9vTWPClAQmjHPm8G5f6tVR0ndQDDEF2GHq7ERWr0/l0+munDpQgRcHOzDwxTjOX8yzw7wlyXzxZSpzZ7hx+qAvUz9wYcHSZJatSn1UzSoym7am8s6UeD4Y58Kx3RWoX0dFr0FRBdph8uwEVq1PYf50d84eqMjIwY70ezGGcxfznq2vjI9j76EMVi/25PTeinQK0dKjfyThkdmPqlmlSxlFXJYsWYK/vz8ajYbmzZtz4sSJ+8onJiby2muv4evri1qtpkaNGuzYsaN4Fy8FbNpxSUhIoHXr1iiVSnbu3MmlS5eYO3curq6lk5haHA6tvU7zZyvR9H8V8a7mwP8+qoNSo+DE5gir8tfPJeLfyIVGPX1xq6ilZmsPGvbwIeyiZZRGn5bNxncu8syUumidlPfV4WLiLiBn7yI7WenMBDKaEolPXQ+At/OYQpVZ90UK/xtgT99+9gTWUPLhTBc0WhlbvkuzKv/z5nRefM2Jth21VKpiR7/BDrTpoOWrlXkP35DOWtp21OIXoMSvqpLX33FGp5Nx8UzBb+5lzRcr0+k/UMez/XVUr2HHjFlOaDUyNn1rPVL04w8ZvDrang4d1VTxs+P5ITo6dFSzckWe3ZYvS8PXV8En85xp2EhF5Sp2tAtR4+dv96iaVWSWrkxhyCB7nutvT60aSuZ97IJOK2P9N9b7w3c/pDP2dSe6dNLi72fHi0MdeKKjls8+z+sPHu4KvL3yjt2/ZhLgr6B1S9udAffZihSGDXJg8AAHatdQsmi2G1qtnHVfW3cyvv4hnbded6JrJy0BfnaMHOpIl44aFn2ebJY5fkpPz65aunXW4lfZjqd66ugYouG0DUcbFq1I5oVBjgwd4EjtGio+m+2OTivjy69TrMpv/CGVd153oVsnHVX9lLw01IluHbUs+DznWZmRYeLHHWnM/NCNti20BAYomfiWK4H+SlZ8lWy1TpunDHaH/vbbbxk3bhwfffQRZ86coUGDBnTt2pWYmBir8gaDgSeeeILr16/z/fff888//7By5UoqVqxY0tYXG5t2XGbPnk3lypVZs2YNzZo1IyAggC5duhAYGFgm+mQbTIRfSqF6C3fzOblcRvWWbtw4l2i1jH9DF25dSjYPJ8WHpfP3b3HUauthIffj9L+oHeJBjVbu1qqxICz9AomGCNQKe2o4tS1+g+4hNnkFJikTe3UwDurW95XNMkj8dTGL5m005nNyuYzmbTRcKMDJMBhArba80dQaGWdPWX/4Go0Su7alk5EhEdS4dBbdK20MBok/LmbRpk2efnK5jNZtVZw5bT1KZDBIqDX57XDqZJ7dft2TSVCQkldfTqBJwxie7BbH1xvT763KZjAYJM5dyKJ9W8v+ENJGw8nT1vuDXg+ae/qDRiPj2Anr/cFgkPhuczrP9bdHJrPNyJPBIHH2goEO99ihQ1sNJwqwg8Eg5bODViPj6F12aN5EzYHDmVy+mtOnLv5p4OgJPV062mbkyWCQOHNBT8e2efrl2EHL8dPWv1+9Qcr3fNBoZPx+xw7ZRjAa8z9D7pYRPJh58+YxcuRIhg8fTp06dVi+fDk6nY7Vq1dblV+9ejW3b99my5YttG7dGn9/f0JCQmjQoMEj1jwPm3Zctm3bRpMmTXj22Wfx8vKiUaNGrFy58r5l9Ho9ycnJFkdpkZZowGSUcPCw/BF1cFeTEmf9xmnU05euowNZ+vwJ3g3aw8ddD1O1qSudRlU1y5zbEUn4pRS6j61eSE0kLibuBiDIpXux2mKNbFMM8akbAfB2fvO+sgkJJoxGcPew7ELuHnLiYq2Hglu2U7PuixRuhGZhMkkc/S2TfbsyiIuxlL/8dxYta4fTrHo40z9IYN7n7gTWuH8UqqxIuJ1jBw9PSzt4eCiIjTVZLdMuRM2qlemEhmZjMkn8dkjP7p2ZxMbkyd+8aWT9+nQC/O34cr0rzw3WMWVSMj9sss18n/g7dvC8pz94esqJKaA/dGyvZumKFK5ey+kP+w9lsn1HBtEx1uV/3pVBUrKJQf3sS13/0iL+thGjEbw8FRbnvTzkRBdgh04hGhavSOHKHTvsO5jBth0ZRN1lh/GjnXimjz2N20XiUuUmrbpE8dpIR/r/zzZtEVeAHbw9FAXaoXOIlkUrksx2+PVgBlt3pBMVkzMM5Oggp0WwmlkLEomIysZolNj4QyrHT+uJirZep60jSSU/ioLBYOD06dN07tzZfE4ul9O5c2eOHj1qtcy2bdto2bIlr732Gt7e3tSrV4+ZM2diNJadzW3acbl27RrLli2jevXq7N69m1deeYUxY8bw5ZdfFlhm1qxZODs7m4/KlSs/Qo3zc/XEbapmd+XUX4f4cFt3hixqwN8H49iz7CoAiZGZbJ31DwPn1EepVjygtjz+SPoFk2Skkq4e7qoqpaZvbPIyTJIeB00LHNStSq1egHcmu1AlwI6nOkbTtFo4H09KpPezOuT3vDz7V7Xj253erNvqRb/nHZg0PoGrNpzjUlQmTXHC319B5/Zx1KgazUcTk3mmn467gwiSCerVU/L2e47Uradk0HM6BgzSsWG97UZdisrHU12oGmBHs5BovPzDeeeDRAb11yEv4Km0/ps0OnfQ4OtT+PukPDBnmivVAuxo3C4SV78wxn+QwPP97ZHfdWP8sC2dbzensXqJO4d3+7BioTuLlqew4TvbzXEpKnOnuVMtQElQu1s4+l1n7AfxDOnvYGGHVYs9kSSo2jgMJ//rLF2VRL++9gX2GZunlHJc7n1Z1+utv0jHxcVhNBrx9va2OO/t7U1UVJTVMteuXeP777/HaDSyY8cOJk6cyNy5c5k+fXqJml4SivV179q1i8OHD5v/XrJkCQ0bNmTQoEEkJJRetr/JZKJx48bMnDmTRo0a8dJLLzFy5EiWL19eYJkJEyaQlJRkPsLCwkpNH3sXFXKFjNQ4y5BvarweRw/rY+67F11h1KsjaFitDS0adKB+Z2+6vVmN/StDMZkkbv2ZTGq8gYXPHOPd+nt4t/4erp1M4Mj6m7xbfw8mo3WXOi37NldTjwEQ5Fp6U5izjFHcTv0aAG/n8QXKubrKUSggPs4yqhAfZ8LD0/oPi5u7ggUrPTj6V0V2/O7Lln3e6OxlVKximbehVMmo4m9HnfoqxrzrTI3aSjausc0HtKtbjh3i7omuxMUZ8fS0fnu5u8tZscqVS/94c/ioJ3sPeGBvL6OKX54dPL3kVKtuaZdq1eyICLfNN0v3O3aIvac/xMaa8r115+LhrmDDag/CL1fkwnFfThzyxt5ehn+V/Hk8N29lc+A3PUMG2WaEIRd3NwUKBfmiTDFxJrwLsIOnu4Jv1ngSc6Uyf52owJnffHG4xw4fTktk3Ggnnu1rT73aKgY+Y89rIx35dLFt5nZ4FGCH6Djjfe2waY03t6/48e+Jylz4rSIO9nIC7rJDoL+SXzf7En/FjyunKnN4R0WysyDAz3Zzvx4FlStXtnhhnzVrVqnVbTKZ8PLyYsWKFQQHB9O/f38++OCD+/4OP2yK5bi8/fbb5iGYixcvMn78eHr06EFoaCjjxo0rNeV8fX2pU6eOxbnatWtz8+bNAsuo1WqcnJwsjtLCTiWnYh1HrhyLN58zmSSuHLuNX0MXq2UMmUZ+P5+z4m2gQwsA5Io7bxASVGvpxvitLRm7uYX5qFTPiUY9fRm7uUWerBXOJ+Rkddd17lxqGy8CRCcvwSRl4qBphoO6jVUZpUpG7fpKThzJm75qMkmcOKJ/YD6KWiPD20dBdjbs3ZlB+y73H6c3mXLGzG0RlUpGvfpKjhzJc2ZNJonfDxtoHHz/4S21RoaPb44ddu3I5Ikn8pzfJk1UXLtqOVMi9Fo2FSvZZrRBpZLRMEjJwcOW/eHQYT1Ng+/fHzQaGRXu2OGnHRl0t9IfNn6bhqeHnC6dNFZqsB1UKhmNglQcuMcOBw5n0qxQdrAjOxu27sigZ9c8O2RkSvmiCgpF0YcKHhUqlYzGQWr257NDBs2D759YrdHIqXjHDj/uSKNnV10+GXudHF9vOxISjew5mGFVplxQSsm5YWFhFi/sEyZMsHo5Dw8PFAoF0dHRFuejo6Px8fGxWsbX15caNWqgUOQ9e2rXrk1UVBQGQ+EnTRgMBv755x+ys0s+A6xYjktoaKjZofjhhx/o2bMnM2fOZMmSJezcubPESuXSunVr/vnnH4tz//77L35+fqV2jaLSbpg/x78P59SWcKKvprJ5yl8YMow0faoCAF+/d5Ed8y6b5eu09+TzOTl5I/72wYQeT2X3oivUae+JXCFDY2+HT3VHi0OlVaBzUeJT3fG+ulxPO02SIQqNwpGaTiGl1sZsYxTxqRsA8HEpOOoyeIQjm79JY9v3aVy7nMWMDxLJSDfR59mct+IPx95m0ey82VMXz+rZuzODWzezOXNCz2tD4jCZYNiovHYump3E6eN6wsOyufx3FotmJ3HqmJ4efW33wTRipI5vvk7nh00ZXLmczYfvJ5OeIfFMv5wfnnFvJjLn47yZFGfPGti1M5ObN7I5cdzAsMEJmCQY9UpeNOGFEfacO5vFksWpXA/NZuuPGXy9MYPBQ23XDq+OdOSrjWl8/V0a/1zOYtx7iaRlmHiuf067Xh5zmymz8vrDqTN6ftqRwfUb2fx+XM8zz+X0hzdetez3JpPEhm/TGfCsPXZ2tpmUezejX3Jk7cZUNnyXyt+Xs3jjvQTS0008PyBnmYORY+L4aGaiWf7kGT1bd6QTeiObI8cz6ftcDCaTxJuv5r10dX9CyyeLktn1awY3wrLZtjOdxZ+n0KubbSbnAox5yYnVG1NY910Kf1828Pp78aSlSwwZkPP9vjAmlg9n3jbLnziTyZYdaVy7kcXh45n0ei4KkwnGv5q3c/2eA+n8sj+d0JtZ/Howg67PRFGzmpKh/e//rLRVZFLJDyDfy7pabd05VKlUBAcHs3fvXvM5k8nE3r17adnS+ua9rVu35sqVK5hMedHUf//9F19fX1SqB78wp6en8+KLL6LT6ahbt6458PD666/z8ccfF9ZUFhQrvqZSqUhPzxlr//XXXxkyZAgAbm5upZoMO3bsWFq1asXMmTPp168fJ06cYMWKFaxYsaLUrlFUGnb3Ie22gd2Lr5ISp6dCLUdGfN7YPFSUGJmJ7K4x2U4vV2Xv56GER9yiYoVKxO/1pkYbD7q/Ua0UtJE4n/gz7bxepKFrL/OquqVBTNJS3O2fw17dBEdNe1IyD+ST6dpLR0K8iWXzkomLNVKzjpKlX3ngficUHBmRjewu11ivz1nL5VZYNjqdnDYdNExf4IaTc57Q7TgjH467TVyMEQdHOTVqKVm6zoOWbW33Tbtnby3xt03Mm5tCXKyJ2nWUrF3niucdO0SEGy3yePSZMPeTFG7eNGKvk9G+o5p5C5wt7NCgoZLlK1345ONUFi1MpXJlBRMnO9L3Kdv9ofpfHx1xt03M/DSZmFgj9esq+X69h3mo6FZEtkXUQK+HGXOSuH4zG3udnCc6ali+yA1nZ8v3qQO/6bkVbuT5/rbrtN3NM33siYs3Mf2TJKJjjQTVVfHjBi/zEElYuNEibyNTLzF1dqLZDl07afhikTsud9nh0+muTJuTxNgJt4mNN+HrreCFwQ5MGOuc7/q2wrN9HIiLNzH1kwSiY400qKtm2wbvu+xg2R8y9RKTZycQejMbB52Mrp10rF7kiYtz3pt+UrKJibMSCI/Mxs1FQd8eOqa854ZSafsOrVVKuvptMcqOGzeOoUOH0qRJE5o1a8aCBQtIS0tj+PDhAAwZMoSKFSuah5teeeUVPvvsM9544w1ef/11Ll++zMyZMxkzpnDLZkyYMIHz589z4MABunXrZj7fuXNnJk+ezHvvvVfkNsikYiy92Lt3bwwGA61bt2batGmEhoZSsWJFfvnlF0aPHs2///5bZEUKYvv27UyYMIHLly8TEBDAuHHjGDlyZKHLJycn4+zszLQTHdE4lN04aEfvV2ns1ocLCTv5JWpBqdWrUzjzUrX12MlVrA99najMgm3/hP2lItXt6/IBXk4vk264wOWonvxX1pd2lpfTxapKGRf5450XkItSVl4zO0sfO2xzKPJRkpxiwqvmDZKSkko11cDiGnd+lyovmIpcW/yXMlNGJmFvTiqyrp999hmffPIJUVFRNGzYkEWLFtG8eXMA2rdvj7+/P2vXrjXLHz16lLFjx3Lu3DkqVqzIiy++yLvvvmsxfFQQfn5+fPvtt7Ro0QJHR0fOnz9P1apVuXLlCo0bNy5WsKNYT67PPvuMV199le+//55ly5aZF6LZuXOnhUdVGvTs2ZOePXuWap1lwZWUozR260OgYwtkUXIkrE+VLSrpxiT+TfmNOs6daOjai12Rc0ulXoCY5KW4OzyPThWEs7YHSRk/l1rdAoFA8NhTzEXkLMoXg9GjRzN6tPXtXQ4cOJDvXMuWLTl27FixrhUbG4uXl1e+82lpacVej6lYrxpVqlRh+/btnD9/nhdffNF8fv78+SxatKhYivzXuZV+gUxjCvZ2rlTQ1nlwgSJwNuEnAGo5tUerKL3QsdGUQGxKzrCcr8s7FNPPFQgEAoE1HoNNFps0acLPP+e99OY6K1988UWBeTUPoliOi0KhsLo8cHx8fKFCR48jJoxcTcnxWKs73n9V2qISmfEXURn/YCdXleqCdACxySvJMsahVlbFzaF/qdYtEAgEgv82M2fO5P333+eVV14hOzubhQsX0qVLF9asWcOMGTOKVWexHJeC0mL0en2hsowfV/69szliDafSdVwAztzeCkBD157IS3Gc2iSlEpOUE0XzcR6LXGa7yaECgUBQrngMIi5t2rTh/PnzZGdnU79+fX755Re8vLw4evQowcHBxaqzSLH/3GEgmUzGF198gYND3i7GRqORQ4cOUatWrWIp8jhwI+00BlMGTkpvfDQ17ptIW1T+STlESPYIHJWeVHdqwz/JB0ut7vjUDXg4vYjazg8Px5HEJIvhQIFAICgxZTCr6FGSlZXFqFGjmDhx4gO36ykKRXJc5s+fD+REXJYvX24xLKRSqfD39y/T1fRsnWzJwLXUE9RyCqGGU9tSdVyMUhbnErbT2nMITdz+V6qOi4SBqMRP8PP4DC+nV7idupFsU1yp1S8QCASC/x5KpZIffviBiRMnlmq9RRoqCg0NJTQ0lJCQEM6fP2/+OzQ0lH/++Yfdu3ebp1QJrPNP8iEAajq2K/W6zydsJ9tkwFdbq9QTgBPTt5GuP4dC7oC3c+mtjiwQCASPLaW0cq4t07dvX7Zs2VKqdRZrmsj+/ftLVYnHidDUk2SZMnFW+ZT6cFG6MYlLyXsJculOE7en2RZetHVb7o9EROJ0qnl/j7vDIOJS16LPKj3dBQKB4HHj7tVvi1ve1qlevTpTp07lyJEjBAcHY29vud9YYReyu5tiz2+9desW27Zt4+bNm/n2K5g3b15xq/3Pky3puZpyjFrO7anpFFKqjgvA6fgfCXLpTnXHVrgoK5CYFVFqdafpj5OYvhMXXXcqunzEtdjnSq1ugUAgEPz3WLVqFS4uLpw+fZrTp09bfCaTyR6d47J371569+5N1apV+fvvv6lXrx7Xr19HkiQaN25cnCofK/5OPmB2XA7GfEFpZljFG25wLfU4VR2a08T9aX6NWlxqdQNEJs7ASdsRR207HDWdSMnc++BCAoFAIMjPfzw5F3JSTEqbYk2HnjBhAm+99RYXL15Eo9Hwww8/EBYWRkhICM8++2xp6/ifIzTtFHpjGk5KTypq65Z6/SfiNwFQ1/kJdKW4IN3/2Tvv8CiqLg6/2ze9bSrpPQGS0HvvRUQRsHfsFZTip9JURBG7iIiiIIJUlV6U3ksEQmghJCG97qZu//5YTAgEhJCygXmfZ54HZm85c3ey85t7zzkXQGdIIa94PgA+Lu8g4vo7IAsICAgICIAlsKcWuwxdRa2ES2JiYuXGilKplPLycuzt7Zk2bRozZ868ZaNud4xmPWcv5XSJcupZ5+1fLDtOZvkpZGIFrVzvrvP2s9VfojfmoJSFoHJ4ss7bFxAQELgTEHGLu0M39gXcID///DMtW7bExsYGGxsbYmJiWLhwYa3bq5VwsbOzq/Rr8fb2JikpqfKzvDwhTPZGSNRYHJzDHbrXacK4fzmQ/xsArVyGIRfX7a66JnMJWUUfAeDp9BpS8dX7UAgICAgICMyePZvnn3+ewYMH89tvv/Hbb78xcOBAnnvuucoUKzdLrXxcOnbsyK5du4iKimLw4MGMGzeO48ePs3LlSjp27FgrQ+qbfYXByHTWk9V3b0EJfb00uMidKDffxaHCE3Xa/p6CHNq4ZuFr64WT4lFWp28hVplaZ+3naNbhaPcITspYXJwnk5A7oc7arm8cxEWNbYJVUGE2NrYJVoEwDlU4CBtlY6ijDXBviEbaZLEh+fLLL5kzZ07lKg3AsGHDaN68OVOmTOH111+/6TZrdZvOnj27Ml/L1KlT6dOnD0uXLiUwMJD58+fXpsk7DhMmduUdAqC7e7s6b9+MmZUXNwEwzKcPcnFd+6KYOZX/HmazCR/7YTgr29Zx+wICAgK3OXdAyv/MzEw6d+581fnOnTuTmZlZqzZrJVyCg4OJiYkBLMtG3377LceOHWPFihUEBATUypA7kW05BwBo7xqDrURZ5+3vyDtIdkUeLnJH+nnW/f5IGt0J0ostS1JRbu8iEnaPFhAQEBC4jNDQUH777berzi9dupSwsLBatVnrJ01RURHLly8nKSmJN998E1dXV44cOYKnpyfNmjWrbbN3FOdL00gty8Tf1ptObq3YmrO3Tts3mk2svLiZ50Mf4J5m/YjPfA+TWfffFW+Cs4Wf4WHXH3t5GP5Oj5Ki/qFO2xcQEBC4bbkDwqGnTp3K6NGj2bFjB126WF6gd+/ezdatW2sUNDdCrWZcjh07Rnh4ODNnzmTWrFkUFRUBsHLlSiZNmlQrQ+5UtuXsB6CXR/34Bv2Vs488bSFuCmd87EfUefsGk5ozBR8DEOL8IkqpT533ISAgIHA7cksRRbeYdbehGDFiBPv370elUrF69WpWr16NSqXiwIED3HPPPbVqs1bCZezYsTz++OOcPXsWpbJqiWPw4MHs2LGjVobcqezIPYjRbKK5UyheSvc6b99gNrDy4mYAgpzH1EvelcyS1RSWH0QitiXKbXKdty8gICAg0HRp06YNixYtqsyeu2jRIlq1alXr9molXA4ePMizzz571flmzZqRlZVVa2PuRPJ1RfxTdAqAXh71s0Hlluzd5GkLUUq9aeZQPwkCT+ZPxmTWobLtjqfdoHrpQ0BAQOC24g5wzl23bh0bN2686vzGjRtZv359rdqslXBRKBRoNJqrzp85cwZ397qfNbjd2Zpt8W3p5dEBcT2kFNKbDay4aLlxgpyfQSxS1HkfZfpkkovmAhDh9hZScd1m7BUQEBC47bgDhMvEiRMxGq9OOWA2m5k4cWKt2qyVcBk2bBjTpk1Dr9cDlo2SUlNTmTBhAiNG1L0fxe3OgYJjFOtLcVe4EuMcWS99bMneS7khA6XUE1+H++ulj+SieZTozqGQqAh3fbNe+hAQEBAQaDqcPXuW6Ojoq85HRkZy7ty5WrVZK+HyySefUFJSgoeHB+Xl5fTo0YPQ0FAcHBx4//33a2XInYzBbGB77kEA+nleHe9eV32cL/wGsMy6SER1m00XwIyek3nvYjabaOYwAleb+rkWAQEBgduBO8E518nJifPnz191/ty5c9jZ2dWqzVoJFycnJzZv3syaNWv44osveOmll1i3bh3bt2+vtSF3OluyLXsXtXONwUlmXy99ZJasplR/AbnEFX+nx+qlD7X2KGmaRQBEq6bXi0ASEBAQuC34N3PurRxWzt13381rr71WbWugc+fOMW7cOIYNG1arNm9YuLi6ulbuQ/Tkk09SXFxMly5deOGFFxg/fjx9+/atlQECFlLKMjhTfAGZWEpvj0710ocZI0mFXwAQ6PQkMrFzvfRztvAzyvRp2Eh9CHcdXy99CAgICDR57gAfl48++gg7OzsiIyMJCgoiKCiIyMhI3NzcmDVrVq3avGHhotPpKh1yf/rpJyoqKmrVocC12ZS1C4D+nl0Q1dO+n9mlG9BoTyIV2xPk/Fy99GEyl3My720AfB1H42ZT91l7BQQEBASsHycnJ/bs2cPatWt54YUXGDduHH///Td//fUXzs7OtWrzhjPndurUieHDh9OmTRvMZjOvvPIKNjY2NZb94YfbO3vq+RXHOftrPNqCMpxC3Ih5vRsu0Z41lt350mry4zOuOu/ZyZ9OHw+t/H/xhQJmT/6Ah5cPxcvZHX7IoWywElsvhzq23szZwk9o4zUfP8cHSNUspMKQXuvW/vi5kGXz8inINRIcpeDFKZ5ExtpQWHGAVPVC/J0eIVr1HnvTh1Gh1bBkTj6bV6rJyzLgFyznqQnutOtRtTR27EAZy77L5+wJLQU5BiZ/24wu/et6DOqehQtKmTe3lNxcE1FRMiZPcyC2Vc2beur1Zr79upSVy8rJyjYSHCxl/CQHevSqivb6fHYxX3xaWq1ecIiEzdusO2rvxwWlfPNtKbm5RqKjZLw/3ZFW1xmHL78q4bfl5WRlGQkJlvK/txzo3asqN1S7jjlcvHh1RMLjj9ky433rjVyr63EAyMw08t4HGv7+W0t5uZnAQCmfznYiLtZ6No+9krk/FvP5HA3ZuUZaRsuZ9Z4LbVvVHNWo15uZ9aWGxctKycgyEBYiY/r/nOnXq+o5YzSaef8TNUtXlJKda8LbU8JDo+yY8JojIpH1L5tcya36qVizj8vevXvJz89n6NChiEQi+vfvT2ZmJpMnT6asrIzhw4fz5ZdfolDcfJTrDc+4LFq0iMGDB1NSUoJIJEKtVlNYWFjjUVdMmTIFkUhU7YiMrJ+omxvl4taznPhqN5FPtKXn/JE4hqrYM3YN2sKyGst3+GAgA39/vPLo/fP9iCQifHqFVpYpTVez44VVSDwV/JVhCY1+ZcJrSBSSermGgvI95JfvRiySE+YyttbtbFujYe4HOTz8iopv/gwkOErBW4+lUZhnAOBs4aeU6VNQSr2IcHubBZ/ksvbXIl6c7Mn3m4IY8qAzU59L51xC1exdRZmJ4CglL02tWQhaI2v+KOeD6cW88po9f6xTERkt5fFHCsnLq3nX4dkfl/DrojLene7Ixq0qHnzYlufHFJJwQl+tXFi4lH2H3SuPpSvdGuJyas3vf5QzZZqGca/bs3G9iuhoKQ88XHDNcZj5UTELF5Xx/jRHtv/lzqOP2PLU04Ucv2wc1q91458jHpXH0l9dAbhrSN3v7VVX1Mc4FBWZGHZPPjKZiF8WurL9b3cmv+uIs5P1bue8/PdSJk0tZNJYJ3Zt9KZFtIzhD+aQc41xmDaziB8WlTDrPRcObfPhqUfseeCpPP45XrVNyeyvNXz/UwmfvO/K4e3eTPufM599o2HO/JKGuqy65TZeKpo2bRoJCQmV/z9+/DhjxoyhX79+TJw4kT///JMZM2bUqu0bvus9PT358MMPWbZsGf7+/ixcuJBVq1bVeNQlzZs3JzMzs/LYtWtXnbZ/syQt+YeAu6IJGBKFY5ArcW/2QKKUkrLmVI3l5Y5KlG62lUfOoTQkCinNeoVUljn53X48OwXQ4oXO/F1h2TG6W1hHmnnW355PZwpmYTab8LIfjJMitlZtrJhfwKDRTgwY6UxAmIJX3/NCYSNm4zI1YFkyOpE7EbPZiI/9MOzNA3jgeTfa97LH21/OXQ+70L6nHcu/L6hss31Pe54Y507XAdY/y/IvP8wrY/QDttw32pawcCnvzXDERili+dLyGsuvXlHO8y/Z0au3Av8AKQ89akvP3grmf1d9hkUqBXcPSeXh6mq9DymAud+V8tADttw/2paIcBkffeiEjVLEr0tqHoflK8t55WV7+vRREhAg5bFH7ejdW8m3c6seQio3CR4eVcfmLRUEBkjo1MmKZxnqYRy+/qYEHx8xn812plUrOf7+Unr2UBAYaL0bm371XTGPP2jPI/fbExUu44uZrtjYiFn4a80i49cVZbzxsiMD+tgQFCBlzGMO9O+t5Iu5VTnD9h/SMnSADQP72hDgJ+Weobb07qHkcLy2oS5L4AaJj4+nT58+lf9fsmQJ7du3Z968eYwdO5YvvviiYfcqSk5OJj4+nrfeeounn36aJ598svJ46qmnamXItZBKpXh5eVUeKpWqTtu/GUx6I0VncnFv61t5TiQW4d7Wl4KEG8sYnLomkWZ9wpDaWFLvm01msvekYO/nzJ6xf/Jdnxls37cTiUjMAK9u9XIdACW6U2SUWERmuOuEm66v15k5e6KCVl2qosjEYhGtutiSeLTqB1qtja9MTDfro69RqarvZSRXikk4VPNsVVNApzNz4riezl2rHqRisYjO3eQcPay/Zh2Fsvq0tlIp4tDB6htgXkg20qlNDj275PL6y0VkpNf8pmoN6HRmjh3X061b1bSvWCyiWzcFh4/UvLGnTmtGobhyHODAwWuP24qV5dx/v63VLgvU1zhs3KwlNkbOmGcLaRGbTb8BuSz6xXr/bnQ6M0eP6ejVrWpmTCwW0aubkgOHrzEOOjPKK8bBRili74EqUdKhrYJtuyo4m2QZm+MJOvYe0NK/d81uC1bPrYZCW/GMS2FhIZ6eVTPn27dvZ9Cgqqzq7dq1Iy0trVZt10q4TJs2jf79+7N161by8vKqLRMVFBT8dwM3wdmzZ/Hx8SE4OJiHHnqI1NTU65bXarVoNJpqR12hVVdgNppRulYP8VW42qDN/+8fkcKT2WjOFxB4V1RVm4XlGMr1nF10BI8O/nT+9C5WxK8FoK+qIzJR/b1RJRV+jtFUhrOy1U2n6dcUGjAZwUVV3T4XlZSCXEO1c+eL5qDWHsPF2YW+rT8hPVmPyWTm8M5Sdm8spiDXeh/I/0VhgQmjEVTu1f+UVCoJubmmGut066Hgh3llJCcbMJnM7NqhZeP6CnJzqsrHtpLz0WwnflzkwrT3HUlLMzJ6RD4lJTW32dgUXBoH9yvGwV0lJienZpt79lAwd14p589bxmH7Di3r1leQk1Pz/bBhYwUajZnRI633IVVf45CaauDnhaUEBUn49RdXHn3EjnfeVfPbMusUL/kFRoxG8HCvvtztoRKTfY2/9z49lHz5XTHnzlt+H/7aXs4f68rJumwcxr3kyH1329G6eybO/ql07p/Fi2McGH1vE03DcRsvFXl6epKcnAxYgnuOHDlCx45VmwkXFxcjk9Vu77xaPRXnzJnDggULeOSRR2rV6Y3SoUMHFixYQEREBJmZmUydOpVu3bpx4sQJHBxqXkqYMWMGU6dOrVe7akvKmkQcQ1yrOfKazZY7z7trEKGjLUs26ZSSnp1OM89mdHVvy985++rFHq0xlwvq+YS4vEyYyzhyy/7CZK77KVczBk7kTKCDzwq6dOrF7+Pv4anZs/Dxl9P/PqfKpaU7hXemOvLWeDX9e+YhEoF/gIT7RtmybGnVQ6jnZY66kVEQ10pGt065rFtTwaj7b4/cONOmOfLGeDXdeuYiEkFggIT7R9uyZEnND+PFS8ro3UuBl1f9+H41FjcyDiYTxMbIeGuiIwAtW8g4fVrPzwvLGDXy9rgfPpruwstvFNC6eyYiEQQHSHl4tB0Ll1Ytoa74o4ylK0v54Ws3oiJkHE/QM2Fy4SUn3frJfyVQOwYPHszEiROZOXMmq1evxtbWlm7dqlYRjh07RkhIyHVauDa1mnHR6XR07lz/WVEHDRrEyJEjiYmJYcCAAaxbt46ioqLrrotNmjQJtVpdedR2KqomFE5KRBIRFQXVf1i1BeUo3K7/42Eo13Nx6zkChkRVO29pU4xDoEvlORMmFv+1HICh3j3rxvhrcEH9AxWGTGxkzQh0uvFlPkcXKWIJlY64/1KYZ8DV/Wo9XGa4wJkCiyPWhzM/YN2R4czfEoSNrRhv/7rfsbqhcHEVI5FA3hWzK3l5xqveuv/FzU3M3PkunDjtyY697mzepsLWToR/wLXfIxydxAQFSUi5YJ2zU66XxuHKWabcPBMeHjWPg8pNwoL5riSd8eLgPg92bnfHzrbmcUi7aGDnTh0PPmDdD+n6GgcPDwnhYdXHJSxMSrqVLh+6uUqQSCDnitmVnDwTnu41C093NwlLfnQn55wfiQd8OLLTG3s7EYH+Vdf99vQixr7kyMjhdrSIkvPAfXa8OMaBWV/W3cx6g9JIMy5ff/01gYGBKJVKOnTowIEDB65ZdsGCBVcFySiV/+0cP336dKRSKT169GDevHnMmzcPubxqSf2HH36gf//+tbK/VsLl6aefZvHixbXq8FZwdnYmPDz8uvsbKBQKHB0dqx11hVgmwTncndzDVeHDZpOZ3MMXcW3udd266X8nYdIb8RsQcVWbLlHuFKcVVTv/46IFlFeUE2zvR3PHUOoLk7mCMwUfAxDo9DRKifcN1ZPJRYS1UBK/p+ptyGQyE7+njKhWNU/lp5csJ6tkPWKRjG5RnyMy2bNrYzGd+jYdR9wrkctFtGgpY8/uqnV7k8nM3l06WrW5viBTKEV4eUswGGDDugr69rt2WGBpqYnUFCPu13j4NTZyuYiYljJ27aqasTOZzOzapaVN6+s70iqVIrwvjcPadRUM6H/1OCxdWo5KJaZvn7rfILQuqa9xaN9Wxrnz1V8Sks4b8fW1ztknuVxEqxg523ZVRQyaTGa27aqgfZv/HgcfbykGA/y+rpyhA6p+T8orzIiv+BOQSMBsxUsm16MxUv4vXbqUsWPHMnnyZI4cOUJsbCwDBgwgJyfnmnUcHR2rBcmkpKT8Zz8qlYodO3ZUupHcc8891T5ftmwZkydPvvkLoJZLRRUVFXz33Xds2bKFmJiYq9apZs+eXStj/ouSkhKSkpLqfYnqeoTcH8uR9//CJdIdlygPkn47hrHcgP8QS5j24elbULrb0fy56tlvU9ck4t0tCLnT1Uo19IFWHJy8CVWsD6rWzcjZn8qpjf+w8dx2hrcYyDCfPiRoarcZ1Y2QXbqegvL7cbVpT7jbeI7lvH5D9UY85crHb2QS1tKGyFglK38spKLMxID7LPk1PhqXgZunlKfGewCQGF/OoYJxvPxQS+yV/pguTMRkepBRz7pWtlleaiIjpUoEZKXpSTpZgYOTBI9m1jkz8+QYW94cq6ZljIzYOBk/zi+lrNzMfaMsP7jjXivCy0vCmxMtAi3+qI7sLBNR0VKys0x8/mkJZjM883zVOv0H0zX06aukma+Y7GwTn88uQSKBu+62Xv+OZ5+x49XXi4iNlREXJ2Pe92WUlZu5f7TF5pdfLcLLS8z/JlleJo4c0ZGZZaRFcxmZWSY+mV2MyQwvPl99yt9kMrPkt3JG3WeDVGqdTrmXUx/j8MwYO+4ans/nX5YwbKiSo/F6Fv1SxsczrTeXzUvPOPDsa/m0jpXTppWCr+cVU1Zm4uH7Ldc15pU8fLykTH3LGYCDR7RkZBmJaS4nI8vAB5+oMZnMvPZC1cvnoH42fPyFBr9mUqIiZPxzQseXc4t59P4m6uPSCMyePZsxY8bwxBNPAPDtt9+ydu1afvjhh2vu1iwSifDyuv7L+bVwcqr5HnV1da3x/I1QK+Fy7Ngx4uLiADhx4kS1z+rS2/+NN97grrvuIiAggIyMDCZPnoxEIuGBBx6osz5uFt8+YeiKKkj8/oAlAV2oik6fDK102C3LLgFx9TEoTi0k/1gmnT+9q8Y2fXoEE/dGD84sOsKxz3Zi7+9M+/cGslm3n+EMpK1rC3xsPMgov7YivlVO579Ph2Yr8LQbiKvNMgrK9/xnnZ5DHVEXGPn501wK8ywJ6N5f4IfLpaWinAw9osvejvRaM99+mMTaBSP5+68dDOh7H39uP0YhyyrLnDlezpsPVi3vzX3fcs39Rjjy5sfVI5KshaHDbCgoMPHZJ8Xk5ZqIipbx40IXVJemxDPTjdVuCW0FzP64mNRUI3a2Inr0VvDJZ044XpaTIyvTxGsvFVFUZMLVVUybdnKW/+6Gm5t1zrgA3D3Mhvx8Ex/NKiE310jzaBmLF7rifmkc0tON1d6WK7RmZn5cQmqqAVtbEX16K/nyc2ecrshNsmOnjvR0I/c3Ed+e+hiHuDg5P3zvwgczivn0s2L8/CRMm+LIiHutV8jed7cdefkm3vtYTXauRZCs+sWjcqkoLd2I+LI/jAqtmWkzi7iQasDOVsyAPkq+/8KtWq6aWe+5MP0jNa9PKiA335KA7slH7Jn0uvUKuIbgyiAUhUJRY2I3nU7H4cOHmTRpUuU5sVhM37592bt37zXbLykpISAgAJPJROvWrfnggw9o3rx53V3ATSIym613ku3+++9nx44d5Ofn4+7uTteuXXn//fdvyqFHo9Hg5OTEkI1PI7Oz3twP12JS5LO0d4thY9Yuvk369ZbaesHnr+t+Hu46kQCnxyjVX2DvxWGYqTkstS4IcHyccLcJmMw6DmQ8QLHuZL31dSUhsqIG68uasbXSkGKBxsNBbJ2zmg2JptiET8RF1Gp1nboaVOvj0nMpZNIHSG7AX+RaGCsqSJrx1lXnJ0+ezJQpU646n5GRQbNmzdizZw+dOlWtCowfP57t27ezf//+q+rs3buXs2fPEhMTg1qtZtasWezYsYOEhAR8fX2vKt8QWG/2IiwJa+50Vmdsob1bDL08OvBr6p+o9fWXIfJ84Vd42Q3GThZIoPPTJBfNqbe+UjQLcFG2w92uNzEen7E/4z4MpibqYCcgICBQC+oq5X9aWlo1kVWbNPrXolOnTtVETufOnYmKimLu3LlMnz69zvq5Gax33lkAgERNEqeLk5GLZQyp5wgjg7mEMwUzAQhyehZbaUC99ncibxJl+jRsZX60cP8I6mljSQEBAYHbmSsDUq4lXFQqFRKJhOzs7Grns7Ozb9iHRSaT0apVq+sGydQ3gnBpAqy+uBmAwd49sJHU7x4tWaVrySvbhUSsIFJVO4/vG8Vg0nAs51WMpgrcbXsQ7PxCvfYnICAgYHU0YCi0XC6nTZs2bN26tfKcyWRi69at1WZVrofRaOT48eN4e99YBGp9IAiXJsD+gmNcLMvCTmrLAK+u9d7fqfxpGE0VuNl0wtv+7nrtq1iXSGL+FABCXF5CZdOjXvsTEBAQsBoaIY/L2LFjmTdvHj/99BOJiYk8//zzlJaWVkYZPfroo9Wcd6dNm8amTZs4f/48R44c4eGHHyYlJYWnn366tld9ywjCpQlgxszKi5sAuNunD/J6dqArN6RxvuhrwLKPkUzs8h81bo3Mkt9J01gcj1t4fIytLKhe+xMQEBC4Uxk9ejSzZs3i3XffJS4ujvj4eDZs2FC5r1BqaiqZmZmV5QsLCxkzZgxRUVEMHjwYjUbDnj17iI6ObqxLsO6oorqgqUcV/YtEJObr1pPxVKqYf34ZazK33XQb/xVVdDkipHTw+Q0HRRRZJWs5nvvGTfd3M4iQ0cb7B1yUbSnVJXMgczQGU3G99CVEFVkQoooErkSIKmrYqKKw8R8gUdxCVJG2grMfvVWvtlojwoxLE8FoNrHi0qzL8Gb96nXzRbDsL5SQ9zYmswEv+yG42/b570q31J+ef7JfpdyQgZ08iJbusxBuTwEBgdua23iTxfpEeDI0If7O2U+ethA3hTN9PG/MkepWKNadJEX9AwBRbpORiZ3rtT+9qYB/sl/CaCpHZdudcNf6neUREBAQEGh6CMKlCWEwG1hxcSMAI3wH1PusC8D5oq8p0Z1DIXUn0u3teu+vWJdIQp4loVKA0xM0cxhZ730KCAgINAaNsVfR7YAgXJoYW7L3kqctRKVwoX8DRBiZzDoScidVLhl52A6o9z6zSzdwrvALACLd3sVVWf+zSwICAgINjrBUVCsE4dLEMJgNLEvbAFhmXRTi+nc41uhOcKFoHgBRqsnIJe713mdy0RwySv5ALJIS4/EZdrIb3+ZBQEBAQOD2RRAuTZC/cvaSVZGHi9yRId4Nk/fkfNEcNNqTyCUuNFe91yB9nsx9m8KKQ8gkjrTy+g5FAwgmAQEBgQZDmHGpFYJwaYIYzEaWpK4F4B7f/thJ6n+HWDN6TuSOx2iqQGXbHT+HBxukz3+yX6ZUfwEbqQ9xnt8iEQnb1wsICNweCD4utcOqN1msSzKLHZGY6m7jqcZmSfEZhnpnEergRV+PoXxzZtN/1knTu91ap/oiRHlz6OTxOqGu4zlZcoYiXfKttXkD5F4cz1C/b3FURBPhPofN6W9iwlDr9kzCnkgA+EiFTS0BHETGxjbBalCaTY1tQqOjb8gxuNVZkztUuAgzLk0UE+ZKsXJ/QGfcFQ2TfCixaAUXS/chFSvo6T0Ziaj+fWyK9RlsSn8TvamMZnbt6Ob1FsKGjAICAgJ3JoJwacLsyj1FfMEFlBI5z4b1bbB+d2Z9QLmhAFdFKO3dX2qQPvO1p/krw5IQL8SxPx3cX2mQfgUEBATqDcHHpVYIwqWJ88Xp9QAMbdaaUPsb25b8Vik3FrAj630AopzvJcC+YRyE08sOVPbb3GUkca6PN0i/AgICAvWB4ONSOwTh0sQ5oU5jU+YxxCIxr0YOarB+08v2c6xgEQBdPSfiIPNpkH7PF29mX85nALRWPU20830N0q+AgICAgHUgCJfbgG/ObERnMtBBFUZX98gG6/dw3jyyy4+jkDjQy3t6g/i7AJwsWs6RvPkAdPR4jTDHIQ3Sr4CAgECdIiwV1QpBuNwGZJQXsvjCLgBeixyMTCRpkH7NGNmWOZkKYxEqZQQd3F9tkH4B4gt+5ETBEgC6ek4g2KFfg/UtICAgUBcIS0W1QxAutwkLkraRV6HB307F6IDODdZvqSGH7ZnTMJtNRDrfTahjwy1XHcj7ilNFqxGJxHT3+l+D+doICAgICDQegnC5TSgz6vj6rCU8+qnQ3g0WHg0Wp9mj+ZZdpDt7vIGbIqLB+t6T8wln1GsRi6T08p5KgH33ButbQEBA4JYQlopqhSBcbiPWpR/leFEqdlIFrzSgoy5AfMFPpJbsQipW0MfnA5QS5wbq2czu7Jmc02y4JF6mCeJFQECgaSAIl1ohCJfbCDNmPjr5B0aziQHesbRxDW7Q3rdnTadIl4K9zJNe3tMR0VC+NiZ2Zn1AkmZTpXgJtO/ZIH0LCAgICDQsgnC5zTityWBF6n4AxkcPazBHXQC9qZSt6ZPQGUvxtm1FJ4/XG6xvMyZ2ZL1XOfPS03uK4LArICBg1Yjq4LgTEYTLbcjcs5vJ15YQZO/BI0ENu2yi1qeyPWvqJWfd4UQ5j2iwvv+defnX56WH1ztCqLSAgID1IiwV1Yo7ZpPFuib7z8NkLd+PvrAE22AP/J/vj31EzUnYTo3/heLjqVedd2oXQvi0UQCYzWYyFu4kd0M8hlItDtG+BLw0AGUz15u2rdhQwWen1jI9djRPhPRkc9Yx0sryb7qdG+GvXzLZMD8dda4Ov0g7HnwnGGL2cDBvDu3dX6SD+ytodBdJL7PMAm1ekMHfv2ZSkKnD3kVK2wFujBgXiExh0dDjex8iP117VT+9HvTi4ckh/2mPGRO7sj/EZNYT6Tycbl6TkIltOFm0vG4v/Ar++LmA5fMKKMw1EByl4IUpXkTE1rxrt0FvZumcPLasVJOXZcA3WM5TEzxo28O+1m1aC0t+KmHB3BLyco2ER8mYNM2ZlnE15/fR683M/7qYP5aXkZNtJDBYymuTnOjaU1lj+flfF/P5TA0PPWnHhCnO9XgVt87PC0r5bm4pubkmoqJkTJnmQFyra4/DnK9LWbGsnKxsI8HBUiZOcqBHr6pNYT+bXcznn5ZWqxccImHrNvd6vY5bZd6CEr6cU0xOrpEW0TJmTnehzXXG4dOvivl1WSmZWUZCg2VM+Z8TfXtV3Q8xHTJJu3j1pphPPWbHrA9c6u066otbDWkWwqGbAB9++CEikYjXXnutUe3I336StO+24vNQV5p/+SS2QZ6ceXsp+qLSGsuHvnMvcb+8XHm0+PZpEItw7VaVLC5r2T6y/zhEwMsDif7sMcRKGWfeXopJV7tdkDdm/sO+vDMoJDImNb8HUT1MKh5Yl8vSGckMe9GPyavi8Iu049OnEtDk6zhR+OulmQ8Jvbyn4iwPYt+fuSz/5ALDXvLnvXWtePz9UA6sy2PF7JTKNt9ZHsvsXe0qj3E/Ngeg7UDVTVhmZk/OLI4X/ApYktTFuj5Wl5deje1rNMz7IIeHX1Hx1Z9BBEcp+d9jqRTl1fzd/fRJLut+LeL5yV58tymYIQ+6MO25i5xLqKh1m9bAhj/K+Hi6mudec2DpWg8iomQ893Ae+Xk177781ccalv9SyqRpzqze4snIh+14fUw+iSd0V5U98Y+OZYtLCY+y/netNX+U8/70Yl59zZ4161RERUt57JFC8q4xDp98XMLiRWVMme7I5q0qHnrYlmfHFJJwQl+tXHi4lAOH3SuPZStvcbf3embl72W8PbWICWMd2bbBkxbRckY8lEvuNcbhvY/ULFhUwszpzuz724snHrHjkafzOHbZ/fDXOg9OHfWuPFb9avldGD7UugW9QN3SZITLwYMHmTt3LjExMY1tCtmrDuA+KBb3/jHYBKgIeHkgYoWUvE3HaiwvdbBB5mpfeaiPJCNWyHC5JFzMZjPZqw/ifX8XXDqFYxvkQdAbQ9HlF1O450yt7fww4XfKDTraugUz3K9drdu5Fpt+zKD7KE+6jvDEJ9SWR6aGIFdK2LUiB4A92R+TVRaPXGJP/2azKEq2IbS1Ix3vckflq6RFVxc6DHUn+VhxZZsOrjKc3OWVxz9/F+DhrySi/c2Hdx/M+7oyw24b1ZhLGzPWvYBbOT+fgaOd6T/SmYAwBS+/54XCRszGZUU1lt+6Ws3o591o38seb385Qx92oV1Pe1Z8n1/rNq2Bn78vYcQDdgwfZUdIuIx3ZjhjYyNi9dKyGsuvWVnG0y850K23Et8AKaMfsadrbyU/zyupVq6s1MSkVwqY8qEzjk7W/5P1/bwyRj9gy8jRtoSFS3l/hiM2ShHLlpbXWH7VinJeeMmOXr0V+AdIefhRW3r1VjDvu+ovQhIpuHtIKg9XV+sei2/mFfPog3Y8NNqOyHAZsz90xtZGxKIlNb/g/baijNdfdqR/HxsCA6Q89Zg9/Xrb8NXcqvtB5SbB06Pq2LilgqBACV06KWps0+oRlopqhXXf+ZcoKSnhoYceYt68ebi4NO50oElvpPRsFo5xQZXnRGIRjnGBlCSm31AbeZuO4dYjGonSMmWqzSpCX1iKU6vAyjJSOyX2ET6UnLqxNmsio7yQby7ldnk5YiB2Us9at3UlBp2JlIQSojo7V54Ti0VEd3Yi6ahFiJgwsDXjrcpIo1nvLiY/Bc5fEiq5aRUc315ITI+av1ODzsS+P3LpOsIDkah2giO+4MfKvY2au4yih9e7iJDVqq2a0OvMnD1RQasudpXnxGIRrbrYkXi05geVXmdGrqj+pydXikg4VF7rNhsbvc5M4nE9HbtWPUDEYhEduir458jVMygAOp0ZuaL696pUijh6sHr5998uoltvJR271byEZE3odGZOHNfTtWvVcohYLKJLNzlHDuuvWUehrD4OCqWIQ1eMw4VkIx3a5NC9Sy6vvVxEenrNMxfWgE5nJv6Ynp6XfWdisYgeXZUcPFzz/aDVgrKG+2HfgauXjv/t47eVZTw02q7Wvw9WgSBabpomIVxefPFFhgwZQt++ff+zrFarRaPRVDvqEoOmDExmZC621c7LXOzQF5ZcoxaVSzUlpzMov5CLamBs5Wf6QssbiNTFrlodqYtd5We1ZVnKXv4pTMFeqqSL55u31NblFBfqMRnB0a26CHB0k6POq/ph0po0bE5/k3JDAf4e0Wze9juzHk3kmeZ7mNj3MBHtnRjynF+NfRzdUkBZsYHO93jckq0ni5azLXMqJrOBEMd+tPb6BonI9r8r3gCaQgMmIzirqkdvOaskFObWvKzTppsdK3/IJz1Zh8lk5sjOEvZsLK4sX5s2G5vCAhNGI7ipqv+kuKkk5OXW/IDt3EPJwnklpCQbMJnM7N1Rwdb1FeTmVJVf/0cZiSf0vDrBqV7tryv+HQeVe/VxUKkk5OaaaqzTvYeC+fPKSL40Djt3aNm4voLcnKryca3kfDzbiQWLXJj+viNpaUZGjcinpKTmNhub/Evj4H7F/eDuLibnGvdD754KvvmumKTzekwmM3/vqGDNunKyc2ouv3ZDOWqNiQdH2dX4ucDti9ULlyVLlnDkyBFmzJhxQ+VnzJiBk5NT5eHnV/NDsSEZ4deBld3HEebgRd7Gf7AJdL+mI29dY8LMeydWojXq8bXr2ChRNsX6DDanj0dnKCc2vAdb9i3h3ZVxvPhVJMe2F/Dn12k11tu5IpuW3V1w8bz1aeDzxZvZnD4evakMlU0X2nv/jFxyM34zdcdz73rSLFDOmH5JDI04xddTsul3nzNN+aWxNkyY4oR/kJS7e2XTJiSDD95Vc/coW8SXxiErw8DMKWo+/ML1qhmJ24l3pzoSGCihb888woOzmfyOhvtG2Va7H3r2UjBkqJKoKBk9eir48ScXijVm1q6puHbDTYwPpzkTHCSlfY9sPALTGf+/Ih4cbYv4Gk+pRUtK6dtLibdXw6V8qGuEvYpqh1ULl7S0NF599VV++eUXlMobmyaeNGkSarW68khLq/mhWFukjrYgFqEvrL5ury8sReZiX2Od1q5BNLN15UH/LhRsT0Q1ILba57JLMy2GK2ZXDIWllZ/dCimlucw9uwWAjh6vYi/1vuU2HVxkiCWgya8+/a3J1+GkujpqIE97ipfGPYrRaKBrzL3c22U8rfu5ce/rAaz77iImU/W/wLz0Ck7uKaLbfXW3vJVedoD1aa+gNebjqIimo88S7GSht9Smo4sUsQSKrnA4LMoz4uJesyOps5uUyXP9WJ0Qwc87Q/l+SzA2tmK8/GW1brOxcXEVI5FAfl71GYD8PCMq95ofLK5uEj7/3o39p3zYsNeLP/72wNZWhK+/5RpPHtdTkGdi9OAcWgWl0yoonUP7dCz+sZRWQekYjdb3q/3vOORdMbuSl2fE3b3mn1s3NzHfzXfh5GlPdu11Z+s2FXZ2IvwDrv1dOzqJCQqSkHLBOpeL3C6NQ+4V90NurgmPa9wPKjcJv/ygIv1sM47t9+bADk/s7EQE+l89DqkXDWzbqeXRB5v4bIvg41IrrFq4HD58mJycHFq3bo1UKkUqlbJ9+3a++OILpFIpRuPVf7QKhQJHR8dqR10ilkmwC/NCE3+h8pzZZEYTn4J9VLMa6yxK3glAf59YfDy9UPVuXt1mL2dkLnbV2jSWaik5nYF9ZM1t3iyLL+wiqywemdiW7l7/Q3SLX71ULiaguT2Je9WV50wmM4l71YS0cqixzqat6/n0p3EAtHC9nxiXhxFLLr1WXvEHuHtlDo5uMmJ63nw4+PXI055if8aDlOqSsZH60MHnF1yVHWvdnkwuIqyFkvg9VaLTZDITv6eUqFbXj3SQK8SovGQYDbBro4ZOfR1uuc3GQiYXEdVSxv7dVf4IJpOZ/bu1xLauOfz1XxRKEZ5eEgwG2LK+nJ79LS8pHbooWLHZg982VB3NY2QMGW7Dbxs8kEisbxZGLhfRoqWM3burlktNJjN7dulo3eb6vlUKpQgvb8s4bFhXQb9+155pLC01kZJixN3DOn/C5XIRcTEytu+qmhEymczs2KWlXZvr3w9KpQifS+Pw57pyBvW/+p5fvLQUd5WY/n2s3+9JoO6xzte3S/Tp04fjx49XO/fEE08QGRnJhAkTkEgaZ4rQ8572JH+yBrswL+wifMhefRCTVo+qnyXi6fysP5G5OeD3RE8AEjXpHMo/T1u3YCZ+OIUFjtUjhUQiEZ7D25GxZA+KZq4oPJ1IX7gDuZsDLp3D68RmE2Z2Zn/A8IAFeNnG0cLlAY4X/nJLbfZ/wof5E84S2MKeoBh7tvyUgbbcSJd7LT4p348/g4unnBHjAgGI7eXKO698TUCIFyN7TKKt+3MszUsgtld+lYDB8gO3a2UOnYd7IJHW/cOp3JDG/swHaeX5FS7KNrTxmsvJvGmkl6yoVXv3PuXGrDcyCGupJCLWhlU/FlBRZqL/fc4AfDwuAzdPKU+Ot4zLqfhy8rL0hEQryc8ysOjzXMwmGPms2w23aY08+rQ9b48rJLqljJZxchbNL6G8zMzwURZ/ordeK8DTS8KrEy3+KseO6sjJMhIZLSM7y8icT4sxmeCJ5ywCzs5eTFhE9Qezja0IJxcxYRF152Bd1zw9xpZxY9XExMiIjZPxw/xSysrN3DfK8gAe+1oRXl4Sxk+0XOfRozqys0xER0vJyjLx+aclmMzw7PNVswnvT9fQp68SX18x2dkmPp1dgkQCw+62TiEL8MIYB154vYBWMXJat5IzZ14JpeUmHhptua7nXinA21vC5EmW++HQES2ZWSZaNpeRkWVk5icaTCZ49YXqL0Imk5lflpZx/0g7pPXw+9CQCHlcaodVCxcHBwdatGhR7ZydnR1ubm5XnW9I3HpEY1CXkb5oJ/qCUmxDPAifPqpyWUeXo+FKh4XvD66h7cBXeHz4/azaOQu1vvpSk9fIjpgq9Fz4Yj3GkgocmvsRPn0UYnndfUXF+gz25XxON69JtFY9TUbZIfK1p2vdXvvB7hQXGFj9RSqaXB1+UXa8/n3zyqWigkwtInHVOAx93g9E8NKj00h6wczECW8x873P2XrBjTTDlspyJ/cUUZChpeuIulsmuhK9Sc2hrKdooXoPb/uhtHCfjr08lDMFszBzc9PvPYY6oi4wsPDTXArzjARHKXhvgX/lsk5Ohh7RZc9fndbEz7NzyUzVY2Mnpl1Pe96c7YO9o+SG27RGBg6zpbDAxDezi8nLNRIRLWPOQhVul5YGsjKMiC+7H3RaM199rOFimgFbWzFdeyn44DP3JhHyfD2GDrMhv8DE7E+Kycs1ERUtY8FCF9wvjUNGupHLhgFtBXzycTGpqUbsbEX07K1g9mdO1cYhK9PEqy8VUVRkwtVVTNt2clb+7oabm/WO1b1325JXYOKDWRpyco20bC5j+SJV5VLRxQxDNf8VrRbe/0jNhVQDdrZi+vVW8u0XrjhdcT9s26nlYrqRh0fXjYN9o3Kryz13qHARmc3mJnXpPXv2JC4ujs8+++yGyms0GpycnGi9fCwSu8aN9f+p0wtEOfky/9xfzD235b8r1DHPBe8AoLf3ewQ69EStS+P3lCcxmBsnxLaj+2tEu9yHyWxke+ZUkkv+apB+m8kKqv0/xPl5Ql1eBiC3bCfHcsZhMF87Qux2wUdatxF3TRUHkXX6iTQGzmLrFcYNhabYREBkBmq1us5dDSr7uPRcavnUB0jktV/uMuoqOD7/rXq11RqxXrl+DbZt23bDosXa+PH8dgBGBXTCTtp4ImpX9kxK9Nk4yf3o5DG20ezYl/s5p9V/IBZJ6OH9Lv523RrFjqSiOcRnv47RVI67bTc6+PyKrTSgUWwREBC4c2isqKKvv/6awMBAlEolHTp04MCBAzdUb8mSJYhEIoYPH167juuIJidcmjLbs0+SVJyNg8yG+wO6NJodOlMx27OmYTIbCXMaRJjj4EayxMye7FmVOzr38pmGv13XRrEku2wjBzIfocKQhb08hI4+S1HZNOwGlQICAncYjRBVtHTpUsaOHcvkyZM5cuQIsbGxDBgwgJycnOvWu3DhAm+88QbdujXOC+blCMKlATFjZn6SZTnkwcAu2EsbzyM+u/wfjuZb0uF38hiLszzoP2rUD5YdnWeQpNmMRCSjt897BNg3jmDQ6E6yN2MUhRWHkUkcae35DcHOz3Lnbh4vICBQrzSCcJk9ezZjxozhiSeeIDo6mm+//RZbW1t++OGHa9YxGo089NBDTJ06leDg4JvvtI4RhEsDszXrROWsywOBjTfrAvBPwUIulu5HKlbS23s6UlHjRCiYMbIj6z2SNJssMy/e0wi079UotuiMeRzMfJJUzWJEIjFhLq/SyuNLpOI7Z/1YQECgaXFltnit9lrbJOg4fPhwtSz0YrGYvn37snfv3mu2P23aNDw8PHjqqafq3PbaIAiXBsaMme/PbQXggYAuOMkaM5zRzI6s6ZQacnFWBNLN661GtMQiXv5dNurpPYUQh/6NZIuexPz3OJ77P4wmLR52venkswwHeVSj2CMgIHB7Ulc+Ln5+ftUyxl8r03xeXh5GoxFPz+oRm56enmRlZdVYZ9euXcyfP5958+bV6bXfCoJwaQT+yk7gtCYDe5mSR4N7NKotFcYi/sp4G6NZT5BDL1q6PNRotliWjT7gjHoNYpGE7l5vE+k0vNHsyShZxYHMhyjTX8RW5kcH78X4OoxsNHsEBARuM+poqSgtLa1axvhJkybViXnFxcU88sgjzJs3D5WqcbZIqQlBuDQCZsx8c8aya/NI/064Kxp3GSK3IqFyB+U2qmfwsW3baLaYMbEreyYnC5cjEonp7PkGMS4PN5o9Fr+X+8gp+xuJWEFz1VRi3D9GImriqcYFBARuG67MFq9Q1By1qlKpkEgkZGdnVzufnZ2Nl5fXVeWTkpK4cOECd911V2X2+p9//pk//vgDqVRKUlJSvVzPfyEIl0Zib94ZjhYko5TIGBPap7HN4bT698qZjp7eU3GQNcwmkDVjZl/uZ8Tn/wRAW/fnaKt6vtGsMZg0HM1+idP5H2MyG/C2H0KnZstxlEc3mk0CAgJNH5HZfMvHzSCXy2nTpg1bt26tPGcymdi6dSudOnW6qnxkZCTHjx8nPj6+8hg2bBi9evUiPj6+0TYxFoRLI/LVmY0A3OXbhmD7+ssSe6PszZlNbsVJlBIn+vrMRCZu3MyUR/LncSD3awBiXB+iu9fbiGisnWDNXND8yMHMRyk3ZGInC6CDz68EOj2JEHUkICBQKxohqmjs2LHMmzePn376icTERJ5//nlKS0t54oknAHj00Ucrl5qUSiUtWrSodjg7O1dmtZfLr7/vVH0hCJdG5HhRKluzjiMRiXklYmBjm4PRrGNrxluUGnJxUQTR03vqLW/GeKucKPyVHVnvYzIbCHUcSL9mHzVa9BNAkTaeven3kl26CbFIRoTrG7T1+h6FxKPRbBIQEBC4UUaPHs2sWbN49913iYuLIz4+ng0bNlQ67KamppKZmdnIVl6fJpfy/2axppT/NeFr68rSrq8hE0t55dCP7Ms7W299/Zvy/79wU0QwxO9rpGIlCYW/sT/3i3qz6UbxtetIL+/pyMQ25FWcYnP6eMqNBf9dsQauTPlfW5rZjyDSbRJSsS06YyEn86aQXba5TtpuCISU/xaElP9VCCn/Gzblf6uH3r/llP9Hf/mfkPJfoGG5WFbAstR9ALwWMRiJqPG/knztaXZkvQdAc5dRRDmPaGSL4GLpPtZffIVyQyEqZSR3+X/XaEnz/iW9ZAV7M+5DrU1ALnEhzvNzWqhmIBXZN6pdAgICTYRGWCq6HWj8p6QA35/7i0JdKcEOnozw79DY5gBwoWQbh3K/BaCj+6uNls32cvIqElmT9hxqXSr2Mi+G+n1LM9v2jWpTmf4C+zMeJKloLmazkWYOd9PZ93dclR0b1S4BAQGB25U7Zl4wr8AecUXjpdi/HrnAx0d38EGHQYwJ7suShPPka8vqvJ+/XSJvrnzhIZ4wbae3Zw+6eU1hd+InnC1pnPC3y9ma/wmvhr9AlGMEfZt9zMILv7I1Z9sN1491TKtzm45lrsSn6BSDfN7ERe5DO+8fOFrwBzty5qM3V9R5f3VBjlTd2CZYBXHKi41tgtVQYBAczUsacAxuZaPEf+vfiQgzLlbC0qR/OFGQhZPChgmtGifdfU38dOEXjhb+g1wsZ2zEK/jYeDe2SZQaS5l5ajY7c3cjEUl4POhhHgt8CImosSKOLGSUn+Tn888TX/gnAK1ch/F48Fz8beMa1S4BAQErRVgqqhWCcLESTGYz7x68lJQuJIb2Ho0TH38lJkx8fW4u50qSsJfaMT7iddzkro1tFkazke/O/8jS1BWYzCb6evZiQuRYHKSN61+iN1ewJesrfkuZiFqXhZPci1EBMxng/ToKseD7IiAgUEVdpfy/0xCEixVxNC+dxWePAjC93QBkYuv4erQmHZ+c/oL08gzcFK5MiByLo9Q6PNjXZK7n0zNfUW4sJ8oxgqkt3ibAtvFFX2rZURYkP8fRgj8AaOk8kCdCviPMoWsjWyYgICDQtLGOJ6NAJR/FbyOvopRwZ3fGRFmHoy5AiaGUmac+JVebh7eNFxMiX8dOYh1p7+OLjjEl4QOyKrJxV6h4t/kkuqiuzgLZ0OhN5WzN/prFF14nX5uKvdSNu33fYbjvFByk7o1tnoCAQGMjLBXVCkG4WBlqXQUfHPkLgFdadiXIofGXZf6lUFfIzMTZFOnU+Nv58Wbka9hIGnN36yoyyjOZfOJ94guPIRfLeS7kKR4PfBipqPH9zzPKT/Jz8gvszfsFo9lAqEMnngiZR1vXEY2e4E9AQKBxEZaJbh7hV9MKWZV8gh0Z51FIpHzYcZBVJZTP1uYw89QnFOuLCbEP4s2IV1GKrSOxX5mxjNlnvmTlxd8xmU308ezJO9ETcFc0/q6mRrOe3bk/8/P5F7hYdgK52Iaens/wSNDX+NgIex4JCAgI3CiCcLFS3jqwnhK9lvYe/jwW0Xi7NdfExfIMZp6aTamhlDCHUN6IfM1qxIsZM6vS/+ST019QrC8h2D6I6S3eoY1LXGObBkC+LoUlKW+wIWM25QYNHspgHgz8lIHe47CVODe2eQICAg2J2Xzrxx2IIFyslPRSDTOPbgNgfFxPq1oyAkgpS+PDRIt4iXAIY3zk61azbARwTH2Cd05M42xxEnZSO14Lf4lHAh5AZgVLR2DmhHojP5x/imNF6wFo4dyfp0J+oI3rvYjvnPRKAgJ3NEJUUe0QhIsV88vZI+zKTMZGKmNWp6FIRNa0aAQXylL4MHE2JZdmXiZEjrUah12AfF0B7yd+xNqMDQD09+rDlBZv4yb3b2TLLJQbNWzK/Ixfkl8lq/wsCokdvTyf5bHgbwm0s65ZNgEBAQFrQRAuVowZGL9vLRpdBa3dm/FstPWlkbeIl1mVPi9vRb2Bo9Shsc2qxGg2siRtOR+f+gyNXoO/rS8PB31FrPOQxjatksyKU/xy4RU2Zn5KmaEIN4Uf9/m/zz2+03CVN35ot4CAQD0hRBXVCkG4WDmZZcVMPWTZcfi1mG7EujV+5torSSlL44PEjyujjd6OnmAVSeou55j6BG8dn8KxohPIxAr6eb/CPb7TsJW4NLZpAJgxcbxoA/OTnuRQ/gqMZgMhDh14PHgufTxfxEZiHXlzBAQE6g6R6daPOxFBuDQBViafYE3KSWRiCZ93uRt7qbyxTbqKi+UZvHdyJnnafLxtvHgneqJVbA9wOWq9hlmnP+fv7G8xmHSVwiDMoUtjm1aJ1lTKtpzvWHD+Gc4V70UsktDKdRhPhyygvdtopCLrcIIWEBAQaCwEL8BaoNm8F/XanRjVJcj9vXB79C4UIdee0jeWllO0bBNlB09iLC1DqnLG9eGh2MZFWNrbso/irQcw5BYCIPf1wOme3tjGRlS28db+DcS5+RDg4ML09gN5fc8f9XuRN8jp5Sc5ueg45QXluIS6kv1OFh/e/T7NbLx5J3ois09/Ubkx46bn15JzNOuqNnw6+9J79gAA9GV6jn5zkIvbU9BqtNh7OxAxKprwe6PqxF4zZg4XrCKl9AiDfMbjqQzlbt93SSjawl/Zc9CaSmrV7u7FqWz/4QLFeTq8I+wZ/r8o/GOcrll+588p7F2SRmFmBXYuMmL6ezLo9TBkCst+S4W6dFZfnIKfbSxtJI8R6tuc7h5P0srlLnbn/kyCegtmrO91a8uiLNbNz0Sdq8cv0pZH3gkkJPbaWx1sWJDJX7/mkJ+hxcFFRruBrowc54dcYXmnGtvrKHnpuqvq9XnQg8emBNXbddwqS34qYcHcEvJyjYRHyZg0zZmWcTW/cOj1ZuZ/Xcwfy8vIyTYSGCzltUlOdO1Z86aw878u5vOZGh560o4JU5zr8Spund9+Kubn74rJzzUSFiVn/FRnWsTVLL71ejM/fqNhzfJScrONBATLeGWiE517Vjn9L1tYwvJFJWReNAAQHCZjzKuOdOllPYEBN8WtLvcIS0XWx5w5c4iJicHR0RFHR0c6derE+vXrG9Wm0n3HKPhlHc739MHnvReR+3uTPfNHjOqaH3hmg4HsD3/AkFuE+6sP0uzjsaieugepS9XUv9TVCZfRA/B570V8pr+IMjqEnNmL0F3MrixTrNfy6u4/MJhMDA9qzn3BLev9Wv+LC5vPc/jz/cQ83YrBP92NS5grvz3zC2/vnsLZYsveRhMix9LKORaAHh/2ZcTaByqPoYvvRSQREdC76gF0+PP9ZOy7SOcpPbnr1xFE3t+cg5/sJW1HSp3anqdN4ZfkV9mXtwST2Uhz5748EfwdwfY3n604fn0Wf848Tb8XQnhteUd8Ih34/pnDlORrayx/dE0m62afpd8LIby5pgsjpzfnn/XZrP/s3FVl9+zfQYdO7XjxjafIzE3DQebOQJ9xPB78rVXNFAHsW5vP4hmpDH/Jl2mrW+AfacvHT51Ck6+vsfyeP/NYNiuN4S8148P1sTz1QRD71+Wz7JOq3bunrGjBF7tbVR7jf7TscN5+kFuDXFNt2PBHGR9PV/Pcaw4sXetBRJSM5x7OIz/PWGP5rz7WsPyXUiZNc2b1Fk9GPmzH62PySTxxtWA78Y+OZYtLCY+y/nfOTX+WMfu9Ip551ZFf1ngRHiXjpUdyKbjGOMyZpWblL6WMn+rCsi3ejHjInjeeyefUZePg6S3h5QlOLFrjycI/PWnXWcHYMXkknan5HrN2hKii2mHVwsXX15cPP/yQw4cPc+jQIXr37s3dd99NQkJCo9mkXr8Lh17tcOjRBnkzT9yeuBuRQk7x9sM1li/efhhTaTkerz+MMjwAmbsLyqhg5AFVyyi2raOwjYtA5qVC5q3CZVR/xEo52nNp1do6kpfOp8d2ADCt3QAinRs3bXzirycIvTuCkKHhOAe50GFCFyRKKfGrjjDz1CccLfwHhUTBa+Ev0tezFwonBTZutpVH5oF0pAopAX2qhEvu8WyCB4fh1cYbex8HwoZH4hLqSv7J3Dq334SBXbk/8uuFseRr07CXuXGv3zQG+0zARnLt2ZIr2bHgAh1G+tLu3mZ4htpz7+RoZEoJB1Zm1Fj+QnwRga2caTXUG9dmNkR0URE32Iu04+pq5bSlBhaPP86IKdFs2LGKhyf2YVv2d5QbNLgpArjb910eCvyCALvWtzQOdcWGHzPpOcqD7iPcaRZqy+PTglAoxWxfXvN3d+5ICWGtHeh8lwp3XwUtuzrTcYgb549VvQQ4uspwdpdXHvHbivDwVxDZ3nocwK/k5+9LGPGAHcNH2RESLuOdGc7Y2IhYvbSsxvJrVpbx9EsOdOutxDdAyuhH7OnaW8nP86q/DJWVmpj0SgFTPnTG0cmqf7oBWPR9Mffcb8+wUfYEh8t46wMXlDZifv+ttMbya1eW8uSLDnTtbYOvv5SRj9jTpZeSRfOKK8t072tD1942+AfJCAiW8eJ4Z2xtxRw/UvNLgtUj5HGpFVZ99991110MHjyYsLAwwsPDef/997G3t2ffvn2NYo/ZYECXnIGyeWjlOZFYjLJ5CNpzqTXWKT+SiCLUn/yf/iD1hfdJn/gZRb9vw2yqeZrfbDJRsvcfTFodirCrl5/mJOxlW0YSNlIZc7qPwEHWOD4PRr2RgtN5eLfzqTwnEovwbudD3vEctCYdn535mr9zdiAWiXks8CEeDrgf0WV5gJP+PENAv2CkNrLKc+4tPbm4M5WynFLMZjNZhzPQpGnw7tCs3q4ls+IUC5Nf4ED+b5jMRqKdevNE8DyiHHv/Z12DzkT6yWLCOlbNAIjFIsI6uZISX1RjncA4Zy6e1JB6zCJU8tPKOLUzj8hu1TP8rnovkageKsI7W9rW6bUcKljBvKTH2Jv3CzpTOd42EYz0n8HogFn42rSo5QjcOgadiQsJpTTvXDWTKBaLiO7sxLn44hrrhLa250JCKUn/WB7QOakV/LO9iNgeztfsY8/veXQf4Y7IylID/IteZybxuJ6OXav+LsViER26KvjnyNUzKAA6nRm5ovr1KJUijh6sXv79t4vo1ltJx241LyFZE3qdmVPHdbS/Yhzad1VcU2TodVw1DgqliPhDNZc3Gs1s/KOM8nITMa0F3687Ceufb7yE0Whk2bJllJaW0qnTtTfQ02q1aLVVN7pGo6k7G4rLwGRC4lR9zV7iZI8+s+a3Sn1OAYa889h3jsXzzccxZOeTv+B3MBpxvrdPZTldWhaZU77FrDcgUsrxeO1h5M08r2rPDLy++0/+HPQ4gQ4ufNJpKM/uWNHgS53aogrMRjNK1+pry0oXG9QXLA9kEyZ+SP6ZnIpcRvuPYIBXXzwU7nxz7jsuHr9IUVIhHd/qVq1+u3Gd2P/hLlYOW4JIIkIkFtFxUlc8W9Wvo6/BrGNHznzOaHbS3/t1PJTBDGk2gWinPmzJ+hK1/mrfHIDSIh0moxl7VXX/BXs3BTnna36zbDXUm9JCHd88fAAzYDKY6Tjalz7PBleWiV+XSfrJYl757eqlK52pjN25P3O04Hfau40mzuUu/Gxbcn/gJ6SUHmVP7iLSy0/UfjBqQXGhAZMRHFWyauedVDIyz5fXWKfzXSpKCg289+BJMIPRYKb3Ax4Me75mkXp4SyFlxQa63Wu9G1QWFpgwGsFNVf2d0E0lITmp5gdw5x5KFs4roU0HBX4BEvbv0rJ1fQVGU9Vf9fo/ykg8oefXPz3q1f66oqjw33GQVDvvppJwIclQY52O3ZX88n0xrTso8A2QcmC3lr82lGMyVf91O3tKxxP35KDTmrGxEzFrrorgcFmNbVo7t7rcIywVWSnHjx/H3t4ehULBc889x6pVq4iOvvbeLjNmzMDJyany8PNr5DwYZjMSRzvcnroHRVAz7DrG4DSsF8VbD1QrJvNW4fP+y3hPfR7HPh3Im7sMXXp2jU0W6cp5fucqtEYD/fzCebll14a4klqzJnM9X56dg86ko5VLLJObv4XuYBnOIS6omld/CJ1edpLcE7n0/LgfgxcMp80rHTgway+ZB9IbxNasijMsSn6JnTk/YjDpCLJvy+PB39HB7QEkorr5cUw6UMDW75K5590oXlvekUe/iOXU9jw2z7E4MRdlVvD7jNM88FHLSmfdmigzqtmW8x3fJz3O0YI/MJr1BNi14oHATxjlPxNf28b3g7oeifs1/PltBo9NDmTaqha88lUY8duKWP11zd/19uW5xHR3xsXT+qLqboUJU5zwD5Jyd69s2oRk8MG7au4eZYv40uRDVoaBmVPUfPiFKwqldc401QVvTnHGL0jGiN5ZdAy9yEfvFjJspB3iK2bXAoNl/Lrek59+9+S+h+2ZPK6A803Ux0XI41I7rH7GJSIigvj4eNRqNcuXL+exxx5j+/bt1xQvkyZNYuzYsZX/12g0dSZeJA62IBZf5YhrVJcgcap5zV3i7IBIIkEkrtKIsmbuGNXFmA0GRFLLVyCSSpF5WZYEFEHN0J6/iGbDHlRP3VNjuycKsnj7wAY+7jSU12O6caowh00Xz9TFZd4QCmclIomIioLqb9MVheXYuF3t4X+g4DB52gJeD38RX9tmLHt/Ke/ETEZDVX1DhYH4OYfoPrMPvl0s2W1dwlwpOJPPycXH8W5ff8tFl2PCyP78JZwp3klfr5cJsGtFN4/HiXbqzZasr0gr+6eyrJ2zHLFEREle9Wn9knwtDqqap683fnGONsO86XCfLwDe4Q7oyoysmHKSPs8GczFBQ0m+js/vq1oSNRnNJB8qZM/iNGbE90UsqfoxLzHkszX7aw7mL6O96n5aOvfH3y4Of7s40sqOsy9vMSmlR+pyiK7CwUWKWAKavOoPEHWeHif3mgXfis8u0vluFT1HWWYR/CJs0Zab+PGdZIY974NYXHWNeelaEvaoeeWrsPq7iDrAxVWMRAL5edWXgvPzjKjcaxahrm4SPv/eDW2FmaIiEx6eYj6bocHX3/LbcPK4noI8E6MH51TWMRrh8H4dS34q5dA5HyQS6xI0zi7/jkN1R1zLONT8vuziJmH2PBXaCjPqIiPunhK+/FBNM//q4yaTi/ALtNxTUS3lnPxHx68/FvO/GdaVO0qg/rD6GRe5XE5oaCht2rRhxowZxMbG8vnnn1+zvEKhqIxC+veoK0RSKfIgHyoSqqI/zCYTFQlJKEJrTiOvDAtAn51fzafFkJlnETTS6+hGsxmzoWbv+39Zfv44C04dAuDTLncR5dJw08gSmQTXCBVZBzMrz5lNZrIOZqBqWbMd50uTeffEeySkncTV1ZUvn/ucgV79Kj83GU2YDKar/BdEEhGYGv7VolCXzrLUiaxJ/5BSQyFuCn9GB3zEUJ9J2Est/ihSuZhm0Q6c25dfWc9kMnNuXwEBcc41tqurMCISV7/GSiFihtBOroz7vROvr+xYefi2cKTVUG9eX9mxmmi5HI0hhy1ZX/D9uSeIL1yDwaTDz7YlI/1n8FDgF4Q6dIZ62mtcKhcT2NyOhL1VS7Mmk5mTe9WExtUs6nUVRsRX/AKJ/31GXfF171iRi6ObjLie1pEw8FrI5CKiWsrYv7tqWchkMrN/t5bY1tefKVIoRXh6STAYYMv6cnr2t/iydOiiYMVmD37bUHU0j5ExZLgNv23wsDrRApZxiGwp5+AV43Bwt5aW/+GPolCK8PCSYjDA1vXl9Oh//VBnk8niJ9QUEaKKaofVz7hciclkqubD0tA4DepK7tzlKIJ8kYf4otmwG7NWh0MPS2RH7rfLkLo44jLakpfEoW8HNJv3UbBwDY79O6PPyqPoj204Duhc2Wbh0o3YxIYjcXPGXKGldM8/VCQm4zn+8f+0570jWwh2dKW7TzDf9xjJvRt/Iru8drlIbpaoB1qwZ/oOXKNUqKLdSVx6AkOFgZAh4QDsnrodW3dbWr3QrrJOob6IgSMGMXv6J4wccB8PBYwmxD6Y+ecXgB14tPLiyFcHkCik2Hvbk30kk+T152jzys2HKdcVpzR/k1xykK7ujxHrMoRIp54EO3Rgf94SDhWsoPvjgSyddALfFo74tXRi58+p6MqNtLvH4rj868TjOHkoGTzWMlsQ3dOdHT+l0CzKAf8YJ/JSy9n4xTmie7ojlohQ2knxCqv+sJfbSLB1ll11viaKDblsyfqSfXmLaes6gliXIXjbRDDcdzL52lQO5i/jpPqvOh+ngU94M29CEkEt7AiOsWfTT1loy010H2FZDpz7ZhIunjJGvWER+XG9XNjwYyYBUXaExNqRnaplxWcXievlXE2cmUxmdq7MpetwFRKp9T2kr+TRp+15e1wh0S1ltIyTs2h+CeVlZoaPsgXgrdcK8PSS8OpES+TasaM6crKMREbLyM4yMufTYkwmeOI5y3dtZy8mLKK6wrOxFeHkIiYswnp9Ox5+2oHJ4/KJipHTIlbO4h+KKS8zMWykZT+zd1/Px91LwssTnAE4flRLbpaR8OZycrOMzP1Ujdlk5rFnq14+v5xZRJeeSrx8pJSWmtjwexmH92n5aqH1+j1dl1uNDLpDo4qsWrhMmjSJQYMG4e/vT3FxMYsXL2bbtm1s3Lix0Wyy6xiDUVNK4YotGNXFyAO88Rz/ROVSkSGvCC6bMZC6OeM54QkKFq0l/a0vkLo44jigC053da8sY9SUkPvtMoxFxYhtlcj9vPAc/zg2Lf97WtxoNvPSrtWsGPAoYU4qvu85ktGbF1FmqP8138B+wWiLKjg27zDl+eW4hLnR+9MBlUtFpVklV82eqFOKuHgwlbmn51MeoeNB/1F0dGuHv60vX5ydQ7f3enH0m0PsnrINnUaLnZc9sc+2IezeyHq/nuuhNZWwNftrjhdtoI/XizSzbU43jyeIcR5EyKh5lBbo2PhlEsV5WnwiHXh6buvKpaKizIpqMyx9ngsGkYgNn59DnaPF3kVOVC93Br0aeq3ua0WJIZ9tOd9xIH8prV3vIc7lLtwU/gz0GUcX98c4o17CWfUq9KaanYhvlo5D3Cgu0LPyi4uoc/X4R9ny5vxInC457OZnahFd9vy9+4VmiESw/LM0CrN1OLjKaNXLmfvGVl/aTdijJj9DR/f7msbDaeAwWwoLTHwzu5i8XCMR0TLmLFThdmmpKCvDWG0ZTKc189XHGi6mGbC1FdO1l4IPPnNvEiHP16P/XbYU5hv5draa/Fwj4dFyvvzZvdo4XH4/6LRmvpmlJj3NgI2tmK69lEz/zA2Hy8ahMM/Eu2MLyMsxYu8gJixSxlcL3ZtEpJVA3SEym61Xsj311FNs3bqVzMxMnJyciImJYcKECfTr1++/K19Co9Hg5OSE/3fvIra9fW9uXzsnVg18DJXSjr/TkxizfRnGK77arqFJjWTdtQmzD+GlsGdxlbuiNWr58cJCdufVb7h7rGPafxf6D6Ice9Hd4ykcZJaHaVrpP2zL+Y7siquTyFkLcrEtsc6DaeN6L/aySyHWxlLOaX4nsWgpZYaancFvd+KUFxvbBKtBb27aYqkuKCk20aNFOmq1uk5dDS7n3+dSp0HTkMpq/1wy6CvYu/7derXVGrFq4VIX3CnCBSDOzYfFfR/ERirjt6R/mLBvXbXPrVG4ADhKHXg+dAwtnCwO1ztyd/PzhcVoTfWzJFgXwgVAJlLQzm0U7dxGIhNbZlcS1FvYnfMTGkPOf9RuPCQiGVGOvejodg/OCksItslsILVkG4lFS8iraNhQ6sZGEC5VCMKlgYXLwDoQLhvuPOEi3KW3EfH5GbyyazVGk4lRIbFMatWrsU26ITSGYj469SkrLq7GZDbR3b0L01u8Q4BtI4ey/wd6s5Y9eQv5IekpEtRbAGju1JcnQ+bTw2MMSol1Znc1mvWcUG/iz9SH2Jr+OpllBxGLpAQ69GWQ3/cM8ptPkMMAxNa9kiwgIHCHIgiX24wt6eeYuN8y0/JMdEeei+7YyBbdGGbMrE5fw4zEWRToCvC28WJK8/8xxHtgtWy71kixIZf1GR+zMPlFUkvjkYrltHO7jzEhP9HB7X5kVrujs5mMsr1sSX+ZNSkPc06zBqNJh0rZnK5eU7knaDUxrk9hI7HefYEEBJoyQlRR7RCEy23I8vPHef/wVgAmtOrFI+HWsZfNjXCq+Az/Oz6VQwVHkIql3O9/HxOjxuEmt/4cDdkV5/gtdQIrUv9HTkUSCokd3Tye4OnQBbRyGVZnCezqg0LdOfZmv8fKC3cTnzeXMkMutlIVsW5juDfod7p5TcfDplVjmykgcHthMt/6cQci+LjcxoyL7c5LLSw7CL+1fz1prGhki26OHu5deTjgfpQSJWWGMn5JXcqO3N233G5d+bhcHxGRjj3p6v4oznJLWLRGn8u+vMWcKNqEiZrTnjcknlL1NT8TI8XfvhcRzvfhYRNbeb5Ie54z6lWcL16P3tQwYff1jeDjUoXg49KwPi6d+069ZR+XPVsmCz4uArcPn/yzg+8T9wPwQYdB9HC37q0BrmR77i7+d3waZ4vPYSu1ZUzwE7wR8SoucutOQmbBzCnN3/yQNIbNmV9QrM/FUeZOf+9XeTr0B2KcB1m1D4kJAxdKNrPx4rOsSXmEs+rVGEzlOCuCae8xjvuC1tDJ43+olI23saOAgEDt+PrrrwkMDESpVNKhQwcOHDhwzbIrV66kbdu2ODs7Y2dnR1xcHAsXLmxAa69GmHG5A3inTV+ejGyHyWzZ9HB77q7GNummECFikFc/Rvjdg1wso9RQxuJbmH1pmBmX6khEMmKdh9BeNQp7qcVnRKPPZn/eUk6oN2E0N/xeK9ebcakJmdiOIIeBRDjdi7MipPJ8ofYc5zR/cF6zAZ2p7jY1bSiEGZcqhBmXhp1x6dJ3KlLpLcy4GCrYfZMzLkuXLuXRRx/l22+/pUOHDnz22WcsW7aM06dP4+Fxddbzbdu2UVhYSGRkJHK5nDVr1jBu3DjWrl3LgAEDam37rSAIlzuEyW368XhkWwB+uvALW7L/bmSLbh4fpTfPhDxBiL0lhPeE+iQ/Ji8iR3tzoceNIVz+RSqS09J5EB3cRlfmUinW53GoYAXHCtehN1c0mC03K1wux13ZkjCn4QTY90EqtvxdGU060kp3cE7zJ1llBzFj+o9WrANBuFQhCJcGFi59pty6cNk65aZs7dChA+3ateOrr74CLNno/fz8ePnll5k4ceINtdG6dWuGDBnC9OnTa237rSDcpXcIUw9vZn3mJgAeC3yIu3wGNbJFN09GRSbTEj7k15Tf0Bq1tHCKZkbMFO7yGYREdO1dlK0Jg1nH0cLf+T7pcbZmfY1Gn4uDTEUvz2d5JnQhnVUPYyOx/rXq3Irj7MmezvLkoezP+ZiCitNIxHICHfrSt9nn3BO4mji353CQWXdIu4DA7YBGo6l2XGtbHJ1Ox+HDh+nbt2/lObFYTN++fdm7d+9/9mM2m9m6dSunT5+me/fu/1m+vhCEyx3E4tTfWHXxTwBG+Y1glN+IRrbo5jFhYl3WJt46PoUT6pPIxXJG+Y3gvRbvEuFg3TsHX45FwPzB9+ceZ0PGbAp16dhIHens/gjPhC6kl+dzOMo8G9vM/0RvKuGMegVr0x5jTeqjnCpahtaoxk7mQUvXxxkeuIyBvvMId7oXudj6BZmAQENSV+HQfn5+ODk5VR4zZsyosb+8vDyMRiOentV/Wzw9PcnKyrqmnWq1Gnt7e+RyOUOGDOHLL7+8qQz2dY31egcK1Asr03+nwlTBA/4juctnEI5SB368sBCj+fo7UVsbOdpcZp6aTRdVJx70H4mvbTPejp7Aztw9LE1bjlrfNHwtTBg4od5Ignoz4Q5daec2Ci+bMNq43kMrl2Gc0ezkUMEKsirONLap/0mh9gwHcz/hcN4X+Np1JcRxKD62HXC3aYm7TUvaql4jvWwPycUbuVi6G5NZ19gmCwg0Lmau2gn9pusDaWlp1ZaKFIq6zR3l4OBAfHw8JSUlbN26lbFjxxIcHEzPnj3rtJ8bRRAudyDrMjdSaijjyaBH6OHRFWe5E1+e/bbeUuzXJ7vz9hJfeIyRfvfQy6M73dw709a1Fasu/smm7K1NRpCZMXG6eAeni3fgb9uK9m4jCbRvQ6RTTyKdenKx7ASHC1ZxrniP1fuOmMx6Ukv+JrXkb5QSV4Ic+hPsMAhXZQT+9j3xt++JzlhMSsnfXCjeRHb5Eau/JgEBa8bR0fGGfFxUKhUSiYTs7Or7kmVnZ+Pl5XXNemKxmNBQyyawcXFxJCYmMmPGDEG4CDQs23N3otFreDH0GWKdW/K/6PHMPv0FRfraO2w2FqXGUhZcWMTO3N08EvggIfZBPBgwih4e3fglZQnH1QmNbeJNkVp2lNSyo7grgmnrei+RTj3xtW2Br20L1Losjhb+yfGiDWibQB6VCmMBiUVLSCxagrM8lCCHAQQ59MdO5kmY0zDCnIZRZsgjpXgrF0o233H7JAnc2YjMZkS3EB9zs3Xlcjlt2rRh69atDB8+HLA4527dupWXXnrphtsxmUzX9KNpCO6YqKLW97+PRH7nRhUBZHe7evYhzt2bH/rfi5uNLRklGp7ctJLEgtxGsK5uEAEjw1swoV13VDZ2AGxLO897+7dxtigfAHv30ka08OZRKey5P6gdowPb4qqwXFO5Qc+ai8f4NfkApzW129VZJm2c2SgRItq4BjDQJ4a+3s1xlttWfpZRVsTmzBNsyjxBgjq9QexpqcpskH6aAiqF9Yvh+kZbomdOt5UNElXUrfvkW44q2rlj6k2HQz/22GPMnTuX9u3b89lnn/Hbb79x6tQpPD09efTRR2nWrFmln8yMGTNo27YtISEhaLVa1q1bx8SJE5kzZw5PP/10rW2/FYQZlzuc+NxMhv/xCz8OuJdQZzdW3PUgr21by6aUc41tWq0wA7+dOcGGC2d5Oa4TjzdvTU+/YLo1C2TpmeN8emQ3ZTQt4ZKnLeGrU38z78xOhvi25KHgDkQ6eTEysA0jA9twND+VJRcOsSnjJDpT42fk/S/MmDlUcIFDBRf4MGEtndxDGOgTQ0/PSHxsnXkspCuPhXQlvayQLZkJbM5K4ESRELIsIFAXjB49mtzcXN59912ysrKIi4tjw4YNlQ67qampiMVVcTulpaW88MILXLx4ERsbGyIjI1m0aBGjR49urEsQZlzuJGqacfkXR7mCOX3upmuzAAA+ObyLL4/uvSW/MWsg0NGZie16MCgoHLDMVPyctJcfzu2mxND0fHr+pbWrPw8Gt6evdxQysSUUvEBbyurUeJanHCGlNP8/22isGZdroRBL6eIRzgDvFnT3iMBGKq/8LKtczV9ZJ9mSlUB8QSqmOrwzhRmXKoQZl4adcene7d1bnnHZsXPaHZfyXxAudxDXEy4AUpGYdzr24vHmlk0ZN144y9jt6yjRN/3oj7aezXirfQ/aeDYDoFBbxryzO1mSfBBtE5iluBYqhT0jAlozMrAN3jZOlecP5CazLOUwWzJPXXMWxtqEy+UoxTK6eITRz7sF3TzCsZNWRUkUaEvYln2Kv7MT2Z93/pZnmQThUoUgXBpYuHStA+GySxAutx2CcKniv4TLv4wMa8F7XfqhlEpJKirgua2/c6Ywr56taxj6B4QyqWM3gh1UAGSXa5h7ZgcrU46ibyIRSDUhEYnp7hnGfQFt6O4ZhlgkAkCtK2fNxWOsTDnKKU31PA3WLFwuRy6W0lEVQl+vaHp4RuJ0mU9MmUHLntxzbMs+xc6c06j15TfdviBcqhCESwMLly7v3Lpw2T1dEC63G4JwqeJGhQtAjMqLuX3vxsfekXKDnnf3bOG3M7dHxIeTRznD/GJ5IaIHPrbOAGSWqZl7ZgerU+ObtIAB8LZx4l7/Vtzj3wpv26pZmMSiTFanxbPm4nGKdGVNRrhcjlQkprVrIL29oujlGYXnZbNMRrOJ+IJUduScYnv2aS6U3pjYFoRLFYJwEYRLU0AQLncQNyNcAFyVNnzaYwg9/YIAWHXuJP/bvYlSfcNvCFiX/BtVJBNLuC+gNc+Ed8dD6QBYBMy8sztZlRrfJBxdr4cYEZ3cg7k3oDW9vSKQSyy++HqTkR3ZZ1mbcZSdOafRm5qegPmXaCcfenpG0dMzknDH6nkoUkvz2Zlzmp05ZzhccOGa1ykIlyoE4dKwwqVH51sXLtv3CMLltkMQLlXcrHABS3jxczHteaNtN6RiMUlFBbzy9xpO5NcuBNcauDIcWi6Wcl9Aa8aEd6sUMNnlGn5K2suyC4cpMzZ9Hx8nmQ1DfFtyt38cLZx9Ks+rdWVsyjzBuvRjxBemYm7C7tg+Ns5084igh2cE7dyCkImrgibLDFr2551nV+4ZduecJauiKl+RIFyqEIRLAwuXTm/funDZ+54gXG43BOFSRW2Ey7+09WzGl72G4mPviN5k5NPDu5lz7ACmJnj7XCuPy78C5smwLpWOrkW6MhafP8AvyQco0pU1pJn1RqiDB8P8Yhjq27LaUktGWREbMo6xIeM4Z4qvvW9JU8BWIqeDKoRuHuF09QjHQ1n9Rz2pOIc9uWfZk3sWrWg/enPTnkWsKwThIgiXpoAgXO4gbkW4ADgplMzo0p8hwREAHMy6yOvb15FW3LSy7f5XAjqZWMJdvjE8HdaVAHs3wBJGvSr1KD8l7eViWWFDmFnvKKQm2rkFMbhZLH28orGXVf19nC/JZWPGcTZkHCflBn1FrJlIR2+6eoTTxT2MGBc/JKKqPBU6k45TmjOcUJ/khPokaeV3bs4YQbg0rHDp2eHWhcu2/YJwue0QhEsVtypc/uXe0OZM69wHB7mCUr2OGQe2sygxvsksMtxo5lwxIvr6RPFUWNfK5RWj2cRfmaf4KWkvRwvS6tPMeudy51yFWEp3jwgGNouhq3sYComs8rPTmiw2Z55gc2bCbSFiHKRKOqhC6OweShf3sGqzTgBFOjUJmkQS1Cc5oUmkUHd7CNUbQRAuDSxc2v/v1oXLgfcF4XK7IQiXKupKuAD42jsyq/sgOvn4A7A3M5UJOzeSoimqsz7qi9qk/O+gCuKJ0M508wyrPHe8MJ1F5/ezMSOhSTq4XiuqyF6qoKdnFAN9WtJBFVKZ4A7grCabLVkJbMlMIKkkp6FMrVcG+EFLp+a0dGpOpEM4Ckn1nXUzy7NI0JwkQX2KU8WnKTE0rczLN4MgXATh0hQQhEstua9PLA8Paoubkx1n03KZtehvTp6v2S+gZ5tQnrirPb4ezkilEtKyCvllw2HW70msLHPgp7E11v1iyQ4WrT9UJzbXpXABi+PuaJkz7973IHZ2dpRXVDB7+yZ+uHgWg7nm3X5NZeUUrdpA2dETmErLkLq64HL/Xdi0jKosU/z3HjQbt2NUFyP388blgbtRBPnXmd23sldRiIM7j4V0YqhvDIpLUTp5FSUs2Pw7X741nbTT51AEeuE9ZhA24c2u2Y6xpIKcX7ZSvO8UxuJyZB5OeD45EIe2FmFkNprIXbIN9fbjGIpKkLo44Nw7FtWo7ogu5Wi5VW4kHNpRZkNvryj6ebWgvSq4mohJKcnjr+xEtmadJKEoHTNm8tYcImflXgyFJdgEedLs2QHYRlx/HDIX/o16z+nKcWg2pj+O7Sw70RrLtGQt2o567ykM6jJsgr1o9kx/bMN9rtnmzXK5c65UJCXMIYQWjtE0d4oiyC4Q8WXLSiazidSyiyRqTpGoOc3p4jOUGa/OHXN6+UlOLjpOeUE5LqGutBvXCVVz9xr73/T8WnKOXv3b4dPZl96zBwCwqOP8Guu2eqkdzR+OuanrvR51LVz+WXqWQz+doiy/AlW4M70mtMarhds1yx/55TTHlyWhySrDxllOWF8/urwcg1Rhue8uHs7h8M+nyTlZQGleBUNndyG0l2+d2tygwqVdHQiXg4Jwue2oD+HSt304U54ZyIc/bSUhKZP7B7SmT7twRk74kcLiq3/EWkf64min5EJGAXqjka6xwbz6QA/Gzl7FvhMpALg52Var0ykmiLef7M+9438gI7dufEjqWriUHown/4eltHr9OT577hW6B1vS6p/Ky2bSni0cycmoVt5sMJD94TeIHe1xGtwbibMjhvxCxLY2yP18qrXp+vC9KIL80WzZSdnh4/hMfxOJo32d2F0Xmyy6yG0ZGdiG+wPb4Wlj+cEwGI1sTv6Hb+bOZd2cnwn9+iWkznZX1TXrjSRP+gGpkx2q+7oidXVEn1uExE6JMsgS0pu7bCcFf+zF59XhKPw8qEjKIOOL33F/uDduQzvcsv1w8wnoHKRKenpG0se7OZ1UIdWWk3IqNGyK38vi977kTIQMaagnub8fQL0rkYi5zyOrYRxMeiPnxi9A6mSH56guyNwc0OWokdgpsQm27JtyYeZKKlJy8H1hEDJXBwr/Pk7u7weI/OZZZKq6+aG+XlSRrcSGSMcImjtGEe0Yia9tdRFmETJpJGpOc6r4DKc1Z0nYcJw907bTYUIX3Jq7c2pJAql/JTNs6X0oXW2u6kOr1mIyGKv9f+0jq+g4qSshQy9tVZFf3TE8Y+9F9r6/k7uXj8ShWd09sOpSuJzemMqmd/bT+39t8GrhxtHFZzi7OY3HVg/G1vXq3+JT61PYPOUA/aa0xztWRVFKMZve3U/4AH96vNEKgORdmWT+k4dHlAtrxu1u8sKlV9u3blm4/H3ogztOuFj1JoszZsxg5cqVnDp1ChsbGzp37szMmTOJiIhoVLseHNiG1dtPsGZnAgAfLthCl9hg7uregp/XHryq/JFT1Z39lm4+ypCu0cSGN6sULvnq6j9MPVqFcDgxrc5ES31QvHkn9t06kB8ewCN//c49KVH8r2VHIlWerBr2EEtOH2PmwR0UVFjEXMmug5jKyvCc+CIiqeUNSqpyrbFN+y7tAHB9+F4qjp+iZPdBnAb1atgLvA6FujK+O7OTH87uJvbvLJ5/6hk6tYhjUGhrBn08l1PPjGPxwa1skWmuyuZauPUoxuJygj58snIc5J7O1cqUn07DoX0EDm3DKz9X7zhBxdmG2TG5JooNFfyZHs+f6fHYSuR09Qinl2cU3S5F7TzccQAPrxlAmUHL3rwktnVMZP79b1KwOR7PkV2uaq9gczzG4nLCPn68xnEwafWodycS9M4o7FtY9tDyeqgHmgNnyVt/GO9H6v9+KDOWc6QwniOF8QA4Sh2JcowgyjGCaMdIvG28CLQLINAugEHe/TGZTZx0SCS+bTyFIcWcLj6L0wRn0vekcW7NGVo8GntVHwqn6ktTFzafR6qQEtAnqPKcjVv1F5u0HSl4tfGuU9FS1xxZdJoW9wbT/O5gAPr8ry3JOzNJWJ1Muyejriqf+U8ePnEqIgdZvmsnHzsiBvqTdaKgskxQV2+Cuno3zAUIWC1WLVy2b9/Oiy++SLt27TAYDLz11lv079+fkydPYmd39RtcQyCViIkM9OSnNQcqz5nNcDAhhZahN/YH1S7ajwBvV776bWeNn7s62tIlNoip8zbWic31gdlgQJeSjuNlYmJVUiKrPvqU9557iUfuvof7I2IYGBDGrMO7WHzqH8r/OYk8OICCxasojz+JxMEO2/atcBzUE5FYXGObIrEYZVQYuqSUxrjM/0Sv07Pwi2/5W1lA2/49GB3YlmF+sUSGhTMtLJy3jQY2ZyayIuUIB/IuYMZMyYHT2Eb6kjl3HcUHTiN1ssWxW0tU93ZBJLEsS9hE+FG06TDa9HwUzdyoSM6iLDEVryf7N/IVWygz6tiUeYJNmSeQiSW0dQog5piWex4chZejK328ounjFc3UxHs4fPIY+2V57Mw5w2lN1eyGZv8ZbCN9uThnA5r9Z5A62uLcszkeIzojkogxG01gMiOSVf+ZEimklCY0jmO0xqBhf8FB9hdYXlCcZU5EOkYQ6RBOpGMEzWy8aRHRnBYRzSvrZFfkcM/iIew9vA+xUk5mxfVDzZP+PENAv2CkNrIaPy/PLyd9dxqd3+1RdxdWxxj1RnISC6sJFJFYhH8HTzKP1ezg7R2rInFtClkn8vFq4Yb6YgnJuzOJGhLYQFY3Amaz5biV+ncgVi1cNmzYUO3/CxYswMPDg8OHD9O9e/dGscnZwQapREzBFTMkBeoyArxdr1EL7GzkrP3sGeRSCUaTmY9+3sqBhNQayw7pGk1phZ6/D5+tU9vrEmNJKZhMSBwdqp0vNBt5+vVXWS0uZ1qnPjRXefJel348FBXHqxv2snn1H9h1aIXHq0+iz8mj8JfVYDTiNKzfNdsUO9qjz7JOR1BDcRmYzEid7TijyWb6sbV8cnIz3VOlPNx9EK2at2SIr+VIKy1kdepRPpes4vyeBJy6t8T/nQfRZRWQNXcdGI24398TANWIrpjKtSS99BWIxWAy4fFQb5x61J0/Q12hNxnZce4fvn3+cz4tOUDbju3o4RFJd88Iopx8aNcijnbASxF9yanQsCf3LLtzzvJzuYncY4m49GxB0JT70WYUkD5nA2aDCa8HuyOxVWAb6Uv2kp0o/VRIne0o2pFA2al0FN4ujX3ZABTp1ezLP8C+fMuLjEwtRT03l0emPkZcUBz+tr54Kj0Y0fdeRvS9F4BifTFnS5I4W5zEmZJzJJdcqMwjk5eQS1FSIR3f6nbNPs+vO4vMToZ/z4D6v8BaUl6ow2w0X7UkZOumpOCCpsY6kYMCKC/U8tsTfwFmTAYzLe8Lof1T0Q1gcSNhBmp2B7zx+ncgVi1crkSttiybuLpeWyBotVq0Wm3l/zWamv9IGhoflSOPvvsLCoWUdtH+vPZAD9Jz1VctIwHc1a0FG/cmotM3vUiVfzmUnc7Q3xfyUGQsb7TpSpSrO5uWreDP9euZrbnI+eIi5AG+GAs1aDZtx2lYv8Y2uc4oM+j4adNavvn0C+6a9y73+rdiiG9L/OxceDmqNy/uO8q2XTvZZJvH1qzTlIX6YMgvJn/1nkrhotmdgHr7cZqNHYHCz52K5Cyyf9iI1NUB595xjXp918OMmZPqDE6qM5hz9i/Mq4/R1TOc+156kg6qYDyUjgz3a8NwvzbM+Oc+Dhw5RLxjCXvykzhZlI4hv5iclfvwetDyYuI/bhhpn6/h5GOfg1iETYg3zt2bU37OOrPdqnVqVq5cSekgHe6lnthIbAi1D8bptD0tvKNp17YdDjIHWrvE0dolDgCDyUBKWRrnSpLYsGs96d1jrunIC5C05gxB/UORKJrUz/d/knYoh4M/JNJ7Umu8WrpRlFbC9o+Psv+7BDo80/y/G2iCiMxmRLcwa3IrdZsyTebON5lMvPbaa3Tp0oUWLVpcs9yMGTOYOnVqvdlRVFyOwWjC9QpnWlcnW/LVNTt9do0LZsaLQ1m35yQzftzC2dRcgnxceXxo+6uES1x4MwJ9XPnfN2vq7RrqAom9HYjFGDXF1c6bNCWVMyYms5mFifH8cf4Ur7XqzKORsdw1aBCDTCaWnj7OZ0d3U+7tgUldjNlguKE2rQ2pgy2IRRiKqn/3BnUpUhd7EooySCjK4OOETfTzjuIe/1Z0cA+id/ce9MYicrZkJrK0SMmSn7Zg1hsRySRkL9iMakQXnLpZ7nVloCf6XDV5K3ZZpXCRONY8Dmnnk1l0/BS7OymRiSW0dgmwJILzCCfY3p3O7TvSGXiBvqh1ZewOPMYq0XzSZA5k6YtReLsS+uGjGCt0mMq0yFwduDBzJXIv65hxuRKFsxKRRERFgcWvqdxYznF1Anu+246uWEefWQMJtPUnzCGUMPsQwhxCcZE7E2IfRIh9EAPG9YVxllwySSXnSSo9T1JJMudLkqkwacmJz0KToqbbezfv3xPhEEZzx2jOlSSRVp5er/lpbFzkiCQiygoqqp0vy6/Azq1mZ9S93xwnakgALe4NAUAV5oy+3MDW9w7R/uloROK6iaYTaPo0GeHy4osvcuLECXbt2nXdcpMmTWLs2KrQYo1Gg5+fX53ZYTCaOHUhm3bR/mw/kgSASARto/1ZtiW+xjoKmQSpVMw9PWMoKdXy5W87EYlEyKSSq8oO696CxOQszqZZd6IvkVSKPKAZFYnnsG1lebiaTSYqEs9h37tztbJqbQVT9/3FnC+/5J3hoxg2aDAPRcVyb1g0c2zd+WD1ZkRSy614o21aCyKZBGWID6XHzuPYMRIAs8lM6bHzuA5uX1muwqjnz4vH+PPiMeQbErg7II4nXnqOAHs3hvnFMuyxWGYNeJwtpRdYm36c0zq95ca6vC+xyGrXtMUyCbah3hT/k4xTJ4vzvNlkpuSfC7gNbQtYlpT2559nf/55PkncgGRtAu1t/Rgx7hk6qEJwktsyuHlHBs/rCFg2Sdyfl8SBvPMczE+mSFmGoaSc4iNJ+DzRp9Gu9XpIZBJcI1RkHczEr0cgYBmHrIMZhI+Mxmg2klSaTFJpMhvYDIBK7kaYQwjuua4EygJo1boVznIn2ri2oo2rJZrGZDaRUZ7JXvVeWkyOxCbWkYvl6RhvYifzbqouhDuE4mPjhbeNN2eKz/JH+loK9UV4KT2RiWRoTWcxceszvRKZBI8oF9L2Z1dG/ZhNZtIOZBM7OqzGOoYKI4hruOcBs9mMiNtQuJi5RR+XOrOkSdEkhMtLL73EmjVr2LFjB76+1w99UygUKBSK65a5VRZvOMzkMQNJTM4m4XwW9w9ojY1CVhllNOWZgeQUlvDNMovI8vV0ZsnGIzw0qC2PDGlHsK+KDs39mfnz1mrt2inl9Gkfzue/bq9X++sKh37dyP/hN+SBviiC/CjesguTTod9F8uDKm/+EqQuTjjfOwiAjJBmDL/3XvqOeYL335xAO79Axg4fyZN9BzLvVDw/Jhz+zzatEbe7O5Lx+WpsQn2wCWtG/p/7MFXoce4TB0D6Z6uQujng+UhfAErb+DL9lWl8sfN3ej85mqHNWjI0rA3eXl48ghePhHTkwqlBLFm6hL8v5nFeVkFFcib5f+yrbNMaUQ3vQNqnf2Ab5o1teDNyf9+PqUKPa19LJE3qJ78jc3PA+/HeAJS39+W7F75l2ek9eA3rQITIhZhcJYNG3E3r0Cj87dzwt3NjZIBFAJ7MSmHL2vXseOR+MgcGUYp17t4d9UAL9kzfgWuUClW0O4lLT2CoMBAyxBIhtnvqdmzdbWn1giVyLk+XT15+PhufX4Otuy293x9AoJ0/IfbBhNoHE2IfjErhhq9tM0b2v4+R/e8DQGfSk1qWSnJJCudLL3Ch9ALp5ZnX3CjTQ+nOD8kLOVV8GgCFWIHWpCXOOYYuqo54KT1xkCr5I+MXjqkPIEKEGTMSkRSj+ebHuvXDEWx6dz+e0a54tXDjyOLT6MsNRN9tiZba+PY+7Dxs6fqKxW8rqLsPRxedxiPCBa+WrhSllbB3zgmCuvsgvuS0rivTU5RWFbKtSS8l53QhSkc5jt6NE7BxSwjOubXCqoWL2Wzm5ZdfZtWqVWzbto2goKD/rtQAbDlwBhdHW565tzNuTracSc3l1VkrKdBYHHY9XR0wmapuKBuFjG6tQtAbjMikErrEBrF+TyK/bz9Rrd1+HSMQARv3nWrIy6k1du3iMBWXov59E0ZNMXI/HzxefapyWcdYUFQtWZrU1RmP155m+9I/aT/ne+55YDTTp0+neUAQb7btxlMt2vB9dGu+NphIX72hxjatEaeuLTCqy8j9dRuGwhIUQV74T34IqbMl74w+V11t9kTm7oT/5IfJ/mEjKx+YwB+ujrgPaMddzz7CEL8Y+nhHEujjy8TX32AicPrMaVaW/smmZ+zI7nDtZG6NjUv35hjVZWQt2o6hsBSbYE+Cpj2AzMUyDrpcdbU3arm7E8HTHiTj+82cfPFbzro5sKd/HCtPlWGfbENr1wBa61xp5xpEi6hoor0CiH7qOV556jmMZhOn1JkcKkjmcP4FjhakUGyouJZpDUpgv2C0RRUcm3eY8vxyXMLc6P3pAGzcLDlcSrNKrkoiqE4pIvefbHf7p4IAAD7YSURBVPp8PhC9WW9x3i1JqvzcSeaIzQk5LhmODBlzF6FOwdhJ7Qi1DyHUPqSy3GtHx5OvK6AmfG2a0cGtDWKRiKSSZLQmiy/gIwEPsCRtOQcLDtPK2YPB3qO5UHoGjaEIL6UvfT2G08w2kEJdHqvSfyJXe2P+RRED/Ckv1LJ3zglLAroIZ4Z/3aNyqUiTVVbtfujwdDQiEez55jglOeXYuigI6u5D55daVpbJPlnIijF/V/5/xyfxAETdFciAaXWT30jA+rHqBHQvvPACixcv5vfff6+Wu8XJyQkbm6sTOdWEtaX8f+rujjx7r2XZ44UPl3EoseHCOus6AV1dIBaJuCs4kldbdSbE2eJ0rdZWMP/EYX5MOIxGp/2PFm6eukhAV5/YSGR09wxnULMWdPcMq8zQC5BaUsDmzJNszkzkRGHGNd+ub4SbTUDXmLjK7WjrFkR7t2DauQURYK+q9rnJbOKMJpsjBRc4UpDCkYILFOhu7Hu+XgI6a8ZD4UGwfSBBdoEE2wXiKndh3D+TaiwrE0np4dENZ5kTwfZB5FTk8vOFxQTZBfBy2PO8Fj8eESLcFMVMaz6XT85MRK0v5M2ImezI3UCC5ggd3XphJ3Hgz4zFdbKcZK00ZAK63i0nIJXUfoXAYNTy1/GZd1wCOqsWLtdKbf7jjz/y+OOP31Ab1iZcAB4f2h4neyWfL9lx3XIKmRStvu6mw61RuPyL5JKAeblVJ0KdLSnBi3Vafjn1D/NPHCKnrO7EhrULl8uxlcrp5RlBP58ounmGobwsW212uYa/sk6xNfMUh/JS0N+EvwM0LeFyJR4KB9q6BdHGLZA2rkEEXiFkwLIlwZHCFOILUjhakEJqWc0zEU1VuNQWiUjCM8FPklGeSY42h66qznx8+jMAwhxseCLwdX668BmOMhceDXiVqSdfAMBR6swbER8yOeH5WxLM1k5DCpc+LcbfsnDZeuKjO064WP1S0e3IgsuS110LO6WciY/35XhSJr9tPtoAVjUuRrOZ1UmJ/HH+FIODwnkprhNRru48F9OeJ5q3ZtW5k3x//BBni/Ib29QGpcygY236cdamH8dWIqebZxh9vSPp7hmOp40jDwS154Gg9mj0FezKPsu2rDPszDmLRm8dyyb1RY62mHUZx1iXcQwAlcKe1q6BtHYNoJVrIGEOHgTYqwiwV3GPXxsA8rUl/FOYeulI46Q6A53JOv1k6pJ/fVX+xWg2UmYsxUFmT7mxHLW+KmWEt9IXjd4SbeRnE0xKWVUuKTupAxpDETYSO8qMwmaMAo2HVQuXOxmlQsriDYf5cfKD2NvI+eGP/Y1tUoNgMptZc/40a86fprdfMC/EdqCdly/3R8Rwf0QM29LOM+/EIXalW2cm3fqkzKhjY0YCGzMSkIkldHIPpo9XJD29IlAp7Rns25LBvi0xmEwcLUhle/YZdmSfJak4t7FNr3fytCWVmXzBsq9SnKs/cS4BtHYNINrJBzeFPb29ountZUlopjcZSFRnklFxinMl5zlXknRN/5CmjFgk5iH/0UhEEhI0J3GQOuBv68+S1GW0comj9LLdrsPtW1Js0JCvy8HLxpecy/xZvJX+5GqzkIqEx0adITjn1grhDrRS8tVlRAR4ciGzgP0n7ryHNMBfaef5K+08bTx8GNOyHQMCw+jpF0xPv2DOFOaxIOEIK8+dpNygb2xTGxy9yciO7LPsyD6L6J81tHRpRi+vCHp6hRPu6Ek7VSDtVIG80bw/6WVF7Mw+y66cc+zPTabMqGts8+udYkMFO3POsDPnDAAysYRoJx/iXPyJcfEn1tkPldKBGBc/YqhKl1CkU1fmTkkqOU9yaQrlNez+3JQwmo3szNtNmH0oMU4tkYtlLEpZQnLpBUSIGODdl1inlmhNOoLtI9iUtRIAd4U3F8uSK9sJto+kSJdPqbH4qj5c5e44y9zIqkijzNh0lmIbHUG41Aqr9nGpC6zRx+VGcHOyZe5bo1m47hB/7jiB6dLXJBGLMJpq95VZs4/LjeDv4MwTzVszOqIldjI5YHHkXXbmBL+ciue8+sYSajUlH5fa4GPjTE+vcLp5htFBFVTNuVdvMnI4P4XdOUkcKDjDGU32be2vcD18bJyJc/Gnp7crofbB+Nv6IRVXf5czmU1kVmRxvuQCyaUXOF96gdTSVPS1CA+2VgZ59SfGuQW2Ehs2Zf/KmeLjmDHTx2MY9lInfs9YiL3UkVfCprLi4o+cLj52VRt9PYczxPt+ADT6QrIqLlY7sivSm8zyUoP6uES/ces+Lidn3XE+LoJwsVJmvz6cAk0ZH/28tTL1/4TH+iCXSfBROfHRz1tJzri5ae2mLlz+xUEm577wFjwe3ZpAp6oMqrvTU1h0Kp7NKefQm669AcjtLlwuRymR0V4VSHfPMLp4hOJvV327jAJtCfvyktifl8S+vCSyK6xji4yG5F/nXJlIRqBdwKUstsGE2AXirrw69b7BZOBieQYXSlNILr1AcmkKF8su3hZiRqWoEhcKsQ2PBryMm8ITnamCAwU72JVX88avvT3uoouqP67ya29VUKwvIqsinWxtOtkV6eRc+rdaX38ZfGtDgwqXqHG3LlwSPxGEy+1GUxIuzYO9SDifxeh+rRjcJYqJX60hM0+DnVLO20/3x9neho8X/kVsmA8PDmzDa7NXkZ6jvuH2bxfh8i8ioKdvEA9FxdHbLxiJ2JKkKr+8jBVnE1hy+hhJ6qvF3Z0kXK7E386Vrh6hdPEIob0qEFtp9R/NCyV5HMg/z4G88xzKT6ZIX3aNlm4frhdV5Ch1IMg+kBC7IEvYsX0gjrKrHxD/ipmU0hQulKWSUppKalkaWlPTWpa7XLj8i0QkxUXmRp4u+z/rK8RKPJW+eF06PJXN8FL6XlfQVBjLyK7IIEebwdmSBA4WNG4CzgYVLhF1IFxO33nCRfBxsRKUcilPDuuAi6Mt7s72jP/yD7LyLW+/9/SKwcvNkWfeX4reYOR8ej4tQ31wtre5KeFyu2EG/r6YzN8Xk/Gxc+DByFhGhrfAy86BZ2La8UxMOw5np/PbmROsPX+KYn3TeojUB6mlBSxOPsDi5APYyCDWxY8OqhA6qIJp4exLoL2KQHsVoy5lqz2tyeJQ/nn+3959hzdV/Q8cf6d7z3TvljIKtOxaZIMMRUBEhogIgqKioiKICoI/FQRFFBT9usAtKkNRNpQhBSlSKIWWtnSne++R3N8fKYHYMjvTntfz5KG59+Tk3MNN+umZ4bmJnM5LpKhat8d73K6immLOFkRytiBSc8zeyA4fc2+8zb3wqX1YGlribe6Jt7kng2vTqSQVGRWZJJelkFiaTFJZMsmlqRTV6FarllKquaWgBaBSVUFyWRzJZXFax430jHEydsPJ5JqHsRv2xk6Y6JvhZd4BL/MO6Mv0WzxwaU5ik8U7I1pcWpkXHh7M2AFdeeurfRwKj8XVwZrPX5vCG5/t0ixWZ29tzg9vzeDZNb9xKVk9Y+RW1nxpay0u9dGXyRji4cvUTt0Z5uGHQW0rTEVNNXuS4tgWG8WZqgvUSA3ZS75t+O86LpYGJvS2965d5M0XfysnrfMqSUVscZZ6kbfcRP7NTyK3UjfGLdxIY6zjYm9kh7e5F97mnniZeeJt7oWtkU29aQuqCkkuSyGlLJXkshSSy1JJr8i4rX2Hmkp9LS5NSV9mgIOxMw7GLjgZu5FZmUZk4almLcN/NWeLy4iOLza4xWX/pbXtrsVFBC6t0JDeHZgz/i4eW/EDC6YNxtLchDc+26U5v+LJMZRXVrNq0348nWx4YGgg7o42JGXks2HL0evm2x4Cl2s5mprzgH9XHvLvir/t1QXKcitL2ZV2nr9SIzmbn3qDHNq2my1Ad2W12isPX4u6zf23ushba9ZUC9BZG1rhaeaBl5knXuaeeJl54GTiiJ5Mr07aGlUNivJ0UsrTSClLJbUsjZTyVPKacAfn+jR34NIaNWvg4v9CwwOX2A9E4NLW6GLgAqCvr4dSqWLyiB4YGurz/a7TAEwf05t+AV58+tvfFJSU89HCiZw8n8SesGgeHtMbSZJYuvGvemcetbfA5VqBcmce6BDAOL/OyE2vbsaWVlbArrTz7Eo9T3RRRguWsPnd7sq5tkbm9Lbzpre9N71qF3n77y/hvMoSIq5Z5O1ioYLKVr7IW3OunGusZ4S7qRueZh54mLnjaeaOh5k7ZgZm9aYvrSkjrVxBalma+t/yNFLLFE3W3SQCl2YOXPwWNDxwiV9322X9+OOPWbNmDRkZGQQFBbF+/Xr69etXb9rPP/+cb775hvPn1Wsk9e7dm3feeee66ZuDGOPSSimV6q6M9NwiFkwbgiSp9/WZPqY3y/+3G0V2IfOnDCQ2JZv3vlNvOrZ68wFeeHgIBvr6KFv5L4vmdi4ng3M5Gbx9MpR7Apy5z707w10642Zmwxz/AczxH0BSSS57FBfYq7jAxcL2tQz8rcivKmV/RhT7M9S7oF9Z5K2nrRc97Dzpau2GXT2LvEUXphNZkMq5ghQi81NJK29ds0iaU6WqivjSBOJLE7SO2xvZaYIZd1NXPMzccTZxwtzAjI6WHeho2UErfXF1MWnl6aSVKzQPRXk6BdXtd8ybcGt+/vlnXnzxRT799FOCg4NZt24do0aNIiYmBkdHxzrpQ0NDmTZtGv3798fExIR3332XkSNHEhUVhZtby2z6KlpcdEAHDzmPj7+LiwmZXErK4sT5JO4bEMBjY/sx+80fKS5Tb0Q48q5OzJ0QwkOvbKo3n/bc4nKtK7OKTPQNGeTkz71u3ersA5RWVsB+xUX2p18kIi8FVRtc66Sx9yoy1NOni5UrQbYeBNl60sPWE7lJ3V298ypLOF+QRmRBKlGFqUQVpFHYgoN+W+teRfoyfVxMnHE3dcXdzA13UzfczFxxNHaot7sJoKymDEVFOoryDBTl6ZpHdmUOKm4+rku0uDRzi4vv8w1vcbn84W2VNTg4mL59+7JhwwYAVCoVHh4ePPvss7zyyis3fb1SqcTW1pYNGzbw6KOP3nHZG0K0uOiAuJQclmzYqXmuryfj4VG9+er3k5qgxcbSlKkje/HdrnBA3TqjatsxaYNVKKvZW9vCYmZgxGCnjox0DWCAYwfczGyY2SGEmR1CyK0s5XDGJQ5mRHMi+zLlyva3Uu+tqFYpOVeQwrmCFL5NOA6oF3kLtPUg0MaDQFsPOlk5Y2dswSCnTgxyurrje0ppHlGFaVwoTCOqII3oonRKaxp/Z3BdopSU6q6h8jTIuzpg1UjPCBcTJ9xM3XA1dcHN1AU3U1ecTBwxMzCjg4UfHSz8tPKqUdWQWZmFojyDjIoM0sszSK/IIL08k1Kx0m0LauDKubf5B1VVVRWnT59myZKru4jr6ekxYsQIwsLCbimPsrIyqqursbOzu3niJtJuAhern/7BQGZ484Q6QCaTETcgEMWGfVhHqWcavbxpPsmHoohc/hvW11mYzm573b9+2yOZff0fuChOEMUJPjExpNfAjtw9OpB+w7pgb23ORK+eTPTqSWVFNWfD4vjn4AVOHYomS6G73R6SpWmTv4eKAiIoIAL1dGJDIwP8OjnTqbs7nbq507GbG+5ecjzM7fAwt2O0a3fNa1MTc4i9oCDuooK4aAXxF9MpKW78zSOza5xunqiVSaOKcBKAq11Ohob6uHrZ4+nriIefAx4+6oe7jxwTUyPcTF1xM3Wtk1dhfilpiTmkJeWSoiggLSWXtOQ8FCl5VFS0vyC9Rql7G5QWFWmPeTI2NsbYuG5LTk5ODkqlEicn7XveycmJ6OjoW3qvxYsX4+rqyogRI+68wA3UbgKXtkSSJJQ1Sp7+cDY/rtzK4Mn98e7mwapHPiL3NlfTFeqqrKgmbF8UYfui0DfQo1tfX+4aEcBdI7rh7GFHv6Fd6De0CwDJsZmcOhxN+OFook5dprrq9rpfjIwN6DcsgPSkHOIvKJriclqV6qoaoiNTiY68OpvLwtIE/65udAxww7+rKx27uuHoYoO7txx3bzlD7w3UpM1Iyyc+Jp34aPXjckwG2RliXAdAdbWSpLgskuKytI7LZDLkzlZagcyVunVwscHa1hxrW3MCenrVyTMnqwhFar46mElRBzOK1HwUqXlUlLe/oKbRNdJeRR4eHlqH33jjDZYvX96AgtVv1apV/PTTT4SGhmJi0nJDL9rNGJchjG8zLS5XTHrpfgLu6ojiciY71u8iOzX3hun1LUWLC1y/xeVWePo7ETw8gH5Du9Clpxf6BvqacxXlVUSejOf0kRj+PXqJlPisG+Sk5uHnyKMvjcZWbomJmREn91/g23X1L6ve2JqjxeVOWdua0aGLq+bh19kFV4/6/9+KC8u4fCmDyzEZXL6UQcKlTJIvZ1FVeYsD1Gva75o+xqaGuHra4+4lx91HjqufI26e9rh72mFlXf9MpyvycktQpOSRnpaPIjWf9NQ8FGn5ZKTlU5Cvuysu1ygrOPTvyuYZ4+I1HwO9BoxxUVWyP2kDKSkpWmW9XotLVVUVZmZm/Prrr0yYMEFzfObMmRQUFLBjx47rvtd7773HW2+9xf79++nTp88dl7kxiMBFx+kb6KOsUf+VL5PJ+O9/55g5wzm+/RSFOUUicKnVkMDlWhZWpvQc0JG+QzrTe1An7By1v+RyMgrZs+Uk363be908TMyMUNYoqa5S4tXRmYefvYcdm45y4XQiwcMCGD9rAEX5Zez79RSnj8Q0SrmvaM2BS30sLE3w7eyCXydnfDu50KGzCx4+DhgY6tdJq1SqUCTnkhibSUJcJgmXMkmMyyQzLR/Vf5cKaMeBy3+pzK/+srO0MsHV3Q43DztcPey0fra2uXFQU15WRXpaPhmKfNLTCmp/LiBDkU+mooDKWw0qW4AuBi63Ozi3X79+rF+/HlAPzvX09GT+/PnXHZy7evVq3n77bfbs2cNdd911x+VtLKKrSMddCVqAOkFL4OAAXvzfPJ5a+xjb1//F1s8OUZwvBuI1lpKico7+dZajf50FwLuzC70HdqLXwI506+uD3NkaM4sbN6dWlFWhp6+eIaJIzMHR1QYTMyNGPNiH4GEB7Pn5HyysTRk1uR9pCdlkpKi7AuXO1tg5WpEQnU51Vev9JdCYSoorOHcqgXOntMd1ePo54tvJGR9/Z3w6OuHb0RlrW3NN18jAkd006SvKq0hJyCYpPpuk+CyS4jNJiskkS1FQ5/PT3hUXVRBzQUFMPV2Y5hbGuLrb4epui8uVf93UD7mjFaZmRvj6O+HrX//4odycYjLTC8lUFJChKCAzXf1ITc4lM70ddf1JKvWjIa+/TS+++CIzZ86kT58+9OvXj3Xr1lFaWsqsWbMAePTRR3Fzc2PlypUAvPvuuyxbtowffvgBb29vMjLU611ZWFhgYWFx52VvABG4tGE1VTVcCo+nYx8/pi2ZyLhnxrDzi4Ns+2QfBdm6tV+KLkiMTicxOp3fPg/FyNiAgN7e5GbeuJ719GSoatfsmfrMcPUYkIhkPtz+PF+t2knYPvWaKfdM6ku3vr5kpOQRFNKBwff3wLeLK/aOVvzyv1B+33ysya+vNaquVmrGu1zLTm6Bt78T3v5O6oDG3wkPHwdMTI3wD3DDP0B7/YmKsiqSL2eTcjmL5Pis2p+zUaTkaf5/hKtKSyqJjU4nNrruVHJDQ32cXGxwcbfF2dUGZ1dbXDU/22BuYYK93BJ7uSUB3d21Xnv8cDTLX97SXJfR8hppjMvtmDJlCtnZ2SxbtoyMjAx69OjB7t27NQN2k5OT0dO7Ot1+48aNVFVVMWnSJK18mmocza0QXUXtQMi4PsxcPgW/Ht4AVJZXsfubI/y2fg9ZKTceF9MWNVZXUWPx6ujMuEfvxjfAjdULvqe6uobP9y/mga6vatK88b9ZHPnzLId2/MuGnS+w95dT/L75GOaWJry1aS6rX/yB9KTb+7/Uta6ihtLTk+HiYYeXn6P60cEJLz9H3L3tMTSs/2+46uoaFMl5pFzOIjUhh9TEnNp/sykpavzZJ88sHYexsQHpKXkkX87mxKGLKJuxK+varqKmYmllgrOrOpBxclEHM44u1ji72HDi6CW++uRgk5fhRpq1q8htXsO7itI+bXdL/osWl3Yg7PdwTvxxmv4PDWDqwrF07uPL+CdHMPbxoRzdHs7Wj/dy6d+Em2ckNCpjUyMGjO7OXSO6kp6cy5JHPqWirIoBYwLJzbzaXG4rt6SmWklZSQWObrZ4+Dny++ZjyGQySosrMLcyxdjUqAWvRDeoVBJpSbmkJeVy/OBFzXE9CVw97PDq4IiHryOevg54+jni7i3HxMxIE+j8V35OCamJ2aQl5pKalENaYg6KpFwUKXl33H13dHckcicrXD3tGTa2BwB/74vC2d2Wp5aMxcjEkISYdL7+YC/V1bq5oGRxUQXFRfW31gjCrRCBSzshSRIndkVwYlcEQYM6M+XF++g1tCtDJgUzZFIwF07G8ftnBzj2ezg1OvqFqGsWvj+V/iO78e3aPfz0yQHNcXcfBxKu+VL36eyCTE9G6uVsAoP9SI7NBNT/p46utigSc7C2Na+Tv3BrVEqVuiUlMQe4oDl+ZRqxp68D7j7qh4ePHA8fB+wdrbCVW2Art6B7Hx/t/FQqsjMKUdQGSYrkq4/0lPwbBjXXjt8Zel8Qjzw9jJOh0Sx8ZxIHd54lKS6TkRN6Meahvvz+wwkAugR58MTiezE0MiD+Yjrr39whPsO6ogW6itoCEbi0Q2ePRHP2SDR+gZ5MeOoehkwKJiC4AwHBHcjLnMquTYfZtfkwOWm6u7iaLtjz8z8kXEyncy8vPtz+PMhgxdyvufBvIp4dnbCyNaMov4xRU4LJzSgkLSGbB+cOJjoiWZOHV0cnSovLKS9t36vMNgVJkshOLyQ7vZDTf8dpnTM1M8LNWz2F2M1Tjpu3Pe7ecty85JhbmuDkaouTqy09Q7T3GNr27d98tuqv676nk5st46ffhb6BPmYWxoT+dY5uvbywsjHjry3/1L63MXNfHs3vP5zA29+JeUvG8u2GA6QkZPPgYwN44NH+/PLl9XeJF1oRiQYGLo1WEp0iApd2LP5cMu8/9SVfL/+VMY8N5t5ZQ7B3sWH64nFMXTiW8H2R7P7mCP/sOac1e0loHOG1C9dd4dPZhfzsYvKyihg+sQ/v/vA0BbnFlJVUsn2T+heRpJIozLu6n0yvgR3Jzykhs54g8/FXxpISn0nc+TSS4zLFX+GNqLysirgLCuLqmXFjbWeOm5c9bl72uHpe8/CyJz35xgtElpZUEH0ulQH3dKW8rIo/t/zDxEfv5uLZFE0aPT0ZhfllyGQyAvv6UFlRTfixSwBEhicwadZAEbgIbZoIXATyMgv5/t3f+en9P+l/fy/umz2EHoO6EDw6iODRQeRnFXJoywn2/XichPMpN89QuCPXdg99sOhn5M7W+AW4EXnqMmW1S93/8e3fzFlyPyH3dCU3s4hBY3uwYu7XFOZqb47n4GrDpCeGaJ5XV9WQHJtJ/EUF8VFpJFxUcDk1v0mW0G/vCvNKKcwr5cKZ5Drnrkx9v56SwnKO7I7kyO5IFr4ziZETemFkZEDmNVtLyJ2syEzLx87BEmcPO2Iir34mjYwMyM8twcjY4NYX4BNajugquiMicLkD454exUMLx2HnbEP82SQ+fu4rYk7F1ZvWK8CdmSum4N/bF2dvRz554Wu2fajdVNx9YBceWjiOjr19sXe1440HVnN8x6l682tKyholR7ed4ui2U7j5OTHmsUEMn9ofW0drJs4fxcT5o7gcmcLBX8II/fUkOWn53D9nGJOeG42tkzWXz6fwycvfX3egr1dnV2a8NgH/IG+cvOR8+sqPbN+4TyvNI6+M55El47WOpVxKZ27f15rsuhvD2Bn9mTR3CLYOlly+mM7G5du4dK7+IG/0lGCGT+yNV0dnAOLOp7Jpza466cdMvYvRU4MxtzLlwukENizdSnJcFsf3nmfsjLsxMNBn3Su/1Ps+kkrity8O4xfghl9XVyytzfDr6oZfVzeY1FeTLiu9gITYTBIuZWgWa0tNzLnjmSz3T+nHpJkDsJVbcPlSBp+s+pNL59Pqr4eJvRlxfw+8OqinYcZdUPD1+n1a6R+ZN5TBo7vj4GxNdbWSuAsKNm3YT8w1Wwa0RvdPC2bSrIHqeojJ4JN3dnIpMrXeqdWjJ/XhnvE98fS7Ug9pfP3hPrw6OPLPkRg6dnPHysaUjduexcVdPSMuU1GAvoEeji7WRJy4rMnLztGSnIxCDI3qBi7GpoZUNvMy/fdP6sNDj/THzt6Cy7GZfPzernrXhQEYM74nI+4LwtvXAYDY6HS+/uSgVvqFy8YxsnbQ8hWnwuJ47fkfmuwampRKBbewa/eNX9/+iMDlNg2e3J8n35/JR0/9j4sn45i44D5W7n6N2Z2fr3dtFGMzY9ITsjjyaxjz1j5Wb54m5sZcPpfEnq8PsXzry018BbcmLT6TL5b+wtcrttJnRDdGPHw3waOD8O3ugW93D+a8OZnkaAWufk58/vrPnDl0gQlP38Pb215kTu9XKcwprpOnsZkRGYnZHN0ezpPvTL3ueydeSGXJ+Pc0z5tzOuidGHRfEE+8Oo71S38jJiKZCbMG8tbmucwdsbpOSwhA4F1+hP4RwcXTiVRVVvPQvGG8/c0TzBu1RrPuy0NPDmXcYwN4f+FPZKTm8egLo3hr01yeHLmGv34I468fbryTa05GIV+884fmuZO7Hb5dXPANcMMvwBWfzq44e9jh6GKDo4sNwYOu7tRcXV1DamIuSXGZtYu0qR/pKXl1V529th5GdWPuwjGsf+t3YiJTmTA9hLc3zmTO+A8pzKu78GFgHx9Cd0Vy4eyfVFXWMHn2QN7ZOJMnH1xPbpb6/klNyuWTlTtJT83H2MSQBx4J4Z2NM5l9/wcUttJl5QeN7s7cRfeyfsUOYiJTmDDjbt7+7DHmjP2g/nro68ORPefpO7AKI2MDbOUWvLd5LjGRqZwPT6RzoAedA935cu0eEi9lsOKTRzEw1OP1Dx5GJlNvkniFf4AbCZcyKCupO+bptfenERTsS05mIVnpheRkFJJd+7jyc1ZxRaO1wg0eEcCTC0by0ao/iY5KY+LUYN75aDqPP/RxvVsCBPX2JnTPeaLOpVBdVcPkR+9m5fpHmDt1I7nZV79PTh2P473/u7o0/e3uDybovlYfuBw5coQ1a9Zw+vRp0tPT2bZtm9YeC83twRfGsuuLA+zZFArAh/P+R/C9vRg1exg/v7u9TvpL4fFcCo8H4PGV0+vN89TuCE7tjmiiEjeMskbJyd1nObn7LJa25gwY34ehk4IJHNgZz87qnWafXDmV839f4u+d/3LXmCBGzRjIlg/qDkC89G8il/5NBGD2G5PqnL/6nirys3RngbwHHh/Mrp9Psu9XdSvZ+td/o+/QLox8qC+/fHqoTvrVL2j/dfjhK1sYMKo7Pfr7c2DbaQAmzBrITxv2c2K/egG69xb+xI//vEH/kd04vDPitsuYmZpHZmqeZkE7AFMXG83ibD4dnfDuoF6wzdzCRH3sP6ueVlVWk5aUS1Lt4mzJCep/05Jzqa6qYeKM/uzeGs6+HWfU9fDWH/Qb1IlRE3qx5au6Yy5Wv/qr1vN1y7dz9/AAevTz40DtNYbuOqeV5n/v7Wb0xD74+DsT8c9lWqOJM+9m96/h7Nv+LwDrV+xQ18PE3mz54kid9KsX/wLAiUPRuHvb4+JuxxOL7+Xo3kjycor54bNDePs7MWnWQJQ1Sg79eZaIE/Gs2TyXPVvD8enozNE957GxN8eviws7vg+rdxVgBxdrjE0McfNSDyK+noryKrKzisjJKiYnq4jsrCJys4rJyS4iJ7uY3KxiCvJLbxjEAjz4cAi7tv/L3p3qlaU/XPUn/e72Z9T9Pfn5m7/rpF+1bJvW8w/e/oMBQ7vQs68P+/+6eh9UV9eQn9tGVgAXXUV3pNUHLqWlpQQFBTF79mwmTpzYomUxMDSgY29fflp19QMmSRL/7j9HwF0dW7BkzaM4v1Q942jTYZy95Hx1ZhXpidm4+TkROLAzgQM7AzB5wb3o6+txYvfZOxoT4+bnxPfRa6mqrObiP3F8veI3slNb567XBob6+HdzY8vGq9OZJUki4u9YutSz2259jE2N0DfUp7hQ/Veos4cddo5WnPk7VpOmrLiCmIhkOvf0uqPApT5lJZVEnUki6kyS1nEHZ2u8Ozji7e9cu4aJg2bVWZ+OzvjUdnFdoVSqyFQU4OJmS35OCWMe7ENqYg5pSTmcORFPl0DtnWuvx9jEEAMDfYqL6m9JMTDQZ8yDfSgpKufypYw7u+gmZmCoj3+AKz9/flhzTJIkzpyIo0uQ5w1fm5mWT2ZaPqZmRsxddC8ZqepxLSWF5ax49juc3GywlVsS9W8S3Xt7o1Kp+HbDAV74v4l89vvzVFfV8Numv+sdWwPw3ORPsHeywsHZWvOQu9jg4GSFvPa5ta05JqZGeHjJ8bhBcKOsUZGXW0JudjG5OeoAJzdH/TwvRx3Y+Hd24adrVnSWJDhzKoEu/1kt93rU94MexUXlWscDe3mzZfdLFBeXExGeyKZPD1FcWH6dXFo5EbjckVYfuIwZM4YxY8a0dDEAsJZbom+gT36m9l4a+VmFeHR2u86r2qaqyhr09PV478kvyM0o4O77e9F/bC+69e+IhY0ZM5dOZObSiWSn5nFyz1lO7T1HxJGLVJZV3TDf6PDLvP/0l6TGZmDnbM30xeN5b9crzAtZRnlJ6xtIamVrrr4ncrS7hPJzinGvZ9Gy+sxefB95mYWcOaYOVGwdLDV5aOdZojnXlK50H5w6djVwkslkOLpa43XNAm0e3uo1TSysTDU7N4cM7ULI0C6a11VX1aBUqnhl1UOk1a5lkla7SFtRgXaAMnvBSHKzizlzQrslpd+gjix5dzLGJobk5ZTw6rzNdV7bWljZmKFvoE/Bf7oIC3JL8PBxuKU8Zr80mtysIs6ExWuOVVZUkxyfTXJ8NoZGBsx+cRShf50jJ7OI157YhLmlCda25iiSr796cnW1kozUfE1AVB8DO3PkDpY4OFkjd7BE7miF3FH9r72DJXIHS2ztLdA30MPByQoHpxuv1vr6O5PIzSkmN6eEvJxinF1tsLYxZ/S4HuTllpKXU0xebom6BUep/Ut4zvzh5OYU8+81LWvhYfEcOxRNhqIAV3dbZj01jLfXPcyCx7+6aQuQ0Ha0+sDldlVWVlJZebV/t6hId7ocdFVWSi7bPtnHtk/28fSa6fQdGUhiVCo9hwbg4G7H2MeHMvbxoVRVVrNk3HtEnYi9bl7h+yM1PydEpRIdfplvItcw6IG+7Pm27U3xfGjeUAaP7cGihze26s0SJUkiM62AzLQC/jl6SeucndyCLj08Wfr+NA7vjsTU3Bh3L3uc3GwxNDLAEBgyJrBOnsVF5Xz+/m72bv+XybMHMmR0dxY9/lWdejh7KoGnJ3+CtY0ZYx7sw6trpvD8I5/VO15E102eM4ghY7qz6LEv6r0f9A30eG3tVGQyGRve/F1zvLS4gtJGGJtSVVmDIjUfxQ2CGz19GbZ2FtjLLZE7qvccsndUBzV2ckvs5RbYO1hhZW2KQe2+RU4uNlp5vPj6OK3nKpVEUUEZh/dH8fF7u5ny6N0MvqcbLz+1WWsMS+g1XZ2J8Vlcjs3km+3PEdjbm4hT9U8KaNVUEg1ajKWdBmttLnBZuXIlK1asaJK8C3OKUdYosXWy1jpu62hNfkZBk7xna1WUq64LG0ftv7hMLUxIjEplxcPrMTIxJGhgZ/qNCqLPPd2Ru9py+Ta7jkoLy0mLz8TV99ZaL5pbUX6p+p6Qa++Saiu3JP8mG1k+OGcwk+cN49UZn5F4zVTo/NqBiOo8rra62MotiL/OjIyWlJdTwsnQGJQ1SkJ3RxJ2SL2cvqGhPktWT8HOwYKje6Ourm3iYY+DszWWVqaUl1by4KN3M3nWQJY8uYmE2lWBr1VZXk16Sh7pKXlER6by5e8LGD2hNz9/VXe8SEsrKihTfy7ste8HG3uLOq1y//XgYwOY/Pgglsz5moRLdetB30CPV9+fhqOrDYtnfUlZCy06qFJK6i6i7GIuXaw/jYGBHn8ceZWP3v2ThPgs7OWW2NlbcN/E3phbGJMYn42dvTl2ckts7MzR19fDxs4cI2MDJk0PYcrMu1k8/1sS4rJuWJYMRQEF+aW4udvqZOAiSSqkBuwO3ZDX6rI2F7gsWbKEF198UfO8qKgID49b62O/mZrqGi6dvkzP4d0105VlMhk9h3dnx8e7G+U9dEVNtZLYiCR6DO5C2J/qwZgymYweg7vwx+fqTdKqKqo5tS+SU/vUrShyN9vb7u4xMTfGxceBAz+1zq3ua6qVxJ5Po0d/f83AV5lMRo/+Hfj927oDEK+Y9MQQpj4znNdnfk7sf6b2ZqTkkZdVRI/+/ly+qA5UzCyM6dTDkz+/v/FsopZSU6Mk9qKCHsG+msClpkaFf1dX/vjpJL/9ZzCmsYkhzu623D08gAdn3M1rT20m9haDMpmeDEMj/Ua/hsZQU60k9oKCHnf5EVa7H5JMJqNHsB9//Hjiuq+bNHsg054YwmtPbCI2qu708StBi5uXPYtnfdHqx3TU1KiIjU7Hx9+JXTuufD/A1McG8Psvp7QG5+rpybCyNsXW3oJho7sz/fGBLHnue2Iv3nwvI7mjJVbWZuTeJChstSSpYa0mYoxL22BsbIyxcdPtcPrbBztZtOkZLoXHE/NPHA8suA8Tc2P2fK2ePbJo03xyFHl89ap65oiBoQFeAerBaIZGBsjd7PEL8qa8pAJFvHqAoYm5CW4drg54dPZxxC/Im6K8ErJTcprsWhpq68d7WLhxDrFnEok5ncADT9+Dibkxe79TD8hb+OkcctPz+XrFbwAUZBXh210dRBoYGSB3tcG3uwflpZWkX1b/ZTXnrcmc3BVBVkouds42zHh1AkqlROivJ1vmIm/Bti8P89J7U4mNTCXmrHo6tLGZkWaW0UvvTSU3s5BNa3YB6qnOMxaM4t0XviczNR9buXrcSnlZJRW1Y4C2f32UqfOHk5aYTWZqHjNeGE1uZhHH955vmYu8BVu/Pc7C/5tIbFQaMefTeOCREExMjdhbO7tm4VsPkptVxNcf7aOyopp+Azsxdc5g3n3lFzIVBdjWtlKUl1VRUV6Fsakh0+YM5kRoNHk5xVjZmHP/1H7IHS05ek2XQWuzdfPfLHznQXU9RKbywIz+6nqonTG28J1J6npYtxeAhx4fyIz5I3h30RYyFfma1rvysioqyqrQN1BPfe7QxYVlz3yLnr6eJk1xYXmrXRH5tx/CePmNCcReVBAdpWDi1GBMTA3ZUzu4/OXl48nNKuarTw5SkF/GyPt78MDUYFYt3UpmegG29ur9t9T3QzUmpobMmDOYo4cukp9bgou7HXPnD0eRmsfpE/E3KInQ1rS5wKWpHd5yHBsHK2aumIKtsw3xEYm8OuZtCrLULQKOnnKkayJoe1dbPj2zRvN88sJxTF44jrOhUSwcthyAjn18ef/Q1e6tp2rXe9m7KZQ1sz9u8mu6U0e2nsLa3pIZr05QL0AXmcLrEz/QrGfj6G6HdM0CSfYuNnxy7Op1TnpuDJOeG8O5o9EsGrsaALmrLa98OQ9LO3MKc4qJOhHLCyPeojC37rowrcWRP89ibWfBIy+Mwk5uSfxFBUsf+4KC2r8CHV1tte6J+6aHYGhswOufzNTK57sP9/L9h+pfZr98dggTUyOee2cSFlamRIUnsHTW5616HMyRPeextjVnxtPDaxdeS+f1p7+hoHYsiqOztdb9MPahvhgZGbB07TStfL7beJDvPj2ESinh4ePAiHE9sbIxo7igjEtRaSyc9SVJ8TfuQmhJR3ZHYm1nzoz5w7GVW3I5Op3Xn9xEQe0UXkcXa63pymOnBKvrYd3DWvl89/EBvvvkIHJHK0KGqQc8b9z6rFaaRY99obUxY2tyeP8FrG3NefSJIdjaW3D5UiavPf/D1fvByVrrczF2Yh+MjAxY9u5krXy+/fww335+GJVKwsffiXvuC8Lc0oTc7GL+PRnPps9CdXanbHWLiWhxuV0yqb4J/61ISUkJcXHqVWl79uzJ2rVrGTp0KHZ2dnh63nh6Iai7iqytrRnCeAxkhk1d3FZN37LpZ6ToApm9XUsXoVWQLE1bugitQytf4LA5qcybrrVaV9QoKzj070oKCwuxsrrxrKk7deX30nDL6RjIjO44nxqpigPF3zdpWVujVt/iEh4eztChQzXPr4xfmTlzJps2bWqhUgmCIAiC0BJafeAyZMiQeleBFARBEASdJrqK7kirD1wEQRAEoS2SVCokmZgOfbtuvMe6IAiCIAhCKyJaXARBEAShJYiuojsiAhdBEARBaAkqCWQicLldoqtIEARBEASdIVpcBEEQBKElSBLQgAG27bTFRQQugiAIgtACJJWE1ICuova6VIgIXARBEAShJUgqGtbiIqZDC4IgCIIgtGqixUUQBEEQWoDoKrozInARBEEQhJYguoruSJsPXK5EpDVUN2idn7ZAkqpaugitgkxV2dJFaBUkpegpBkDZPr/866NStvMvSaBGqf5+aI7WjIb+XqqhuvEKo0PafOBSXFwMwDH+auGStALFLV2AVkLUgyAIN1FcXIy1tXWT5G1kZISzszPHMhr+e8nZ2RkjI6NGKJXukEltvJNMpVKhUCiwtLREJpO1SBmKiorw8PAgJSUFKyurFilDayDqQU3Ug5qoh6tEXai1hnqQJIni4mJcXV3R02u6VsmKigqqqhreCm5kZISJiUkjlEh3tPkWFz09Pdzd3Vu6GABYWVm16y+lK0Q9qIl6UBP1cJWoC7WWroemamm5lomJSbsLOBqL6OQWBEEQBEFniMBFEARBEASdIQKXZmBsbMwbb7yBsbFxSxelRYl6UBP1oCbq4SpRF2qiHoRb0eYH5wqCIAiC0HaIFhdBEARBEHSGCFwEQRAEQdAZInARBEEQBEFniMBFEARBEASdIQKXRrJ8+XJkMpnWo3PnzprzFRUVPPPMM9jb22NhYcGDDz5IZmZmC5a4cRw5coT7778fV1dXZDIZ27dv1zovSRLLli3DxcUFU1NTRowYQWxsrFaavLw8pk+fjpWVFTY2Njz++OOUlJQ041U0jpvVxWOPPVbnHhk9erRWGl2vi5UrV9K3b18sLS1xdHRkwoQJxMTEaKW5lc9CcnIy9913H2ZmZjg6OvLyyy9TU1PTnJfSILdSD0OGDKlzP8ybN08rja7XA8DGjRsJDAzULCoXEhLCrl27NOfbw/0gNC4RuDSirl27kp6ernkcO3ZMc+6FF17gjz/+4JdffuHw4cMoFAomTpzYgqVtHKWlpQQFBfHxxx/Xe3716tV89NFHfPrpp5w8eRJzc3NGjRpFRUWFJs306dOJiopi37597Ny5kyNHjvDEE0801yU0mpvVBcDo0aO17pEff/xR67yu18Xhw4d55plnOHHiBPv27aO6upqRI0dSWlqqSXOzz4JSqeS+++6jqqqK48ePs3nzZjZt2sSyZcta4pLuyK3UA8DcuXO17ofVq1drzrWFegBwd3dn1apVnD59mvDwcIYNG8b48eOJiooC2sf9IDQySWgUb7zxhhQUFFTvuYKCAsnQ0FD65ZdfNMcuXrwoAVJYWFgzlbDpAdK2bds0z1UqleTs7CytWbNGc6ygoEAyNjaWfvzxR0mSJOnChQsSIJ06dUqTZteuXZJMJpPS0tKareyN7b91IUmSNHPmTGn8+PHXfU1brIusrCwJkA4fPixJ0q19Fv766y9JT09PysjI0KTZuHGjZGVlJVVWVjbvBTSS/9aDJEnS4MGDpeeff/66r2mL9XCFra2t9MUXX7Tb+0FoGNHi0ohiY2NxdXXF19eX6dOnk5ycDMDp06eprq5mxIgRmrSdO3fG09OTsLCwlipuk0tISCAjI0Pruq2trQkODtZcd1hYGDY2NvTp00eTZsSIEejp6XHy5MlmL3NTCw0NxdHRkU6dOvHUU0+Rm5urOdcW66KwsBAAOzs74NY+C2FhYXTv3h0nJydNmlGjRlFUVKT5K13X/Lcervj++++Ry+V069aNJUuWUFZWpjnXFutBqVTy008/UVpaSkhISLu9H4SGafObLDaX4OBgNm3aRKdOnUhPT2fFihUMHDiQ8+fPk5GRgZGRETY2NlqvcXJyIiMjo2UK3AyuXNu1XzhXnl85l5GRgaOjo9Z5AwMD7Ozs2lzdjB49mokTJ+Lj40N8fDyvvvoqY8aMISwsDH19/TZXFyqVigULFnD33XfTrVs3gFv6LGRkZNR7z1w5p2vqqweAhx9+GC8vL1xdXTl37hyLFy8mJiaGrVu3Am2rHiIjIwkJCaGiogILCwu2bdtGQEAAERER7e5+EBpOBC6NZMyYMZqfAwMDCQ4OxsvLiy1btmBqatqCJRNai6lTp2p+7t69O4GBgfj5+REaGsrw4cNbsGRN45lnnuH8+fNaY73ao+vVw7Vjl7p3746LiwvDhw8nPj4ePz+/5i5mk+rUqRMREREUFhby66+/MnPmTA4fPtzSxRJ0lOgqaiI2NjZ07NiRuLg4nJ2dqaqqoqCgQCtNZmYmzs7OLVPAZnDl2v47Q+Da63Z2diYrK0vrfE1NDXl5eW26bgB8fX2Ry+XExcUBbasu5s+fz86dOzl06BDu7u6a47fyWXB2dq73nrlyTpdcrx7qExwcDKB1P7SVejAyMqJDhw707t2blStXEhQUxIcfftju7gehcYjApYmUlJQQHx+Pi4sLvXv3xtDQkAMHDmjOx8TEkJycTEhISAuWsmn5+Pjg7Oysdd1FRUWcPHlSc90hISEUFBRw+vRpTZqDBw+iUqk0X+RtVWpqKrm5ubi4uABtoy4kSWL+/Pls27aNgwcP4uPjo3X+Vj4LISEhREZGagVx+/btw8rKioCAgOa5kAa6WT3UJyIiAkDrftD1ergelUpFZWVlu7kfhEbW0qOD24qXXnpJCg0NlRISEqS///5bGjFihCSXy6WsrCxJkiRp3rx5kqenp3Tw4EEpPDxcCgkJkUJCQlq41A1XXFwsnTlzRjpz5owESGvXrpXOnDkjJSUlSZIkSatWrZJsbGykHTt2SOfOnZPGjx8v+fj4SOXl5Zo8Ro8eLfXs2VM6efKkdOzYMcnf31+aNm1aS13SHbtRXRQXF0sLFy6UwsLCpISEBGn//v1Sr169JH9/f6miokKTh67XxVNPPSVZW1tLoaGhUnp6uuZRVlamSXOzz0JNTY3UrVs3aeTIkVJERIS0e/duycHBQVqyZElLXNIduVk9xMXFSW+++aYUHh4uJSQkSDt27JB8fX2lQYMGafJoC/UgSZL0yiuvSIcPH5YSEhKkc+fOSa+88ookk8mkvXv3SpLUPu4HoXGJwKWRTJkyRXJxcZGMjIwkNzc3acqUKVJcXJzmfHl5ufT0009Ltra2kpmZmfTAAw9I6enpLVjixnHo0CEJqPOYOXOmJEnqKdFLly6VnJycJGNjY2n48OFSTEyMVh65ubnStGnTJAsLC8nKykqaNWuWVFxc3AJX0zA3qouysjJp5MiRkoODg2RoaCh5eXlJc+fO1ZriKUm6Xxf1XT8gff3115o0t/JZSExMlMaMGSOZmppKcrlceumll6Tq6upmvpo7d7N6SE5OlgYNGiTZ2dlJxsbGUocOHaSXX35ZKiws1MpH1+tBkiRp9uzZkpeXl2RkZCQ5ODhIw4cP1wQtktQ+7gehcckkSZKar31HEARBEAThzokxLoIgCIIg6AwRuAiCIAiCoDNE4CIIgiAIgs4QgYsgCIIgCDpDBC6CIAiCIOgMEbgIgiAIgqAzROAiCIIgCILOEIGLIAgNkpiYiEwm0yxZLwiC0JRE4CIIbdCmTZuwsbGpc9zb25t169Y1e3kEQRAaiwhcBEEQBEHQGSJwEYRWaMiQITz33HMsWrQIOzs7nJ2dWb58ueb82rVr6d69O+bm5nh4ePD0009TUlICQGhoKLNmzaKwsBCZTIZMJmP58uUMGTKEpKQkXnjhBc1xgNzcXKZNm4abmxtmZmZ0796dH3/8Uas8KpWK1atX06FDB4yNjfH09OTtt9+ut+xKpZLZs2fTuXNnkpOTm6aCBEFot0TgIgit1ObNmzE3N+fkyZOsXr2aN998k3379gGgp6fHRx99RFRUFJs3b+bgwYMsWrQIgP79+7Nu3TqsrKxIT08nPT2dhQsXsnXrVtzd3XnzzTc1xwEqKiro3bs3f/75J+fPn+eJJ55gxowZ/PPPP5qyLFmyhFWrVrF06VIuXLjADz/8gJOTU50yV1ZW8tBDDxEREcHRo0fx9PRshpoSBKE9EZssCkIrNGTIEJRKJUePHtUc69evH8OGDWPVqlV10v/666/MmzePnJwcQD3GZcGCBRQUFGil8/b2ZsGCBSxYsOCG7z927Fg6d+7Me++9R3FxMQ4ODmzYsIE5c+bUSZuYmIiPjw9Hjx5l+fLlVFZWsnPnTqytrW//wgVBEG7CoKULIAhC/QIDA7Weu7i4kJWVBcD+/ftZuXIl0dHRFBUVUVNTQ0VFBWVlZZiZmd3W+yiVSt555x22bNlCWloaVVVVVFZWavK5ePEilZWVDB8+/Ib5TJs2DXd3dw4ePIipqeltlUEQBOFWia4iQWilDA0NtZ7LZDJUKhWJiYmMHTuWwMBAfvvtN06fPs3HH38MQFVV1W2/z5o1a/jwww9ZvHgxhw4dIiIiglGjRmnyutUg5N577+XcuXOEhYXddhkEQRBulQhcBEHHnD59GpVKxfvvv89dd91Fx44dUSgUWmmMjIxQKpV1Xlvf8b///pvx48fzyCOPEBQUhK+vL5cuXdKc9/f3x9TUlAMHDtywXE899RSrVq1i3LhxHD58uAFXKAiCcH0icBEEHdOhQweqq6tZv349ly9f5ttvv+XTTz/VSuPt7U1JSQkHDhwgJyeHsrIyzfEjR46QlpamGQ/j7+/Pvn37OH78OBcvXuTJJ58kMzNTk5eJiQmLFy9m0aJFfPPNN8THx3PixAm+/PLLOmV79tlneeuttxg7dizHjh1rwloQBKG9EoGLIOiYoKAg1q5dy7vvvku3bt34/vvvWblypVaa/v37M2/ePKZMmYKDgwOrV68G4M033yQxMRE/Pz8cHBwAeP311+nVqxejRo1iyJAhODs7M2HCBK38li5dyksvvcSyZcvo0qULU6ZM0Yy3+a8FCxawYsUK7r33Xo4fP974FSAIQrsmZhUJgiAIgqAzRIuLIAiCIAg6QwQugiAIgiDoDBG4CIIgCIKgM0TgIgiCIAiCzhCBiyAIgiAIOkMELoIgCIIg6AwRuAiCIAiCoDNE4CIIgiAIgs4QgYsgCIIgCDpDBC6CIAiCIOgMEbgIgiAIgqAzROAiCIIgCILO+H+6opq2Losf0gAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 2 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_performance(bayes_classifier, top_5_scorer, 500, bay, distributions_mults)" ] }, { @@ -556,7 +4219,11 @@ "cell_type": "code", "execution_count": null, "id": "93c778a4-0855-4248-91a9-750fdd76ffa6", - "metadata": {}, + "metadata": { + "jupyter": { + "source_hidden": true + } + }, "outputs": [], "source": [ "def find_features_greedy(nfeats, nattack, num_workers, simulations, scorer, start_features=None):\n", @@ -593,18 +4260,1664 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 79, "id": "6e4c2313-83b0-43f8-80d6-14c39be0d9ec", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8ca4c6298c494e538470d7cc19357ad5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nattack: 0%| | 0/6 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1d9ab75232a54555af59aa1b32185b8b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,1: [296], 0.134\n", + "50,2: [296, 85], 0.398\n", + "50,3: [296, 85, 12288], 0.63\n", + "50,4: [296, 85, 12288, 59], 0.762\n", + "50,5: [296, 85, 12288, 59, 512], 0.818\n", + "50,6: [296, 85, 12288, 59, 512, 248], 0.882\n", + "50,7: [296, 85, 12288, 59, 512, 248, 315], 0.9\n", + "50,8: [296, 85, 12288, 59, 512, 248, 315, 109], 0.934\n", + "50,9: [296, 85, 12288, 59, 512, 248, 315, 109, 33], 0.942\n", + "50,10: [296, 85, 12288, 59, 512, 248, 315, 109, 33, 1536], 0.956\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d7d723bcc581426e85d17f172356397c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,1: [3072], 0.18\n", + "100,2: [3072, 65], 0.626\n", + "100,3: [3072, 65, 196], 0.822\n", + "100,4: [3072, 65, 196, 240], 0.9\n", + "100,5: [3072, 65, 196, 240, 346], 0.936\n", + "100,6: [3072, 65, 196, 240, 346, 157], 0.954\n", + "100,7: [3072, 65, 196, 240, 346, 157, 336], 0.972\n", + "100,8: [3072, 65, 196, 240, 346, 157, 336, 343], 0.982\n", + "100,9: [3072, 65, 196, 240, 346, 157, 336, 343, 126], 0.984\n", + "100,10: [3072, 65, 196, 240, 346, 157, 336, 343, 126, 172], 0.992\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eb8f7c1ebd894da78d9b68e357312d75", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,1: [1536], 0.198\n", + "150,2: [1536, 65], 0.666\n", + "150,3: [1536, 65, 296], 0.888\n", + "150,4: [1536, 65, 296, 123], 0.958\n", + "150,5: [1536, 65, 296, 123, 178], 0.974\n", + "150,6: [1536, 65, 296, 123, 178, 315], 0.992\n", + "150,7: [1536, 65, 296, 123, 178, 315, 336], 0.994\n", + "150,8: [1536, 65, 296, 123, 178, 315, 336, 1024], 0.996\n", + "150,9: [1536, 65, 296, 123, 178, 315, 336, 1024, 2048], 0.996\n", + "150,10: [1536, 65, 296, 123, 178, 315, 336, 1024, 2048, 248], 0.998\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "68c5f020e2a34272ae99877f2dba0d9c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,1: [1536], 0.218\n", + "200,2: [1536, 276], 0.73\n", + "200,3: [1536, 276, 109], 0.918\n", + "200,4: [1536, 276, 109, 165], 0.978\n", + "200,5: [1536, 276, 109, 165, 123], 0.99\n", + "200,6: [1536, 276, 109, 165, 123, 212], 0.992\n", + "200,7: [1536, 276, 109, 165, 123, 212, 216], 0.998\n", + "200,8: [1536, 276, 109, 165, 123, 212, 216, 80], 1.0\n", + "200,9: [1536, 276, 109, 165, 123, 212, 216, 80, 224], 1.0\n", + "200,10: [1536, 276, 109, 165, 123, 212, 216, 80, 224, 43], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3bd2f5eff3314f26a31b1017916bd28c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,1: [3072], 0.244\n", + "250,2: [3072, 95], 0.786\n", + "250,3: [3072, 95, 196], 0.944\n", + "250,4: [3072, 95, 196, 346], 0.978\n", + "250,5: [3072, 95, 196, 346, 99], 0.992\n", + "250,6: [3072, 95, 196, 346, 99, 157], 0.998\n", + "250,7: [3072, 95, 196, 346, 99, 157, 33], 0.998\n", + "250,8: [3072, 95, 196, 346, 99, 157, 33, 53], 1.0\n", + "250,9: [3072, 95, 196, 346, 99, 157, 33, 53, 24], 1.0\n", + "250,10: [3072, 95, 196, 346, 99, 157, 33, 53, 24, 105], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c7609564c6ae41189ec3b81437c78ae8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,1: [1536], 0.256\n", + "300,2: [1536, 59], 0.822\n", + "300,3: [1536, 59, 228], 0.966\n", + "300,4: [1536, 59, 228, 224], 0.99\n", + "300,5: [1536, 59, 228, 224, 105], 0.996\n", + "300,6: [1536, 59, 228, 224, 105, 39], 0.998\n", + "300,7: [1536, 59, 228, 224, 105, 39, 72], 1.0\n", + "300,8: [1536, 59, 228, 224, 105, 39, 72, 20], 1.0\n", + "300,9: [1536, 59, 228, 224, 105, 39, 72, 20, 80], 1.0\n", + "300,10: [1536, 59, 228, 224, 105, 39, 72, 20, 80, 79], 1.0\n" + ] + } + ], "source": [ - "nfeats = 5\n", - "nattack = 100\n", + "simulations = 500\n", + "nattack = range(50, 350, 50)\n", + "nfeats = range(1, 11)\n", "num_workers = 30\n", + "\n", + "bayes_classifier = BayesClassifier()\n", + "greedy = GreedyFeatures(sorted(feats_in_tree), distributions_mults, num_workers,\n", + " simulations, bayes_classifier, top_5_scorer)\n", + "\n", + "gre = feature_search(nfeats, nattack, greedy, restarts=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "86f6a319-a61c-41f2-9a7a-561691884198", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3c6c94e05d964645b1e4bb82323a1479", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Evaluating: 0%| | 0/60 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAHHCAYAAACY6dMIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd0FFUbwOHf7mZbekIqLQm9t9B7E5Qi+KkUlSYgFgQBC6B0AUHpUgQpSlFQEVCpUkV6BytIC+kJ6dlkk535/gjZsGQDKQtZyH3OmXNg9s7dO29md9+5986MQpZlGUEQBEEQhMeAsrgbIAiCIAiCkF8icREEQRAE4bEhEhdBEARBEB4bInERBEEQBOGxIRIXQRAEQRAeGyJxEQRBEAThsSESF0EQBEEQHhsicREEQRAE4bEhEhdBEARBEB4bInGxEwqFguHDhxd3M4QnSFxcHH379sXHxweVSsX169fvW37gwIE4Ozs/msblw/Xr11GpVHh7e9OnTx/i4+MLXIckSdSqVYvp06fbvoGPmcmTJ6NQKIrt/Q8cOIBCoeDAgQMW69euXUu1atVQq9W4u7sD0LZtW9q2bWvT94+NjcXJyYnt27fbtF7h0SuxicuRI0eYPHlyob4MBeFxMG/ePL799lueffZZvvzyS7y9vc2vXb9+3eqPSH60bduWgQMHFrpdCoXC6vLJJ59YlPP29mblypX06dOHjRs3Mnfu3AK/1zfffENISIjFScGaNWtyvbePjw/t2rVjx44dhd6v4pKWlsa8efNo0qQJbm5u6HQ6qlSpwvDhw/n333+Lu3n39ffffzNw4EAqVqzIihUrWL58+UN7r1KlSjFkyBAmTJjw0N5DeDQcirsBxeXIkSNMmTKFgQMHmrN8QXiSnDlzBi8vL1asWFGsZ9rWPPXUU/Tv399iXf369S3+7+TkxMCBAxk4cCC7du3i3LlzBX6fTz/9lD59+uDm5pbrtalTpxIUFIQsy0RGRrJmzRq6dOnCTz/9RLdu3Qr8XsUhJiaGp59+mtOnT9OtWzdeeuklnJ2d+eeff/j2229Zvnw5RqOxuJsJQOvWrTEYDGg0GvO6AwcOIEkSCxYsoFKlSub1u3fvfihteP3111m4cCH79u2jffv2D+U9hIevxCYuQvGTJAmj0YhOpyvuptitlJQUnJycCr2tj4+P3SUtAFWqVOGVV17Jd3k/Pz+SkpIK9B5nz57l/PnzzJkzx+rrzzzzDA0bNjT/f/Dgwfj6+vLNN988NonLwIEDOXv2LN9//z3PP/+8xWvTpk3jww8/LKaW5aZUKnN91qOiogBynTzendwU1d3fM9WrV6dWrVqsWbNGJC6PsRI5VDR58mTee+89AIKCgszdxdlzADIzM5k2bRoVK1ZEq9USGBjI+PHjSU9Pt6gnMDCQbt26sXv3burVq4dOp6NGjRps3rzZJu38+OOPUSqVLFq0KN/bbN26la5du1K6dGm0Wi0VK1Zk2rRpmEymXGWPHz9Oly5d8PDwwMnJiTp16rBgwQKLMn///Te9evXC29sbvV5P1apVLb4MBw4cSGBgYK66rY2nZ8/jWb9+PTVr1kSr1bJz504APvvsM5o3b06pUqXQ6/UEBwfz/fffW93HdevW0bhxYxwdHfHw8KB169bmM7QBAwbg5eVFRkZGru06depE1apV7x/Au0RERDBo0CDKli2LVqvF39+fHj165JorsmPHDtq0aYOLiwuurq40atSIDRs2WJT57rvvCA4ORq/X4+XlxSuvvEJoaKhFmew5Jv/99x9dunTBxcWFl19+Gcj68p0/fz41a9ZEp9Ph6+vLsGHDiIuLy7P9siwXOWk5d+4c3t7etG3bluTk5DzL3bx5k7///rtAdRsMBtLS0vJVVqlUUtAH2W/ZsgWNRkPr1q3zVd7d3R29Xo+Dg+X5XH6OzTZt2lC3bl2r9VatWpXOnTub/5/fv+WpU6fo3LkzXl5e6PV6goKCePXVV82vHz9+nF9++YXBgwfnSloAtFotn3322X33efXq1bRv3x4fHx+0Wi01atRg6dKluco9qC0A3377LcHBwebPQe3atS2+T+6d4xIYGMikSZOArGFBhULB5MmTAetzXNLT05k0aRKVKlVCq9VSrlw53n///Vzfy/f7noGs3r6ffvqpwMeTYD9KZOLyv//9j759+wJZ8wDWrl3L2rVrzXMAhgwZwsSJE2nQoAHz5s2jTZs2zJw5kz59+uSq6/Lly/Tu3ZtnnnmGmTNn4uDgwIsvvsiePXuK1MaPPvqIiRMn8sUXX/D222/ne7s1a9bg7OzM6NGjWbBgAcHBwUycOJGxY8dalNuzZw+tW7fmzz//ZOTIkcyZM4d27drx888/m8tcuHCBJk2asG/fPoYOHcqCBQvo2bMnP/30U6H3a9++fYwaNYrevXuzYMECc9KzYMEC6tevz9SpU5kxY4Y5jr/88ovF9lOmTKFfv36o1WqmTp3KlClTKFeuHPv27QOgX79+xMbGsmvXLovtIiIi2LdvX4HO8p9//nl+/PFHBg0axJIlSxgxYgRJSUncvHnTXGbNmjV07dqV27dvM27cOD755BPq1atn8UW5Zs0aevXqhUqlYubMmQwdOpTNmzfTsmXLXHOsMjMz6dy5Mz4+Pnz22WfmH6Rhw4bx3nvv0aJFCxYsWMCgQYNYv349nTt3tpqkQdYPpFJZ+I/4yZMnad++PfXr12fHjh33nbjbv39/qlevnu+616xZg5OTE3q9nho1auRK9O6lUCiQJCnf9UPWcHCtWrVQq9VWX09ISCAmJobo6Gj++OMP3njjDZKTk3MdI/k5Nvv168eFCxe4dOmSxbYnT57k33//tagzP3/LqKgoOnXqxPXr1xk7diyLFi3i5Zdf5tixY+Z6tm3bZn7vwlq6dCkBAQGMHz+eOXPmUK5cOd58800WL15sLpOftuzZs4e+ffvi4eHBrFmz+OSTT2jbti2///57nu89f/58nnvuOXM71q5dy//+9z+rZSVJ4tlnn+Wzzz6je/fuLFq0iJ49ezJv3jx69+6dq3xe3zMAwcHBxMfH88cffxQ0XIK9kEuoTz/9VAbka9euWaw/d+6cDMhDhgyxWP/uu+/KgLxv3z7zuoCAABmQf/jhB/O6hIQE2d/fX65fv36B2gPIb731lizLsjxmzBhZqVTKa9asKeBeyXJqamqudcOGDZMdHR3ltLQ0WZZlOTMzUw4KCpIDAgLkuLg4i7KSJJn/3bp1a9nFxUW+ceNGnmUGDBggBwQE5HrPSZMmyfceXoCsVCrlP/7444HtNhqNcq1ateT27dub112+fFlWKpXyc889J5tMJqttMplMctmyZeXevXtbvD537lxZoVDIV69ezfXe1sTFxcmA/Omnn+ZZJj4+XnZxcZGbNGkiGwwGq+0xGo2yj4+PXKtWLYsyP//8swzIEydONK8bMGCADMhjx461qOu3336TAXn9+vUW63fu3Gl1fbaKFSvKrVq1ytf+Zr+/k5OTLMuyfPjwYdnV1VXu2rWr+bi5nzZt2uT6e+elefPm8vz58+WtW7fKS5culWvVqiUD8pIlS/LcpkePHnKlSpXytyN3lC1bVn7++edzrV+9erUM5Fq0Wq3Vz1x+js34+HhZp9PJH3zwgUXZESNGyE5OTnJycrIsy/n/W/74448yIJ88eTLP/XvuuedkINdnOC/WPpPWvi86d+4sV6hQwfz//LRl5MiRsqurq5yZmZlnmf3798uAvH///lxtio6Otijbpk0buU2bNub/r127VlYqlfJvv/1mUW7ZsmUyIP/+++/mdff7npFlWT5y5IgMyBs3bsyzrYJ9K5E9LveTfanc6NGjLdaPGTMGIFcPQOnSpc1nDQCurq7079+fs2fPEhERUaD3lmWZ4cOHs2DBAtatW8eAAQMK3H69Xm/+d1JSEjExMbRq1YrU1FRzV/7Zs2e5du0a77zzTq6x5eyhhejoaA4dOsSrr75K+fLlrZYpjDZt2lCjRo37tjsuLo6EhARatWrFmTNnzOu3bNmCJElMnDgxV09CdpuUSiUvv/wy27Zts5gTsX79epo3b05QUFC+2qnX69FoNBw4cCDP4Zg9e/aQlJTE2LFjc43dZ7fn1KlTREVF8eabb1qU6dq1K9WqVct1PAG88cYbFv//7rvvcHNz46mnniImJsa8BAcH4+zszP79+81lMzIyCAkJYeHChfz333907NgxX/t7t/3799O5c2c6dOjA5s2b0Wq1D9zmwIED+e56//333xk5ciTPPvssr7/+OqdPn6ZWrVqMHz8eg8FgdZs2bdpw5coVPv/8c0JCQvLsZbpbbGwsHh4eeb6+ePFi9uzZw549e1i3bh3t2rVjyJAhuYZ683Nsurm50aNHD7755htzHEwmExs3bqRnz57meUr5/Vtmfy5//vnnPPc1MTERABcXlwfGIi9371t2D1SbNm24evUqCQkJ+W6Lu7s7KSkpRe5pzst3331H9erVqVatmkXcsuep3P0ZgLy/ZwDzMRETE/NQ2io8AsWcOBWbvHpchg0bJiuVStloNObaxt3dXX7hhRfM/w8ICJBbt26dq9zKlStlQD569Gi+2wPIzs7OMiAvXbo0/ztyj0uXLsk9e/aUXV1dc51RHjx4UJZlWf72229lQN6zZ0+e9Rw7dkwG5BUrVtz3/Qra4/Lqq69areenn36SmzRpImu1Wos2KxQKc5nXX39dViqVcnp6+n3b9Mcff8iA/NVXX8myLMt///23DMjLli2773b3mjdvnqxUKmW1Wi23atVKnjVrlhweHm5+/ZNPPpEB+fLly3nW8c0338iAvHfv3lyv9ezZU/by8jL/f8CAAbKDg0Ou3qRnnnnGag9B9vLss8+ay2af1QJyjx497nsGfK8BAwbIKpVK1uv1csuWLeWMjIx8b1tU2WfO955RZzOZTPKLL75o3re7z9rzotfr5cGDB+dan93jcm8PgslkkuvUqSP7+/tbHGP5OTZlWZZ/+eUXi89Zdi/Kzp07zWXy+7eUJEl+/vnnZUB2dXWVn332WXnVqlUWvV+26HE5fPiw3KFDB9nR0TFXW7J7WvPTlsjISLl69eoyIJcpU0YeNGiQvGPHDov3KkqPS3bdeS0jRowwl73f94wsy/Kff/75wB4+wb6Jq4ryUBxXYrRo0YJz587x+eef06tXLzw9PQu0fXx8PG3atMHV1ZWpU6dSsWJFdDodZ86c4YMPPijwHIH8yCtO1iYDg+UZXrbffvuNZ599ltatW7NkyRL8/f1Rq9WsXr36gXMfrKlRowbBwcGsW7eO/v37s27dOjQaDb169SpQPe+88w7du3dny5Yt7Nq1iwkTJjBz5kz27duX69JdW9Fqtbl6kyRJwsfHh/Xr11vd5u77s9StW5dt27axc+dOlixZwqJFi3jnnXcK9P5dunRh69at7Ny585FdXVOuXDkAbt++bfX11atX89133zF8+HA6deqU50TYu5UqVeq+k5fvpVQqadeuHQsWLODy5cvUrFmzQMdm586d8fX1Zd26dbRu3Zp169bh5+dn0euV37+lQqHg+++/59ixY/z000/s2rWLV199lTlz5nDs2DGcnZ2pVq0aABcvXqRVq1b53s9s//33Hx06dKBatWrMnTuXcuXKodFo2L59O/PmzTN/X+SnLT4+Ppw7d45du3axY8cOduzYwerVq+nfvz9fffVVgdt2L0mSqF27dp738sk+frJZ+57Jln1MeHl5FbldQjEp7sypuHz22WdWe1xmzJghA/Kff/5psT4iIkIG5DFjxpjXBQQEyKVLl7aY8yHLsvzBBx/IgMXZ+YNwZ47L+fPnZQ8PD7lRo0ZyYmJigfYpeyw6+4wv2/Llyy3OdE6ePCkD8rx58/KsKyoqSgbkkSNH3vc9R40aJbu5ueVa369fP6s9LtnzeO42cuRIWa/X55pL8dJLL1nUkd1Ldvbs2fu2SZZlecGCBbJKpZLDwsLkChUqyM8999wDt3mQf//9V3Z0dJRffvllWZZl+bvvvpMB+ccff8xzm+zxdGtnd9WrV5eDg4PN/797jsnd3nzzTVmlUlmdj3A/AQEBcsuWLfNdPvv909PT5aefflrW6XT56tmwhUWLFsmAfOTIEauvP/vss3JQUFCB6uzYsaPVuWZ59bjIsiy/9dZbMiAfO3ZMluX8H5vZRo0aJXt4eMi3b9+WnZ2d5VGjRlm8Xti/pSzL8vr16y16QbOPrddeey1f29/b4zJv3jyLnpVs48ePt/rdeL+23MtkMsnDhg2z6JEsSo9Lly5d5DJlyuT6rrUmr++ZbOvWrZMB+eLFiw+sS7BPJXaOS/aY871XdXTp0gXImvF+t+xMv2vXrhbrw8LC+PHHH83/T0xM5Ouvv6ZevXr4+fkVuF116tRh+/bt/PXXX3Tv3j3PMX9rVCoVgMVcA6PRyJIlSyzKNWjQgKCgIObPn59r/7O39fb2pnXr1qxatcriKpp7669YsSIJCQlcuHDBvC48PNwiJvlpt0KhsOiluX79Olu2bLEo17NnT5RKJVOnTs3VeyTfM7+ib9++KBQKRo4cydWrVwt0NRFAampqrkt1K1asiIuLi/nyy06dOuHi4sLMmTNzlc1uT8OGDfHx8WHZsmUWl23u2LGDv/76K9fxZE2vXr0wmUxMmzYt12uZmZl53v25fPnyhboztEajYfPmzTRq1Iju3btz4sSJB26T38uho6Ojc61LSkpi/vz5eHl5ERwcbHW7xMREypYt++DG36VZs2ZcunQp1+WyecnIyGD37t1oNBrzFVL5PTaz9evXj7i4OIYNG2b1CqX8/i3j4uJyHdP16tUDMO9Ps2bNePrpp/nyyy+ttsdoNPLuu+/mub/Wvi8SEhJYvXq1Rbn8tCU2NtbidaVSSZ06dSzKFEWvXr0IDQ1lxYoVuV4zGAykpKTku67Tp0/j5uZGzZo1i9wuoXiU2KGi7C/IDz/8kD59+qBWq+nevTt169ZlwIABLF++3Dz0cuLECb766it69uxJu3btLOqpUqUKgwcP5uTJk/j6+rJq1SoiIyNzffgLomnTpmzdupUuXbrwwgsvsGXLljwv6bxb8+bN8fDwYMCAAYwYMQKFQsHatWtzfekolUqWLl1K9+7dqVevHoMGDcLf35+///6bP/74w3wp8cKFC2nZsiUNGjTgtddeIygoiOvXr/PLL7+Y72Lap08fPvjgA5577jlGjBhBamoqS5cupUqVKhaTF++na9euzJ07l6effpqXXnqJqKgoFi9eTKVKlSwSokqVKvHhhx8ybdo0WrVqxf/+9z+0Wi0nT56kdOnSzJw501zW29ubp59+mu+++w53d/d8JQh3+/fff+nQoQO9evWiRo0aODg48OOPPxIZGWm+LN7V1ZV58+YxZMgQGjVqxEsvvYSHhwfnz58nNTWVr776CrVazaxZsxg0aBBt2rShb9++REZGmi/RHDVq1APb0qZNG4YNG8bMmTM5d+4cnTp1Qq1Wc/nyZb777jsWLFjACy+8kGu7wtz7JJter+fnn3+mffv2PPPMMxw8eJBatWrlWb5///4cPHjwge+3ePFitmzZQvfu3Slfvjzh4eHm5Hjt2rV53nhMluUCX9rdo0cPpk2bxsGDB+nUqVOu13fs2GFOtqKiotiwYQOXL19m7NixuLq6Avk/NrPVr1+fWrVqmSeTNmjQwOL1/P4tv/rqK5YsWcJzzz1HxYoVSUpKYsWKFbi6uppPrgC+/vprOnXqxP/+9z+6d+9Ohw4dcHJy4vLly3z77beEh4fneS+XTp06odFo6N69uznRWrFiBT4+PoSHh5vL5actQ4YM4fbt27Rv356yZcty48YNFi1aRL169Qp0mXxe+vXrx6ZNm3j99dfZv38/LVq0wGQy8ffff7Np0yZ27dplcTPB+9mzZw/du3e3yxszCvlUPB099mHatGlymTJlZKVSadE1mpGRIU+ZMkUOCgqS1Wq1XK5cOXncuHG5uosDAgLkrl27yrt27ZLr1Kkja7VauVq1avJ3331X4LZgpXtz69atsoODg9y7d+9cEzbz8vvvv8tNmzaV9Xq9XLp0afn999+Xd+3aZXVC4+HDh+WnnnpKdnFxkZ2cnOQ6derIixYtsihz6dIl+bnnnpPd3d1lnU4nV61aVZ4wYYJFmd27d8u1atWSNRqNXLVqVXndunV5Ts7Nqwt35cqVcuXKlc0xXL16tdU6ZFmWV61aJdevX1/WarWyh4eH3KZNG6sTjTdt2lSgrvS7xcTEyG+99ZZcrVo12cnJSXZzc5ObNGkib9q0KVfZbdu2yc2bN5f1er3s6uoqN27cWP7mm28symzcuNHcZk9PT/nll1+Wb926ZVEmr6GibMuXL5eDg4NlvV4vu7i4yLVr15bff/99OSwszGr59u3byxUrVsz3Plt7/5iYGLlGjRqyn5/ffSch5/dy6N27d8tPPfWU7OfnJ6vVatnd3V3u1KmT1cnLd2vcuLHcoUOH/O3IXerUqZNrgq61y6F1Op1cr149eenSpbmGIwpybMqyLM+ePVsG5BkzZuTZrgf9Lc+cOSP37dtXLl++vKzVamUfHx+5W7du8qlTp3LVlZqaKn/22Wdyo0aNZGdnZ1mj0ciVK1eW3377bfnKlSvmctbavG3bNrlOnTqyTqeTAwMD5VmzZsmrVq2y+D7MT1u+//57uVOnTrKPj4+s0Wjk8uXLy8OGDbMYLi/KUJEsZ12GPmvWLLlmzZrmz35wcLA8ZcoUOSEhwVzuft8zf/31lwzIv/76q9XXhcdDiU5ciio7cRHs05YtW2RAPnToUHE3pVj069dPVqlU8s8//yyHh4fnO/m1FyaTSY6IiJD3798v6/V6uX///gWu4+uvv5ZdXFzyfeWNLcyfP19WKBS55o4IxW/kyJFy/fr18zVXRrBfClkW9z0urMDAQGrVqmVxt1nBfnTr1o2//vqLK1eulMhu4aNHj/LMM8+Y78dx7do1q49nsFfXr18333fHzc2NnTt30rRp0wLVIUkSderUoW/fvo/kuT2yLFO3bl1KlSqV694iQvGKjY0lICCATZs2WQy3CY+fEjvH5VF50E3o9Hq91SfX3is6OjrPS4wha0JlQS+fflJ9++23XLhwgV9++YUFCxbkSloSEhIeOOm5MBOr7U2zZs2IiIjgzz//JD4+/rHbJz8/P/bu3WueSFmYh3Eqlcpct+F/GFJSUti2bRv79+/n4sWLbN269aG/p1AwpUqVuu/ztoTHh+hxKYL89Lg86Ex/wIABrFmzJl/vdePGjTxfb9OmjfnhZSWdQqHA2dmZ3r17s2zZslwPzRs4cOAD7y0hPhZCQWT3Drm7u/Pmm28yffr04m6SIDyxROLykP3666/3fb106dJ53pr6br///vt9ewk8PDzyvJRUsPTnn38SFhZ23zKFuVW+IAiCPTt06BCffvopp0+fNt+2omfPnvfd5sCBA4wePZo//viDcuXK8dFHHzFw4MBH0t68iKGih8xWP4AtWrSwST1C1p1185MsCoIgPElSUlKoW7cur776ap5P4r7btWvX6Nq1K6+//jrr169n7969DBkyBH9/fzp37vwIWmyd6HERBEEQhBJGoVA8sMflgw8+4JdffrGYJ9anTx/i4+PZuXPnI2ildU98j4skSYSFheHi4lIirywRBEEQ8k+WZZKSkihdunSBb3pYEGlpaRiNxiLXI8tyrt82rVabr6e6P8jRo0dzjRp07ty5QM8/exie+MQlLCws1wO4BEEQBOF+QkJCCvyYifxKS0sjKMCZiKi8rxTNL2dn51xXS02aNInJkycXue6IiAh8fX0t1vn6+pKYmIjBYLjvwywfpic+cXFxcQFg1zE/nJxL7KOZAPBRFf1D8iRwVRb9TORJoFU88R9/QSiwxGSJgAbXzb8dD4PRaCQiysSN04G4uhT+dykxSSIg+DohISHmx1QANultsWdP/DdXdheak7MS5yIcIE8CF5WYzgTg+hC7fx8nWoWquJsgCHbrUUwtcHZR4OxS+PeRyNrW1dXVInGxFT8/PyIjIy3WRUZG4urqWmy9LVACEhdBEARBsEcmWcJUhPNJkyzZrjFWNGvWjO3bt1us27NnD82aNXuo7/sg4tRTEARBEIqBhFzkpSCSk5M5d+4c586dA7Iudz537hw3b94EYNy4cfTv399c/vXXX+fq1au8//77/P333yxZsoRNmzbl66n2D5NIXARBEAShBDh16hT169enfv36AIwePZr69eszceJEAMLDw81JDEBQUBC//PILe/bsoW7dusyZM4cvv/yyWO/hAmKoSBAEQRCKhYREUQZ7Crp127Zt7/s4E2uPn2nbti1nz54taNMeKpG4CIIgCEIxMMkypiLcA7Yo2z7OxFCRIAiCIAiPDdHjIgiCIAjFoDATbO/dviQSiYsgCIIgFAMJGZNIXApMDBUJgiAIgvDYED0ugiAIglAMxFBR4Ygel0L49qtknmkRTuMqt3ilRyQXz+X9hM+MDJkvFiTSrVVW+V5PR/L7gbQ8y69akki9gFvMnhL/EFpue6vXpNCoaRSBFcPp0i2Gs2fvH4u585Jo2iKrfIenotm33zIWjZpG4V82PNcy7sOEh70rRbJsdSLVGofgEXSd1l3DOHk2Pc+yGRkyM+bGU7PZLTyCrtOkYyi796dalElKlnhvYixVG4XgWeEG7bqHc+pc3nXag0NHDTzbP4yy9a6i8r/Mlh3JD9zmwJFUGj51E33AFao0u86ajYm5yixZHU+FRtdwDLxCsy43OXE278+PPRBxyCLi8GDZVxUVZSmJijVxOXToEN27d6d06dIoFAq2bNli8bosy0ycOBF/f3/0ej0dO3bk8uXLxdPYO3b9lMqcj+MZNtKVb372pUp1DW/2i+Z2jPUHGC7+LIHv1yfzwRR3Nv/qxwsvOzH6tRj+vpT7B/7SeSPfr0+hSnX1w94Nm9i6zcDkqYmMGeXMrh1e1KjhQN9XbhOTRyxmzU5i7bpUpk915eA+b/r3c2TwkDguXsowl9nxSynOn/ExLxu/8QSge1fdI9mnwvh+awpjp9xm/Gh3juwqTe0aGnq8FElUHnGYMiuOleuSmPOxJ2cOlGFwPxf6DI7m3MWcxOTNMTHsO5TGykXenNxbmg5tdHTrHUFoeOaj2q0CS0mVqFtDw6IZPvkqf+1mBt1fCaNtCz1n9pRn5FB3XhsTya79KeYyG7cmMWZyDBPGeHJqVznq1NDyTN9QomJEHEQcHo84CLZXrIlLSkoKdevWZfHixVZfnz17NgsXLmTZsmUcP34cJycnOnfuTFpa8WXYa79M4n99nOjZy4mKVdR8NMMdnV7Blk0pVsv/sjmVwW+50qq9nrLlHejVz5mW7fR8vcLy7CM1RWL8yNtMnOWBi9vDf7iXLXyxPIWX+zrSp7cjVauomf2JG3qdgm++NVgt//1mAyPedqZDBx0BAQ4M6O9E+/Y6ln2REwuvUip8fHKWPb+mERigolkzzaParQJbuDyBQS+50L+PC9WraFg0qxR6vYKvv0myWn7DDym897YbT3dwJChAzWsDXOncXs/CL7LOLg0GiS3bU/n4Iw9aNtVRMUjNR+96UCFQzYqvrddpD57p4MS0sV4818U5X+W/+DqBoPJqPpvsTfUqGt561Z3nuzkzf3m8ucz8L+IY8rIrg/q4UaOqlqWzfXDUK1j9Te4zcXsh4pBFxOHBJBssJVGxJi7PPPMMH3/8Mc8991yu12RZZv78+Xz00Uf06NGDOnXq8PXXXxMWFparZ+ZRyTDK/HUxgyYtc87+lUoFTVrquHDG+hCJ0QharWUiotUpOHvKstt/xoR4WrXX0bSl/fYs3M1olLlwMYNWrXIen65UKmjVSsvpvGKRLueKhU4HJ05mWC9vlPlhs4E+fRwfyZNaC8NolDl7wUi7VpbHRPtWOo6ftj60YzTK6O6Jg16n4MiJrIQ80wQmE1bLHD3x+HaL3+vYKQMdWjlarOvU1pFjp7P20WiUOX0h3aKMUqmgQytHjp4WcRBxePzjYLpzVVFRlpLIbue4XLt2jYiICDp27Ghe5+bmRpMmTTh69GixtCkuTsJkglJelmEr5aUkJtr6sECz1lrWfpnEjWsZSJLM0d/S2LfTQExUTvmd21L5+5KREe+7PdT229Lt21mx8Pa2jIW3l5KoKOvnAW3baPliRQpXr2YiSTIHD6WzfUcaUVHWY7dzVxqJiTK9Xyy+x6c/SMxtEyYT+HqrLNb7eKmIzOOY6NhGz6LliVy5mnVM7D1oYOv2VCLuxMHFWUmTYC2fzI8nLCITk0nmmx+SOX46nYhI63U+jiKiTbni5uvtQGKShMEg5RlbX28HIqOenKEBEYcsJTEOJrnoS0lkt4lLREQEAL6+vhbrfX19za9Zk56eTmJiosVSnN6f7Enfl57jzP5htKwZwycT43n2RUeUd06mI8IymT0lnhkLPNHq7LNXwVamTnUlKEhFq7bRlA+K4MOPEujTOycW99rwbSrt22nx81NZL/CY+nSaJxWDHKjXOhS3gBuM/jCWfr2dUd4ViJWLvJBlqNTgFu6BN1iyMpFePZ0sygiCIJRET9zl0DNnzmTKlCkPpW4PDyUqFcTGWPYoxMZIeHlb/3H1LKVg8oTlOKjc6fzCEfQuf7HgkwTKlM8K/Z8XM7gdI9G3a5R5G5MJzhw3svGrZE5cLoNKZX8/Vp6eWbGIjraMRXSMhI+P9XzYq5SKNSs9SUuTiYuT8PNTMn1GEuUDch+GIbcy+e03IytXeDyU9tuKl6cKlYpcvStRMbnPHrN5l1KxabUvaWkSsXESpf1UTJgeR1D5nDhUCFSze7M/KakSiUkS/r4O9BsWRaCVWD2u/Lxz90pFRmfi6qJEr1eiUimsxjYyOhNfHxEHEYecMo9rHIo6T0XMcbEzfn5+AERGRlqsj4yMNL9mzbhx40hISDAvISEhNmuTWqOgem01J37PGU+VJJkTv6dTp0Hek0fTMv4CoIx/LTIzYe8OA207ZQ1/NGmh5fvdvmzckbPUqKOmS09HNu7wtcukBUCjUVCntprDh3PmcUiSzOHD6QTfJxYAOp0Cf38VmZnwy/Y0OnfS5iqzcaMBLy8lHTvkfs2eaDQK6tfRcOCw5TGx/3AaTYLv33adTkkZfwcyM2HL9lS6dnbMVcbJUYm/rwNx8SZ+PWigm5Uyj6umDfXsO2x5Gfivh1JpGpw1X0ijURBcR2tRRpJk9h020Cz48ZgLlh8iDllKYhwkFJiKsEjY5+/Dw2a3aWpQUBB+fn7s3buXevXqAZCYmMjx48d544038txOq9Wi1T68H7t+Q1yYMOY2NepoqFVXw/pVyRhSJXq86ATAR6Nu4+OnYsQHWfNVLp5Nx1ThAg1qNyMxtipvDYpBkmDgMBcAnJyVVKpqmT/qHRW4eSipVNW+L4se9poTI0fFU7eumnr11Kz4MpVUg0yf3llJ2dsj4/HzU/LhOFcAzpwxEh5holZNNeEREnPmJiHJ8NYbllcdSJLMt5sM9HpBj4OD/X8wR7zmxtB3omlQV0vD+ho+X5FIaqpMvz5Zf+MhI6Ip7efA1PFZvUcnzqQTFpFJ3ZoawiJMTJ8TjyTB6DddzXXuOWBAlmWqVFTz37VMxk+7TZVKavr3zt8VGsUhOUXiyrWcidbXb2Zw7lI6nu5KypdVM356DKERmXy1KOvEY1h/NxaviueDaTEM6uPK/t9T+W5bMj+tLW2u451hHgwaGUlwXR2N6+lYsCKOlFSJgX1cc72/vRBxyCLiIDwsxZq4JCcnc+XKFfP/r127xrlz5/D09KR8+fK88847fPzxx1SuXJmgoCAmTJhA6dKl6dmzZ7G1uXN3R+JiJZbOTSQm2kTVGmqWfO1FqTvDAuFhmSjuykPS02HThtM0mAkxYZXw8VPx8XxPXN3strMr33o8qyc2VmL2Z8lER5uoWUPNhrWeeN+JRWioCeVdu5mWLjPr02Ru3szE0VFBh/Y6Fi1wx+2eWBz6zUhoqIk+fR6P3oUXejgRHWti2qdxREabqFNTw5b1vuahopDQTIs4pKfLTJ0Vz7WbGTg7KuncQc+XC71wd8sZWkpMlJg4M47Q8Ew83FX07OLI5LEeqNX2m8idOp9Gh+dDzf8fMzkGgP69XFi9wI/wqExCQnMmUQaVV/PTutKMmRTDwi/jKevvwPI5vnRu52Qu07uHCzGxJibPjiUi2kS9mhq2byiDr7fdnnOJONwh4vBgkpy1FGX7kkghy8V3670DBw7Qrl27XOsHDBjAmjVrkGWZSZMmsXz5cuLj42nZsiVLliyhSpUq+X6PxMRE3NzcOHypNM4uxZMs6DV1qOL3C5mmWP4IrVcsbQDwVT05V6QUhZvSvoefHhWtwr579AShOCQmmfCocpWEhARcXR9OT07279LxP/yK9LuUnCTRpGbEQ22rPSrWNLVt27bcL29SKBRMnTqVqVOnPsJW2V5axr/IsgkHVSkcVL5kmiIfvJEgCIIgCLk8/uMVjwFZTiM9I2tITK+uUcytEQRBEOxBUSbmZi8lkUhcHhFDxp8A6DUicREEQRBAkhVFXkoikbg8IgbjHwDo1TWLuSWCIAiC8Ph6PKdiP4ZyelxE4iIIgiBQ5OGekjpUJBKXRyTNmJW4aBwCUSqckGTrT5MWBEEQSgYTSkxFGPgoqdeJiqGiRyRTiiUjMwKFQolOXb24myMIgiAUM7mI81tkMcdFeNgMGZcAMVwkCIIgCIUlEpdHKNWYnbjUKuaWCIIgCMVNXA5dOGKOyyNkuJO4OIrERRAEocQzyUpMchHmuJTQW/6LHpdHKDtx0amrouD+T1AWBEEQBCE3kbg8QhmmUDJNt1Eo1OjUVYu7OYIgCEIxklAgoSzCUjKHikTi8ogZzPNcahdzSwRBEITiJOa4FE6JSVxscYDYYknJHi7S1H7k7y2BWAAlCrGgIEPOFIucWaTvFUF4HC1evJjAwEB0Oh1NmjThxIkTeZbNyMhg6tSpVKxYEZ1OR926ddm5c+cjbG1uJSZxsRepxosAOIoeF0EQhBIte3JuUZaC2rhxI6NHj2bSpEmcOXOGunXr0rlzZ6KioqyW/+ijj/jiiy9YtGgRf/75J6+//jrPPfccZ8+eLeruF5pIXB6x7MRFr6mGAnUxt0YQBEEoLllzXIq2FNTcuXMZOnQogwYNokaNGixbtgxHR0dWrVpltfzatWsZP348Xbp0oUKFCrzxxht06dKFOXPmFHX3C00kLo+Y0XSTTFM8SoVWTNAVBEEQHhmj0cjp06fp2LGjeZ1SqaRjx44cPXrU6jbp6enodDqLdXq9nsOHDz/Utt6PSFyKQXavi5O2bjG3RBAEQSgu0p1nFRV2ke78hCcmJlos6enpVt8vJiYGk8mEr6+vxXpfX18iIiKsbtO5c2fmzp3L5cuXkSSJPXv2sHnzZsLDw20bjAIQiUsxSDVeAMBRU6eYWyIIgiAUF1vNcSlXrhxubm7mZebMmTZr44IFC6hcuTLVqlVDo9EwfPhwBg0ahFJZfOmDuHNuMUg1ngdE4iIIglCSSXf1mhRu+6xb54aEhODq6mper9VqrZb38vJCpVIRGRlpsT4yMhI/Pz+r23h7e7NlyxbS0tKIjY2ldOnSjB07lgoVKhS63UUlelyKQcqdxEWvropCYf0AEwRBEIT8cHV1tVjySlw0Gg3BwcHs3bvXvE6SJPbu3UuzZs3u+x46nY4yZcqQmZnJDz/8QI8ePWy6DwUhelyKQYYpnAxTFGqVD47qWqQYTxd3kwRBEIRHzCQrMMmFv4lcYbYdPXo0AwYMoGHDhjRu3Jj58+eTkpLCoEGDAOjfvz9lypQxDzcdP36c0NBQ6tWrR2hoKJMnT0aSJN5///1Ct7uoROJSTFLSz+Pu+BSO2roicREEQSiBsifZFn77gj9lsXfv3kRHRzNx4kQiIiKoV68eO3fuNE/YvXnzpsX8lbS0ND766COuXr2Ks7MzXbp0Ye3atbi7uxe63UUlEpdikmo8h7vjUzhp6hJd3I0RBEEQSozhw4czfPhwq68dOHDA4v9t2rThzz//fAStyj+RuBSTFPME3frF3BJBEAShOEiyEqkQd7/N2b7gPS5PApG4FJPsK4t06kBUSndMUnzxNkgQBEF4pIpjqOhJIK4qKoRNXyXRrUUYzaqE0L9HJJfOWb/ZD0BGhszyBQk82yqrfJ+nIzhywIBJSiAt4yoAZw5Xo3fnCFrXvEXrmrcY2DOS3/cbHtXuFMmaNSk0aRpFhYrhdOsWw9mzxjzLZmTIzJuXRPMWWeU7PhXN/v1pucqFh5t4++04ataKoGLFcDp0iOb8+bzrtQfLVidSpXEIbkHXadU1jJNn739MTJ8bR/VmWeUbdQxl9/5UizJJyRLvToylcqObuFe4TtvuYZy6z3FmL0Qc4NBRA8/2D6Nsvauo/C+zZUfyA7c5cCSVhk/dRB9whSrNrrNmY2KuMktWx1Oh0TUcA6/QrMtNTpzN/dmxJyIOwsNi94lLUlIS77zzDgEBAej1epo3b87JkyeLrT27f0pl7sfxvDbSlfU/+1Gluprh/aK5HWOyWn7pZwlsXp/C+1M8+O5Xf55/2Zl3X4vl70tGUoznAKhetSFvf+DGup99WfuTL42aaxk9NIb//s14hHtWcFu3GZgyNZHRo5zZucOLGjUcePmV28TkEYvZs5NYty6VaVNd2b/Pm379HBkyJI5Ll3L2Mz5eoudzsTioFaxb68n+/d5MnOiKm5v9HqrfbU3m/SmxfDjanWO7SlO7hobuL0UQlUccJs+KY+W6JOZ9XIqzB8owtJ8LvQZHce5izg/yG2Ni2HvIwKpF3pzeW4YObfR06R1OaLj9Ps1YxCFLSqpE3RoaFs3wyVf5azcz6P5KGG1b6Dmzpzwjh7rz2phIdu1PMZfZuDWJMZNjmDDGk1O7ylGnhpZn+oYSFSPiYO9xuB+JnCuLCrNIxb0DxUQhy/Y9SNa7d28uXbrE0qVLKV26NOvWrWPevHn8+eeflClT5oHbJyYm4ubmxsFLZXB2KfqPX/8ekdSso+GDaR4ASJJMl6bh9B7ozKA3XXOV79wolMHDXek1wMW87r1hMWh1CpatHEV5z49JMOznv+gBFtu1qxPKyPFu9OzjXOQ2Z/NT2fbD3a1bDHXrqpk+3Q3IikWjRlEMGuTE8OG5290gOJIRbzszcKCTed3QoXHodLBoUVY8Z8xI5OQpIz9u9rJpW+9WSql7cKECaNU1jOC6GubPyGqzJMlUahjCG4Ncee9t91zlg+rf5IMR7rw+KOd46TMkEp1OwZrPfTAYJLyq3OD71b4809HRXKZZ51A6tdcz5QNPm7bfVh7XOKgVD2/EXOV/mR9W+dPzmbw/x2M/jmH7rylcOBBgXtf39XDiEyR2fJP1Hdesy00a1tOZkwBJkgkIvsbwV9354G37PB7u9jjFITHJhEeVqyQkJFjc1M2Wsn+Xlp5phN658MefITmTNxqcfKhttUf2exoLGAwGfvjhB2bPnk3r1q2pVKkSkydPplKlSixduvSRtyfDKPP3RSONW+bc3EepVNC4pZaLZ6x3X2cYQaO1vNZeq1Nw7lQ6KelZjwV30tSHO0/5NJlkdm1LxWCQqNPAfm9OZzTKXLiYQatWlrFo2UrL6TPWh3XS02W098RCp4MTJ3N6XHbvSadOHQ2vDYujTt1IOnWOZv361HurshtGo8yZC+m0b6U3r1MqFbRrpef4aevHRLrRWhwUHDmRVT7TBCYT9y1jb0QcCu/YKQMdWjlarOvU1pFjp7OGQIxGmdMX0i3KKJUKOrRy5OjpJ2eYRMRByC+7TlwyMzMxmUx282TK+DgJkwlKeaks1pfyUhETbb3TrmlrHeu/TOLmtQwkSebYb2ns22kgJsqEIeMvJCkNB5U7ETfL0rL6LZpVvsWMD2/z2RdeVKiifhS7VSi3b2fFwsvb8hDy9lISHWU9Fm3baFm+IoWrVzORJJlDh9LZviONqKicoYSbNzNZuzaFoCAVG9Z70r+fExMnJrDpO/tMXmJumzCZwMfb8pjw9VIRGW19iKRjGz0Llydw5WrWMfHrQQNbt6cSEZXVI+birKRpsJaZ8+MJi8jEZJLZ8EMyx0+nExFpvc7iJuJQeBHRJnzvjZu3A4lJEgaDZI6ttTKRUY/nEIk1JTEOtnpWUUlj13vt4uJCs2bNmDZtGmFhYZhMJtatW8fRo0fzfDJlenp6ridlFqf3JrtTLkjN8+0jaFrpFrMnxvHsi04oFQog0/zAxaqVm/DNDl++2urLC684M2nMba7a+RyXgpo61ZWgIBVt2kYTGBTBhx8l0Lu3I8q7TqglCWrVUjNurCu1aql55RVHXnrJkbVr7TNxKYw500pRKUhNnda3cAm4zqgPY+nf2xnlXYFYucgbWYYKDUJwDbzOkpUJ9OrpRDE+18zmRByEkk5CUeSlJLL7j//atWuRZZkyZcqg1WpZuHAhffv2zfPJlDNnzrR4Sma5cuVs1hZ3DyUqFcTeM9kwNsaUq+chm0cpFXNXeHH4r7L8fMSfH/b54eikoEz5rLOGFOMZAFwdG1AuUE312hre/sCdKtXVfLM6yWZttzVPz6xY3NvTFB0j4e1jPRalSqlYtdKTy//6cfyYD4cOeuPkqKB8QM4Yr4+PiiqVLcd8K1V2ICzUPs+wvTxVqFQQdU+vQmRM7rPHbN6lVHy32pfbVwL490Q5LvxWBmcnJUHlc/a7YqCaXzf7E3slgCunynF4exkyMyAowD7vYCDiUHh+3rl7pSKjM3F1UaLXK82xtVbG10fE4XGOg+hxKRy73+uKFSty8OBBkpOTCQkJ4cSJE2RkZOT5ZMpx48aRkJBgXkJCQmzWFrVGQbXaGk7+njO+LkkyJ39Pp/YD5qNodQp8/BzIzIS9Owy06ZQ1FyAlPStxcdI2sCgvSVljuvZKo1FQp7aaw4ctY3H4cDrBDTT33VanU+DvryIzE7ZvT6NTp5zYNWqo5r+rlt2+V6+aKFPW+o9fcdNoFDSoo2X/4ZwxdkmSOXDYQJPg+x8TOp2SMv5Zx8SP21Po1tkxVxknRyX+vg7ExZvYc9BgtYw9EHEovKYN9ew7bNmj+OuhVJoGZw2RazQKgutoLcpIksy+wwaaBdt2onlxEnEQ8uuxSVOdnJxwcnIiLi6OXbt2MXv2bKvltFptnk/GtIVXhrgwaUws1etoqFVXw4ZVSRhSJZ59MetKmYmjYvH2U/H2B+4AXDybTnSEiSo1NURHmPhiXgKyJDNgWNYM8OQ7iYtOXZWoMB0JiYns3JrK6WPpfL7W+6Hthy0Mfc2JUaPiqVNXTf16alZ8mYrBINO7d1ZSNmJkPP5+SsaNy9rXM2eMRESYqFlTTUSExJy5SUgyvPlGzpUGQ4c60aNnLAsXJdO9m45z5zJYvz6V2bPcimUf82PEa64MeSeGBnU1NKqvZdGKRFJSZfr3ybqS7NUR0ZT2U/Hx+KyrHk6cSSMswkSdmhrCIkx8PCcOSYIxb+bs454DqcgyVK6o5r9rmYyfdpuqldQM6O1itQ32QMQhS3KKxJVrOcO8129mcO5SOp7uSsqXVTN+egyhEZl8tcgPgGH93Vi8Kp4PpsUwqI8r+39P5bttyfy0trS5jneGeTBoZCTBdXU0rqdjwYo4UlIlBvax3ytJRBwerOg3oLP7voeHwu4Tl127diHLMlWrVuXKlSu89957VKtWzfwky0etU3dH4mJNLJubQGy0iSo1NCz62ptSd7rDI8JMKO46lozpMks+SyA0JBO9o5KW7XRMm18Klzv3JcmUooiMuo6vTyDzp5TnxMn9VK6m5vO13jRtZd9nET2e1XM7VuKzz5KJjjZRs4aadWs98b4Ti7BQk8VchPR0mdmfJnPzZiaOjgrat9excIG7xT1a6tXT8OWXHnwyM4n585MoV07FlMmu/O9/+nvf3m682MOZmFiJqZ/GERltom5NLdvW+5qHSEJCMy3ikJYuM3lWHNduZuLsqKBzB0dWLfTG3S2nVykhUWLCzDhCwzPxdFfRs4sjU8Z6olbb75i2iEOWU+fT6PB8qPn/YybHANC/lwurF/gRHpVJSGhOr2JQeTU/rSvNmEkxLPwynrL+Diyf40vndjm3Dejdw4WYWBOTZ8cSEW2iXk0N2zeUwdfbfr/CRRweTJIVSEV4OnRRtn2c2f19XDZt2sS4ceO4desWnp6ePP/880yfPh03t/ydgdv6Pi4PQ2CpBXg6PUdY/BwiEhc8tPex9X1cHle2vo+L8Hh7mPdxER4/j/I+LrNPtiryfVzeb/RbibuPi91/Ynv16kWvXr2KuxkPVXL6aTydnsNZ27C4myIIgiA8IlIRh4okMVQkFJeU9NNA9gRdJZTYGzkLgiCUHEV/OnTJTFxK5l7bGUPG35ikJFRKF/TqqsXdHEEQBEGwWyJxsQumuy6LblTMbREEQRAeBROKIi8lkUhc7ERyetYTr51F4iIIglAiZA8VFWUpiUrmXtshkbgIgiAIwoOJybl2IsV4FlnOQONQGo2qLEbTreJukiAIgvAQmaBIwz32+SCUh0/0uNgJWU4j1XgRAGddk2JujSAIgvCwiaGiwimZe22nktNPAOCsbVzMLREEQRAeNvGQxcIpmXttp0TiIgiCIAj3J+a42JHktJPIsoROXREHpReZUkxxN0kQBEF4SGQUSEWY4yKLy6GF4maSEzBk/AWAs65pMbdGEARBeJjEUFHhlMy9tmPZw0UuWjFBVxAEQRDuVWKGiqJMLiSbVMXdjAeSU8/j4wI6bXMiTLZ92mdp1W2b1ic83iTs+sHwj4wkng0m3OVRfi4kWYEkF364pyjbPs5KTOLyuLiddgoAF01lNEpPjJJINgRBEJ5EpiI+Hboo2z7OSuZe27EMKZ4k478AeOoaFnNrBEEQBMG+iMTFDsUasm7/X0ovbv8vCILwpMoeKirKUhKJxMUOxaZlTdD11In7uQiCIDypJJRFXkqikrnXdu72nfu5uGgqolGVKu7mCIIgCE+QxYsXExgYiE6no0mTJpw4ceK+5efPn0/VqlXR6/WUK1eOUaNGkZaW9oham5tIXOxQhpRIovFvALzEc4sEQRCeSCZZUeSloDZu3Mjo0aOZNGkSZ86coW7dunTu3JmoqCir5Tds2MDYsWOZNGkSf/31FytXrmTjxo2MHz++qLtfaCJxsVPZw0Wl9CJxEQRBeBIVxxyXuXPnMnToUAYNGkSNGjVYtmwZjo6OrFq1ymr5I0eO0KJFC1566SUCAwPp1KkTffv2fWAvzcMkEhc7FWs4DkAp0eMiCILwRJKL+GRo+c6dcxMTEy2W9PR0q+9nNBo5ffo0HTt2NK9TKpV07NiRo0ePWt2mefPmnD592pyoXL16le3bt9OlSxcbRyP/ROJip26nnUKSM3BUl0XvULa4myMIgiDYqXLlyuHm5mZeZs6cabVcTEwMJpMJX19fi/W+vr5ERERY3eall15i6tSptGzZErVaTcWKFWnbtq0YKhJyM8kG4tPPA+ClF88tEgRBeNKYUBR5AQgJCSEhIcG8jBs3zmZtPHDgADNmzGDJkiWcOXOGzZs388svvzBt2jSbvUdBiTvn2rEYwzE8dQ3x0jUlJOn74m6OIAiCYEOSXLTb9kt3nk7g6uqKq+uDHxHj5eWFSqUiMjLSYn1kZCR+fn5Wt5kwYQL9+vVjyJAhANSuXZuUlBRee+01PvzwQ5TKR9//IXpc7FiM4RgApfRNEX8qQRAEoSg0Gg3BwcHs3bvXvE6SJPbu3UuzZs2sbpOamporOVGpsp77J8vF87wz8WtYCD9/HcugVv/Ss9qfjHruKv+cT82zbGaGzIaFUQxum1V+eJcrnDqYlK86E9IvkiEloVG546ap/jB3qdBWr0mhUdMoAiuG06VbDGfPGvMsm5EhM3deEk1bZJXv8FQ0+/Zb3gugUdMo/MuG51rGfZjwsHelSJatTqRK4xDcgq7TqmsYJ89anxwHWXGYPjeO6s2yyjfqGMru/ZbHUFKyxLsTY6nc6CbuFa7TtnsYp87lXae9WLY6kWqNQ/AIuk7rfMRhxtx4aja7hUfQdZrkEYf3JsZStVEInhVu0K57+GMRhyWrE6jU6AbOgVdp3uUWJ87mfc+LjAyZj+fepmrTrPINOoSwa1/uOIyeEEPFhjdwCbpKq+63OHmu+O6jkR+/HTXQs3845etdR+3/H1t3pDxwm4NHDDR6KgSngP+o1uwGX21MzFWmILG1d0WZmJu9FNTo0aNZsWIFX331FX/99RdvvPEGKSkpDBo0CID+/ftbDDV1796dpUuX8u2333Lt2jX27NnDhAkT6N69uzmBedTsOnExmUxMmDCBoKAg9Ho9FStWZNq0acWW5QEc+jmBFTMieWmENwt/qkBQdR0TBtwgPibTavmv50Sy85s4Xp/kz9LdlXjmJU+mvx7Cf38YHlhnXEw6sYasmdxeeuvZcHHaus3A5KmJjBnlzK4dXtSo4UDfV24TE2OyWn7W7CTWrktl+lRXDu7zpn8/RwYPiePipQxzmR2/lOL8GR/zsvEbTwC6d9U9kn0qjO+2JvP+lFg+HO3OsV2lqV1DQ/eXIojKIw6TZ8Wxcl0S8z4uxdkDZRjaz4Veg6M4dzHnB/mNMTHsPWRg1SJvTu8tQ4c2err0Dic03PpxZg++35rC2Cm3GT/anSN34tDjpcg84zDlThzmfOzJmQNlGNzPhT6Doy3i8OaYGPYdSmPlIm9O7i1NhzY6uvWOsOs4bNqazHuTY/hojAcndpWlTg0NXfuGE5XHd8TEWbdZsTaR+dO9uHCwHK/1d+WFwRGcvSsOw8ZEsfdQKmsW+XB2XzmeauPI073s+3hISZWoU0PDwhle+Sp/7WYGz74STtsWek7tKcfbQ90ZNibaIpktaGztnYSiyEtB9e7dm88++4yJEydSr149zp07x86dO80Tdm/evEl4eLi5/EcffcSYMWP46KOPqFGjBoMHD6Zz58588cUXNotDQSnk4swCHmDGjBnMnTuXr776ipo1a3Lq1CkGDRrE9OnTGTFiRL7qSExMxM3Nje/OV8PRpejZ4ajnrlKljp43pvgDIEkyA1v8S7f+nvR6wztX+X5N/6H3m150659zB9zpb9xEo1Py3ryyD6zz3feHU8trArGGExyPeLVIbW+gse2Tprt0i6FeXTUzprsBWe0ObhTFq4OceHu4c67y9YIjGfm2M4MGOpnXDR4ah04Hixd5WH2PCZMS+PXXdI4c9kahsM1zOTyUtk2CWnUNI7iuhvl3vqAlSaZSwxDeGOTKe2+75yofVP8mH4xw5/VBOWPSfYZEotMpWPO5DwaDhFeVG3y/2pdnOjqayzTrHEqn9nqmfOBpk3ZL2Paj37prGMF1tcybkXWsS5JM5Ya3eGOQC+9aiUOF+iG8P8LNIg59h0Sh1ylY9bk3BoOET5WbbFrtYxGH5p3D6NRez+QPrB8zBaVW2PassXmXWzSsp2XhjKzvA0mSCQq+wVuvuvH+27nbXL7edcaO9ODNQW7mdb0GR6DTKfh6sS8Gg4RH5WtsXuNHl445n53GnUJ4ur0jU8fa/9211f7/8f0qP3o845RnmXEfx7Lj1xTOHShvXvfy65HEJ5j45ZvSQMFjWxiJSRKlqlwjISEhX/NGCvUed36X+u3vi8ZZU+h6jMlG1rb75qG21R7ZdY/LkSNH6NGjB127diUwMJAXXniBTp06FduNbzKMElcuGajXIufDp1QqqNfCib/PGvLYRkattQyzRqfkz1Op+aozxnAEAA9dfVQKva13qdCMRpkLFzNo1UprXqdUKmjVSsvpM9aHi4zpMlqtZfKh08GJkxnWyxtlfthsoE8fR5slLbZmNMqcuZBO+1Y5fxulUkG7VnqOn7Y+pJFutBYHBUdOZJXPNIHJxH3L2BujUebsBSPtWuUkhUqlgvatdHnGwWiU0d2zj3qdgiMnsrr+s+NgrczRE/Y5PJB9PHRolZNoZcVBz7HT1tucbiUOunzFQcnvdhqHwjh2Ko32d8UN4Km2eo7dOX4KE1t7Vxx3zn0S2HXi0rx5c/bu3cu///4LwPnz5zl8+DDPPPNMsbQnMc6EZAJ3L8uLsdy9HIiLtt5V2aCVM1tWxRJ6LR1Jkjn7WzJHdyVy+075B9WZmhlCSkYISoWaUnb00MXbtyVMJvD2tjyEvL2UREVJVrdp20bLFytSuHo1E0mSOXgone070oiKsj6UsHNXGomJMr1ftJ+E7V4xt02YTODjbXnW7uulIjLa+n51bKNn4fIErlzNQJJkfj1oYOv2VCKiso4JF2clTYO1zJwfT1hEJiaTzIYfkjl+Op2ISOt1FrfsOPjeEwefB8Rh0fJEcxz2muOQVd7FWUmTYC2f3BWHbx6TOOQ6HrwdzPt1r05tHVnwRTyXrxrvHA+pbNmeQvjdx0NDLdPnxZnjsP77JI6dTsuzzsdRZLQp1/Hj660iMUnCYJAKFVt7VxxzXJ4Edr3XY8eOpU+fPlSrVg21Wk39+vV55513ePnll/PcJj09PdddBIvTsIn+DBk6EPnKu7zU4AZLJ4fT8QV3lAVIlGMMvwPg7djyIbXy0Zg61ZWgIBWt2kZTPiiCDz9KoE9vxzxjseHbVNq30+LnVzwTwB6WOdNKUSlITZ3Wt3AJuM6oD2Pp39sZ5V2BWLnIG1mGCg1CcA28zpKVCfTq6UQxXHn40Hw6zZOKQQ7Uax2KW8ANRn8YS79ccfBClqFSg1u4B95gycrEO3F4cs405071olKQmlqtQnAsf5WRH8YwoI+LxT6uWeSLLENA/Rs4BVzl85UJ9O7pXKDvEUF4Utj1fVw2bdrE+vXr2bBhAzVr1uTcuXO88847lC5dmgEDBljdZubMmUyZMuWhtMfVQ4VSRa6JuPExmXh4Ww+lWykV746aiN6hNIEtjpChP8XqWZH4ldfku85ow2ECXPvgpW/xEPaqcDw9lahUEB1t2bsSHSPh42P919WrlIo1Kz1JS5OJi5Pw81MyfUYS5QNyxy7kVia//WZk5QrbjFs/LF6eKlQqiLqnVyEyJvfZYzbvUiq+W+1LWppEbJxEaT8VH02PI6h8ThwqBqr5dbM/KakSiUkS/r4OvDIsiiArsbIH2XG4t3cl6gFx2HRPHCbcE4cKgWp23xOHfsOiCLTzOOQ6HqIz8fPJIw5eKn5Y428Rh/HTb1PhnuNh349lLOLw0rAIggLUD3V/HiVf79y9c5HRJlxdlOj1SlQqRYFja+8kCve8obu3L4ns+vztvffeM/e61K5dm379+jFq1Kg8b2cMMG7cOIs7CIaEhNisPWqNkkq19Jw7knNZnyTJnDuSQrX6eQ9nxKWdAyCgdDCmTDiyK4mmHV3yXWes4QSSnIGTujyODuVstj9FodEoqFNbzeHDOfMXJEnm8OF0ghvcf7KZTqfA319FZib8sj2Nzp20ucps3GjAy0tJxw65X7MnGo2CBnW07D+cM8YuSTIHDhtoEnz/tut0Ssr4O5CZCT9uT6FbZ8dcZZwclfj7OhAXb2LPQYPVMvZAo1FQv46GA/fEYf/htALFYcv2VLo+IA6/2nkcGtTRsu9wzpUwWXEw0DT4/pPCLY6HX5Lp3jn3RNa747D7gMFqmcdV04Y69h22nCu495CBpneOn6LE1l7JRbyiSC6hiYt9nrbckdeNbyTJ+hwKAK1Wi1b78H7snhtcirnvhlK5tp4qdfVsXR1LWqrEUy9k9QzMGXOLUr5qBr6fdWnZ3+dSMXkdo3SrLqjT6jBx4A0kSeb5YV75rtMkp3I77TRe+qZ4O7bmRuL6h7Z/BTHsNSdGjoqnbl019eqpWfFlKqkGmT69sxKut0fG4+en5MNxWbPdz5wxEh5holZNNeEREnPmJiHJ8NYbllcgSZLMt5sM9HpBj4OD/X8wR7zmypB3YmhQV0Oj+loWrUgkJVWmf5+s5PTVEdGU9lPx8fisq4FOnEkjLMJEnZoawiJMfDwnDkmCMW/mXFWy50AqsgyVK6r571om46fdpmolNQN6uxTLPubHiNfcGPpONA3qamlYX8PnKxJJTZXpdycOQ0ZEU9rPganjs47rE2fSCYvIpO6dOEyfE48kweg3c66O2HPAgCzLVLkrDlUqqenfO/dVa/binWHuvDoyiuC6WhrV07FwRQIpqTID7sRh4NuRlPFzYPqHWVcDHT+TRlh4JnVraQkLz2TqnePh3bfczXXu3p91PFSppOa/axl8MC2WqpXUDOxjv8dDcorElWs5E++v3czg3KV0PN2VlC+r5sPpsYRGZLJmUdZ35Wv9XVmyKoGx02IZ2MeF/b8b+G5bMtvW+pvreFBsHzeFfcLz3duXRHaduHTv3p3p06dTvnx5atasydmzZ5k7dy6vvlq0y4KLonU3NxJuZ7JuXhRxMZlUqK5j6pqAnGGdsAwUdw08Z6TLLJuzh+6tpuLpWA8vfzVj5pbB2VWV7zoBolMPZyUu+pZ2k7j0eFZPbKzE7M+SiY42UbOGmg1rPfG+MzQQGmqymJORli4z69Nkbt7MxNFRQYf2OhYtcMfNzTI5PfSbkdBQE3362OdZ9b1e7OFMTKzE1E/jiIw2Ubemlm3rfc1DJCGhmbniMHlWHNduZuLsqKBzB0dWLfTG3S3nmEhIlJgwM47Q8Ew83VX07OLIlLGeqNX2+0X1Qg8nomNNTLsThzo1NWy5TxzS02Wmzorn2s0MnB2VdO6g58uFXhZxSEyUmHgnDh534jB5rIddx6FXD2eiY01MmR1HRHQmdWtq+XmDP753Ps9Zcchpf3qazKRZt7l653h4uoMjaxb5WB4PSRIfzYjl1p3j4bmuTkyz8+Ph9Pl0Oj4fZv7/e5NjAejXy4VVC3wIjzIREpozRB5UXs22df6MmRTDoi/jKevvwBdzvOnULud74EGxFUoGu76PS1JSEhMmTODHH38kKiqK0qVL07dvXyZOnIhGk79r3219H5fCUKDiqYCjOCgd+e3WcyRlXC5wHc7qCrQuuw2TlM6emy2Q5IJf/mfr+7g8rmx9H5fHla3v4/K4svV9XITH26O8j8tzewahdir8fVwyUoz8+NTqEncfF7tOU11cXJg/fz7z588v7qYUiYyJ+PQLeOmb4qGrX6jEJTnjKqkZoTiqy+Cla0KU4eBDaKkgCILwqIihosKx68m5T5K4tLMAeOgaFLqOaMNvAHg7trJJmwRBEAThcSMSl0ckLu0MAB7a+oWuIyr1EAA+jm1s0iZBEASh+BTHs4qeBCJxeUTi0s8jyZk4qsugU/kVqo7YtOOYJAN6B39c1FVs3EJBEAThUcoeKirKUhKJxOURMcmpJBn/AcCzkMNFkpxOTNpxQPS6CIIgCCWTSFweodtppwDw0AUXuo6o1KxJuSJxEQRBeLyJHpfCseurip40ocm/kGS8QuydXpPCyE5c3LV10ChLYZRibdU8QRAE4RESVxUVjuhxeYQSjX9yK/lHDJlhDy6ch3RTFPHpl1AolKLXRRAEQShxROLyGIpK3Q+Ar2O7Ym6JIAiCUFhiqKhwROLyGIpM2QeAl74ZKkXeD3cUBEEQ7JdM0S6JLqn3vhaJy2MoKeMyqRkhqJQ6vPTNi7s5giAIQiGIHpfCEYmLXSj4wReZmtXr4uvYwdaNEQRBEAS7JRKXYuLv9Ax+jh1x09SCQnT4RaTsBcDXsQ0KcXGYIAjCY0f0uBROifnFy5AdyJDt5ymwvk6dcVFXJCL1AEHuQwlP2UtU6hGMUiIgPXD7qLRLpJtuo1V54qZrQrThwZdY35ZK5kF+L50io7ibYBdclWJ+FEC6LI6HbOJJ2Y+WuBy6cESPyyOW3TuSaPyPsJTd/Hl7Af/ELUetdKFl6ZXU8Byez5okwlOyri7ydxLDRYIgCELJIBKXR0wmE4BbSb/g79QeD21dfB1b4KNvQZopBu8CTLYNvzNc5O/YDvGnFARBeLyIoaLCKTFDRfakguvLeOhq4eRQjhqeb5NkvEqU4QgJxn9Iy4wka7Lug+e9RBtOkGFKQufgjaeuLrfTzj70tguCIAi2IcsK5CIkH0XZ9nEmEpdi4KB0JC7tEnoHP0KSf+Jm0lYAlKhRKBzI72RdmUwiUg9QzqU7pZ2eEomLIAiC8MQTiUsxuJr4LZlSEtGG4/g7taWO14f46lugVKiJSD1EjOEkoSk781VXWMqvdxKXjlyK/ZTCXKEkCIIgPHrZN5IryvYlkZgYUQwypSSUqKnmMYzyLj1QoORczFQOhPYm2nCMqh6voVa65auuKMNRMqQk9A4+eGrrPuSWC4IgCLYi5rgUjkhciklF9/6km+LYf+tFzsdMI9pwjHRTHGEpe0jJDMXXsWW+6pFkIxEpBwAo7dzpIbZYEARBEIqfSFyKiYu6AgnGfzDJaXetlXHTVEeS00nOuJHvukJT9gBQxqkj4k8qCILweMienFuUpSQSv3LFJDbtDP5O7XFRV8Bb34yKbq/QwHsaDXymkZoRSnz6H/muKzr1KEZTIjoHH0rp6j/EVguCIAi2UlxDRYsXLyYwMBCdTkeTJk04ceJEnmXbtm2LQqHItXTt2rWwu11kYnJuMbmV/AsKlDTzX0Ky8TrJmTdJNF7hSsJaEo3/FqguiQzCU/YS4PocZZw7E5t2+iG1WhAEQbCV4rgceuPGjYwePZply5bRpEkT5s+fT+fOnfnnn3/w8fHJVX7z5s0YjUbz/2NjY6lbty4vvvhiodtdVKLHpZiY5DSuJ33H7ptPcyTidS7GzOZqwgbSMqPx0TfH0aF0geoLTdkFQGmnjuLZRYIgCIJVc+fOZejQoQwaNIgaNWqwbNkyHB0dWbVqldXynp6e+Pn5mZc9e/bg6OhYrImL+IWzAx7a2gS4Po+3rjFaBy+SjJdJMl690wPzVb7qiDGcJC0zFp1DKbz1jYkyHHnIrRYEQRCKQi7ilUEF7XExGo2cPn2acePGmdcplUo6duzI0aNH81XHypUr6dOnD05OTgV6b1sSPS6FsH1tDENb/8mL1S/w3v8u8+/51PuW37Y6mjc7/k2vGhcY3OJPVn4cijE960GKbpqqVHN7h3/PpdKn9ys46nU0bdaYw2c3UN6lR77bJGMi7M4k3bLOzxR+5wpow1cpPNU8kvqVw+jzbDQXzhnzLJuRIbNkfhJPt8wq/1znKH47kJZn+RWLk6hZPoyZkxMeRtNtasWaZOo0Ccevwi06dovk9Nn7x2H2vETqN88q37JjJL/ut4yDySQzfXYCdZuG41/xFvWbh/PpvERk2X7v03PoqIFn+4dRtt5VVP6X2bIj+YHbHDiSSsOnbqIPuEKVZtdZszExV5klq+Op0OgajoFXaNblJifO5n3M2ItlqxOp1jgEj6DrtO4axsmz6XmWzciQmTE3nprNbuERdJ0mHUPZvd/yOyUpWeK9ibFUbRSCZ4UbtOsezqlzeddpL5asTqBSoxs4B16leZdb9/3bZWTIfDz3NlWbZpVv0CGEXftyx2H0hBgqNryBS9BVWnW/xclz9n885EUGZLkIy516EhMTLZb0dOvHRkxMDCaTCV9fX4v1vr6+REREPLC9J06c4NKlSwwZMqSIe140dp+4BAYGWp0Y9NZbbxVLew7/HMeqGWH0GeHH3G1VCKymY8rAq8THWH/C7MFtcaydHU7vEb4s2l2N4Z+U4/Av8az7LBxQUtXjDb5avZbBg1+laa+bLNhelXqtXBjSdRPpxjQ8tLXy3bZbyTsA8Hdqj0qhs8Xu3teObQZmT0vgzXdc+O4Xb6pWVzPslVhiY0xWyy/8NInv1qcwfqob2371ofcrTowcepu/LuWO3cXzRr7bkEqV6vbfKbh5ayofTYnng9GuHNjpS60aGp5/OZroPOLw8ewE1qxLZtY0d47t92NQPyf6DYnhwqWcZGf+4iRWfZ3C7I/dOX7Aj8nj3Vi4NInlqx6cDBSXlFSJujU0LJqRe5zcmms3M+j+ShhtW+g5s6c8I4e689qYSHbtTzGX2bg1iTGTY5gwxpNTu8pRp4aWZ/qGEhWT+bB2o8i+35rC2Cm3GT/anSO7SlO7hoYeL0USlcfxMGVWHCvXJTHnY0/OHCjD4H4u9BkczbmLOT8+b46JYd+hNFYu8ubk3tJ0aKOjW+8IQsPtNw6btibz3uQYPhrjwYldZalTQ0PXvuF5/u0mzrrNirWJzJ/uxYWD5XitvysvDI7g7F1xGDYmir2HUlmzyIez+8rxVBtHnu4VbtdxeBTKlSuHm5ubeZk5c+ZDeZ+VK1dSu3ZtGjdu/FDqzy+7T1xOnjxJeHi4edmzJ6tXobjG17auiqFTb086vOBJuco63vi4LFq9gr3f37Za/p8zKVQLdqLNsx74ltVQv5ULrbp7cPl8KiChxJGffzjNgA9KU7OxM/6BWl4d04C582dz+d/LJBmv5bttcennScm4hYPSCT/HNjba47x99WUyL/R15LlejlSqombSTDd0egWbN1rvgfppcypDh7vQur2OcgEO9OnnRKv2OtassPwxTkmR+GBEHFM+ccfNze4PUZasSKL/S0683NuJalXUzP3EHUe9gnXfplgtv+mHVEa97UqnDnoCAxwYPMCZp9rr+fyLnDicOGWkS2cdnTvqKV/OgR7dHGnXRsfpc9YTZHvwTAcnpo314rkuzvkq/8XXCQSVV/PZZG+qV9Hw1qvuPN/NmfnL481l5n8Rx5CXXRnUx40aVbUsne2Do17B6m9y98zYi4XLExj0kgv9+7hQvYqGRbNKodcr+PqbJKvlN/yQwntvu/F0B0eCAtS8NsCVzu31LPwiax8NBokt21P5+CMPWjbVUTFIzUfvelAhUM2Kr63XaQ/mfxHP4JddGdjHlRpVNSyZ7Y2jXsGaPOKw/vskPhjhwTMdnKgQoOb1AW48096Recvigaw4bP4lhZkTStGqmZ5KQWomvutJxUAHvvjK/ntlrcm+c25RFoCQkBASEhLMy91DQXfz8vJCpVIRGRlpsT4yMhI/P7/7tjUlJYVvv/2WwYMH22bni8DufxW8vb0tJgb9/PPPVKxYkTZtHv4P870yjBL/XUqlTnMX8zqlUkHd5i78c9b6j3XVBk78dynVPJwUcTOdMwcSadDWFYDIpOMMf2sEresNpZrHm9TzmkidUmMJCqrI50sWkClb//HLy63k7QCUdX64l6oZjTJ/XsygWUuteZ1SqaBpSy3nz1j/cTUaZbRay3U6nYIzJy2HVT7+KIHW7XU0a3VPYTtkNMqcu5BB21Y5PVxKpYI2LXWcPG19uCg9HXRay7FpnU7BsRM5Z5aNG2o4eDidK/9lxfLiH0aOnUinY7uH35P2qBw7ZaBDK0eLdZ3aOnLsdFbXv9Eoc/pCukUZpVJBh1aOHD1tn8MDRqPM2QtG2t1zPLRvpeP4aevd90ajnOt40OsUHDmRtY+ZJjCZch8zep2CoyfsNw5nrPzt2rfSm/++90q3EgddvuKg5Hc7jcOD2Oo+Lq6urhaL9t4v2js0Gg3BwcHs3bvXvE6SJPbu3UuzZs3u29bvvvuO9PR0XnnlFdsFoJDsPnG5m9FoZN26dbz66qsoFNYnJaWnp+ca77OVpDgTkgncvSyHL9y8HIiLtt5V2eZZD156x4/xva/wfNXzvN7ub2o1cebFN7PGGG8Y1vHb8R/RGYPJMGhISL/Kz3u+ol/foRzYV/AJttmJi49jczRKjwJvn1/xtyVMJijlpbJYX8pLSUy09S7xFm10fLUihRvXMpEkmSOH0vh1RxrRUTnlt28z8NelDEZ94PrQ2m5LsXfi4O1l+VHy9lYSlUcc2rfVsmR5Ev9dzUCSZPYfSuPn7QYi74rDqOEu/K+HI43bROIdcIs2naN4fYgzvf7naLXOx1FEtAlfb8vjx9fbgcQkCYNBIua2CZMJq2Uio+xzaCCvNvt4qYjM43jo2EbPouWJXLlzPOw9aGDr9lQi7hwPLs5KmgRr+WR+PGERmZhMMt/8kMzx0+lERFqvs7hlx8HHyt8uIsp6mzu1dWTBF/FcvmpEkmR+PZjKlu0phN/5W7s4K2naUMv0eXHmOKz/Poljp9PyrFPIbfTo0axYsYKvvvqKv/76izfeeIOUlBQGDRoEQP/+/a322KxcuZKePXtSqlSpR93kXOx/AsFdtmzZQnx8PAMHDsyzzMyZM5kyZcqja9QDXDyWzPdLoxg2pQyV6zkScd3Il9NC2bgokt5v+yLJ6dToepY33tnGP2fScVArKVdZRfVmWv67VPD3S864TlzaH3joalLW+WmuJn5j+50qpHGTXZn0QQLd2kWhUEC5ABU9e+n58c7QUniYiU8mJ7BifSm0uif3jpCfTHVn5HtxNG4TiUIBQQEOvNTbkfUbc3rXfvzJwHebU1mx2JNqVdRc/MPI+EkJ+Puq6Nur+GbzC7b36TRP3no3hnqtQ1EooEKAA/16O/P1xpyhw5WLvHh9dAyVGtxCpYJ6tTX06unE2Qt5TwJ/3Myd6sXr70ZRq1UICgVUDFQzoI8La77NGVpas8iXoaOiCKh/A5UK6tfW0runM2cv2P9EZWskWYGiCFcVFeaKpN69exMdHc3EiROJiIigXr167Ny50zxh9+bNmyiVlidi//zzD4cPH2b37t2FbqstPVaJy8qVK3nmmWcoXTrve5yMGzeO0aNHm/+fmJhIuXLlbPL+Lh4qlCqIv2dyWUJMJh7e1kO5YV4EbXt68FTvrCw1sKqeNIPEkg9DePEtH5RKBf4BWqZ/U4m0VBOpyRKePmo+ffs6vuU0hWpnSPJPeOhqUs6l20NLXNw9lahU5JqIGxsj4XXPWVY2z1IqFn3pSXqaTHy8hI+vkrkzkyhbPit2f140Ehsj8WKXaPM2JhOcOm7km69SOHvFH5XKvhKaUnfiEB0jWayPjpZynW1m8yqlYv0qL9LSZG7HSfj7KZk8I4HA8jnH0MRpCbwz3IXne2T1sNSsrubWLRPzPk96YhIXP+/cvRCR0Zm4uijR65WoVApUKqyW8fWxz68uL0+V1TZHxeTuXcrmXUrFptW+pKVJxMZJlPZTMWF6HEF3HQ8VAtXs3uxPSqpEYpKEv68D/YZFERhg33G4t9cxMjoTP5884uCl4oc1/hZxGD/9NhXuikPFQDX7fixjEYeXhkUQFKB+qPvzsGRfHVSU7Qtj+PDhDB8+3OprBw4cyLWuatWqdnVF42MzVHTjxg1+/fXXB16GpdVqc4332Ypao6RiLUcuHMk5A5AkmQtHk6la33oXfrpBQnFPlLOT2XuPA52jCk8fNckJmZz9LYnGHfP3hOh7hSbvQpIzcNfWxEVdsVB1PIhGo6BGbTXHfs8545MkmeO/p1O3wf2/RLQ6Bb5+KjIzYc8OA+07Zc0HaNpCy5Y93vywM2epWUdNt556ftjpbXdJC2TFoV4dNQcP54yxS5LMocPpNAq+f+Kp0yko7Z8Vh5+2G3imk978msEgo7xnd5UqkCSeGE0b6tl32HJu2K+HUmkanHU8aDQKgutoLcpIksy+wwaaBdvnXB+NRkH9OhoO3HM87D+cRpPg+8/Z0umUlPF3IDMTtmxPpWvn3N8pTo5K/H0diIs38etBA92slLEHGo2CBlb+dvsPG8x/37zcHYcff0mme+fcifrdcdh9wGC1jPDkss903YrVq1fj4+NTrM9HAOjxqhcL3guhUm1HKtd15KfV0aSlSnR4wROA+WNuUspPTb/3/AFo1MGVbauiqVBDT5V6joTfMLJhXgSN2ruaf4jPHkpElqFMBS3hN4ys+SSMshV15joLyijFEZl6GH+ndpRzeZY/b8+zzc7fY8AQZ8aPiaNmbTW166lZuzIFQ6rMc72yvkzHvROHj5+KUWOzkscLZ41ERpioVkNNVISJxfOSkCV49fWsq1CcnJVUrmqZ5Tk6KnDzUFK5qv2eUb051IU3R92mfh0NDeprWLoimRSDxMu9s75MXx9xG39/FZPGZSWip86kEx4hUbummrAIE7PmJCJJMPLNnEnfTz+lY+7CJMqWUVG9qpoLlzJYsjyZl/vY5w8VQHKKxJVrOROzr9/M4NyldDzdlZQvq2b89BhCIzL5alHW1QvD+ruxeFU8H0yLYVAfV/b/nsp325L5aW1Oj+o7wzwYNDKS4Lo6GtfTsWBFHCmpEgP72O8cqBGvuTH0nWga1NXSsL6Gz1ckkpoq069P1t93yIhoSvs5MHV81hy0E2fSCYvIpG5NDWERJqbPiUeSYPSbOfu454ABWZapUlHNf9cyGT/tNlUqqenfO39XcBWHd4a58+rIKILramlUT8fCFQmkpMoMuBOHgW9HUsbPgekfZvVGHz+TRlh4JnVraQkLz2TqnDgkCd59y91c5+79qcgyVKmk5r9rGXwwLZaqldQM7ONirQl2rzhu+f8keCwSF0mSWL16NQMGDMDBoXib3LKbBwm3TXwzP4K4mEyCquuZtDoId6+sH9bocKNFD0uvt3xRKGD93AhuR2bg6ulAow6uvDzG31wmJUli7WfhxEZk4OKmotnTbrw8xh8HdeEPyptJ27ISF+cu/HV7ITK2n7z2zLN6bt+W+HxuEjHRWQnJF2tLmYeKwsNMFrFIT5dZ+GkSt0IycXRU0rqdlk/me+D6GFzyfD//6+FIzG2JGZ8lEhVtonZNNd+v8zIPFd0Ky0RpEQeYPjuB6zczcXJU8lR7HcsWelpc+j3rY3dmzE7k3fHxxMSa8PNVMfAVJ94fZb8/2KfOp9Hh+VDz/8dMjgGgfy8XVi/wIzwqk5DQnGHWoPJqflpXmjGTYlj4ZTxl/R1YPseXzu1yzp5793AhJtbE5NmxRESbqFdTw/YNZfDNY2jWHrzQw4noWBPTPo0jMtpEnZoatqz3NQ8VhYTeezzITJ0Vz7WbGTg7KuncQc+XC71wd8sZUklMlJg4M47Q8Ew83FX07OLI5LEeqIvwHfGw9erhTHSsiSmz44iIzqRuTS0/b/A3/+2y4pDT/vQ0mUmzbnP1ZibOjgqe7uDImkU+FnFISJL4aEYst8Iz8XRX8VxXJ6aN9bTrONyPSFwKRyHb08BVHnbv3m1+CFSVKlUKtG1iYiJubm5sOFcLRxfrY6v2QqnQUNV9GD6OzTgc9iomufCX+ClwoHPAbrQqT45FvE1k6m9UVkc/eMMSoLTq8U6UbMVVqX9woRIgXbbfe+M8amqFfX9HPgqJSRKlqlwjISHBplMNLN7jzu9S1Q1jUTkW/rYPptR0/nnpk4faVnv0WHyDd+rUKaubtIBJy+NGko2UcX4ad20NvPX3v6b+QWQyCUn6BYDyLj1t0DpBEARBKH6PReJSkkSkHgTAz6noN9i7mbQlqy7H1mhVhZsvIwiCIDwcRXpOURGvSHqcicTFzkSk7AOyko2i/nmSMv4jLu0iSoWass7dbNA6QRAEwVayko+i3Dm3uPegeIjExc7Epp3FaEpAq/LEU1e3yPXdSPoRgACX54pclyAIgiAUN5G42BkZExGphwDwd2xf5PpCk3eSKaXiognCUVO8T/QUBEEQctjqWUUljUhc7FD4neEif6eiJy6ZciqhyTsBcHcu/odjCYIgCFlkGywlkUhc7FC04SiZkgEndRncNNWKXN/1pB8AcHXsiuohPnhREARBEB42kbjYIZOcRpThdwD8nToUub749D+IT/8bpUKHm+OLRa5PEARBKDoxVFQ4InGxU2HJewEo7dTRJvVdT/wOAA/nfkDJPNgFQRDsihgrKhSRuNipyNRDmKR0XDRBNnlQ4q3k7ZikJLTqCjhpW9qghYIgCEKRFLW3RfS4CPYkU04hynAEgNLOnYpcn0k2kJCSNdfFw7l/kesTBEEQhOIgEhc7FpayB4AyNhouikv5GgAXfWccVKUfUFoQBEF4mMSdcwtHJC52LCLl4J3hooq4qCsVub70jH9ISTuCQqG6M9dFEARBKC5icm7h2O+z4W0sMtMVfcbjt7s3U04Q5NIKd8dnuRyzskh1+akSCE38miq65rg7vcy1uMXIGG3U0seIKrO4W2AXkqXCP338SaJVPH7fCw+LeFI2pMtScTdBeADR42Ln/kvaD0BFl6LfjA4gzvAr6ZmhqFWlKOUknl8kCIJQbLIn2BZlKYFE4mLnbiQfIUNKw01TFi9tVRvUaCIyaR0Afi4DbVCfIAiCUBhijkvhiMTFzmXKBm4kZ92MrpJr0W9GBxCd/C2SlIaTtjbO2oY2qVMQBEEQHgWRuDwGriRl3Yyukkt7FDb4k2VK8USnbAbA3+XVItcnCIIgFIK4AV2hiMTlMRCScoJ0UxJOam/8HevapM7IpNUAeDh2RutQ3iZ1CoIgCPknrioqHJG4PAYkOcM8Sbeya9FvRgdgyLhCvOEACoUSP5dBNqlTEARBEB42kbg8Ji4nZt2MroJzG1QKjU3qDE/8EgBv5xdRKV1tUqcgCIJQAGKYqMBE4vKYiDBcJCkjHI3KiUBn2zxrKDHtd1KMf6FSOuHr/LJN6hQEQRDyRwwVFY5IXB4bMv8m7AZsN1wEEJG4AgBf10EosE1PjiAIgpAPYnJuoYjE5THyb+IuAMo5NUKv8rRJnbEpP5GeGYpG5Y2X8/M2qVMQBEEQHhaRuDxGEjNCiTBcQqlwoLKrbR68KJNJRGLWowRKuw5FHBKCIAiPisIGS8kjfqUeM/8m7ASgqtszNqszKnkjGaY4dOogPB1tV68gCIJwH2KoqFBE4lIIB9aHMb79cYbX+Y1Pep3l2oXE+5bf+9UtJj19krfrHmZc22NsmvkfGemWD/KKi0xn1Xt/M6bJEd6ue5ip3U9x42JSrrr+S9pPppSOp7YC3rpqNtkfSU4lMmkNAKXd3izQtt9/nUjPFiG0rnKdV3uE8ce59DzLZmbIrFwQz/Otb9G6ynVeeTqUowdSLcr8sDaRl58OpX2tG7SvdYMhz4VzZH9qHjXajxVrkqnTJBy/Crfo2C2S02fzfnhlRobM7HmJ1G+eVb5lx0h+3W/5wEOTSWb67ATqNg3Hv+It6jcP59N5ich2fo/vFWuSqN0kDJ8KIbTvFsnps3kfDxkZMrPmJVC3eVb5Fh0j+HW/waKMySTz8ewEajcNw7fiLeo2D2P2vAS7j8Oy1YlUaRyCW9B1WnUN4+QD4jB9bhzVm2WVb9QxlN33HPNJyRLvToylcqObuFe4TtvuYZy6z2fNXnyxOokajUMpFXSTtl0jOPWAOMycm0DtZmGUCrpJ047h7LnneEhKlnh/YhzVG4XiVSGEDt0jOP0YxEGwLbtPXEJDQ3nllVcoVaoUer2e2rVrc+rUqWJrz6ntUXz/yX90eyuA8ZsbULaqE4uGXCIx1voP1YmfovhxzjW6vhXApF8a0u/jKpzeHs2WudfMZVISMvi07zlUDgqGr6jFpF+CeeGDCji65X5qrVFK5lryIQCqunWx2X5FJH2FSUrBSVMDd327fG2z56cUFnx8myEj3fnql9JUrqHhnf6R3I4xWS2/7LM4tmxIYswUT775tQzPvezC2GHR/HMp54vHx9+Btz7wYM1PpVmzrTTBzXW8/1oUV/+136dYb96aykdT4vlgtCsHdvpSq4aG51+OJjqPOHw8O4E165KZNc2dY/v9GNTPiX5DYrhwKWcf5y9OYtXXKcz+2J3jB/yYPN6NhUuTWL4q+VHtVoH9sDWV8XficGinH7VqqHnuPnGYNjuB1etS+HSaB8f3+zOonzMvD4nl/F1xmLc4iZVfJ/PZxx6cOODHlPHuLFiaxBd2HIfvtibz/pRYPhztzrFdpaldQ0P3lyKIyiMOk2fFsXJdEvM+LsXZA2UY2s+FXoOjOHcx53PxxpgY9h4ysGqRN6f3lqFDGz1deocTGm6/Tzr/fmsK46bEMW60G4d3+VOrhpqeL0XlGYeps+JZtS7rb33qQGkG93Om7+AYzl/MOR7eGnObfYfSWLGoFMf3+tG+jY7uvaMIs+M43Fcx9bgsXryYwMBAdDodTZo04cSJE/ctHx8fz1tvvYW/vz9arZYqVaqwffv2wr25Ddh14hIXF0eLFi1Qq9Xs2LGDP//8kzlz5uDh4VFsbfp1TSgtXvSn+fN+lK7kxEtTKqPWKTnyQ4TV8v+dTaRiAzcad/fBq6yOGi09adTVm+t39abs/vIWnv5aBsysSlAdV7zK6qnR0hPv8nqrdf6d8AsAlVw64KDQ2mS/TFICUUkbACjtNjxf23zzZQI9+rjQrZcLQZU1fDC9FDq9gp835e4pAtj5YwoD3nKjeTtHypRX83w/V5q107Phy5weq1YdHWnezpHyQWrKV1DzxnseODoquXSfM7XitmRFEv1fcuLl3k5Uq6Jm7ifuOOoVrPs2xWr5TT+kMuptVzp10BMY4MDgAc481V7P51/k/BifOGWkS2cdnTvqKV/OgR7dHGnXRsfpcxmParcKbPGKJAa85MwrvZ2pVkXN/E88cNQrWZtHHDb+kMKYt13o1EFPUIADQwY481R7HZ9/kXP8nDiVTpfOejp31BNQzoGe5jjYbyK7cHkir77kwoA+LlSvouHzWaVw1Cv46hvrn4sNPyTz/tvuPN3BkQoBal4b4MrT7fXM/yIBAINB4sftKcz4yJNWTfVUDFIz4V0PKgaqWf71/Xt7i9Pny5MY+JIz/fo4U72KmoWzPNHrlaz9xnrS+c0Pqbz7tiud7xwPQwe40Km9joVfZO2jwSCxdXsqH3/kTsumOioGqfnwXXcqBDqw4mv7TWTvqxieDr1x40ZGjx7NpEmTOHPmDHXr1qVz585ERUVZLW80Gnnqqae4fv0633//Pf/88w8rVqygTJkyRd37QrPrxGXWrFmUK1eO1atX07hxY4KCgujUqRMVK1YslvZkGiVu/pFE9ebu5nVKpYLqzdy5es76l1LF+q7c/CPJPJwUHWLg0qHb1Gqdc1XQ+X2xlK/lwvKRf/Je86NMf+40v20Kz7MdYannSDCGolU5E+TS1ib7BhCetAJJTsdF2wBXXfP7ls0wyvxzyUijFjrzOqVSQaMWOi6esZ5kGI0yGq3lB02rU3D+ZJrV8iaTzJ5tyRgMErUb2CZBszWjUebchQzatrKMQ5uWOk6etv7jmp4OunvioNMpOHYiJ26NG2o4eDidK/9lJSoX/zBy7EQ6HdvpsEdZcTDStlXO30mpVNC2pZaTp60fD+npoL0nDvpccdBy6HBarjg8ZcdxOHMhnfatck46lEoF7VrpOZ5XHIxyrjjodAqO3IlDpglMptyxuruMvTEaZc5eMNLuns9Fu1Y6TuTxuTAa5VyfC71OwdEHxEGvU5rLCA82d+5chg4dyqBBg6hRowbLli3D0dGRVatWWS2/atUqbt++zZYtW2jRogWBgYG0adOGunVt8/iZwrDrxGXbtm00bNiQF198ER8fH+rXr8+KFSvuu016ejqJiYkWi60kx2UgmcC1lOX9Tly8NCTGWP8wNu7uQ/e3A/ns5fO8Wes3Jjx1kiqN3Xnm9ZznA8WEGDj0TRg+AXre/rI2rfuUZtP0/zj6o/VeHJD5JyGrm666Wzeb7BtAhimaqKRvACjjNuK+ZePjTJhM4Omlsljv4a0iNtp6V3DT1nq++TKRm9cykCSZ478ZOLAzNVf5K38baVfjBq2r3GDWh7HM+sKHoMr2eY+Z2NsSJhN4e1l+lLy9lUTlEYf2bbUsWZ7Ef1ez4rD/UBo/bzcQGZVTftRwF/7Xw5HGbSLxDrhFm85RvD7EmV7/c3yo+1NY2XHwued48PZWERktWd2mQ1sdi++Kw75Dafy03UDEXXEYfScODdtEUCoghFadI3ljiAu9/uf0UPensGJuZ30ufLwt4+DrpSIyj+OhYxs9C5cncOVOHH49aGDr9lQiorKGP1yclTQN1jJzfjxhEZmYTDIbfkjm+Ol0IiKt11ncYvOIg4+XMs84dGijY9HyJHMc9h00sO2u48HFWUmTYA2z5icQficO3/6QwvHT6UTaaRweRJaLvgC5fvPS0/M6eTRy+vRpOnbMuSpVqVTSsWNHjh49anWbbdu20axZM9566y18fX2pVasWM2bMwGQqvpjbdeJy9epVli5dSuXKldm1axdvvPEGI0aM4Kuvvspzm5kzZ+Lm5mZeypUr9whbnNs/x+Mpm9mFM38dYMZPHRi2qAYXD97mlyU3zGVkGcrXcKHn6CDK13CmVW9/Wr7ox6Fv8+51+SdhB5Kcib9jHdw1ATZrb3jiF0hyOq66JrjqmtmsXoBRkzwpF+hAnw6htKp8gzmTYun2ojNKheUZVEAFNV9vL83KLf787xVXpo6J4dpl+x0aKKhPprpTIciBxm0i8QkM5f0P43mptyPKuz6NP/5k4LvNqaxY7MmBnb4sme/B58uS+WaT9WGXx9Gsqe5UDFLTsE0EXoG3eO/DOF7u7YRSmXM8bL4Thy8Xl+LQTl+Wzfdk0bIkNjxBcZgzrRSVgtTUaX0Ll4DrjPowlv69nS3isHKRN7IMFRqE4Bp4nSUrE+jV08nimHnczZ7mQaUgBxq0DscjIIQxH8bxyj3Hw4pFpZBlqNwgDM/AEJauTOLFno4oHtc42GiOS7ly5Sx+92bOnGn17WJiYjCZTPj6+lqs9/X1JSLC+ony1atX+f777zGZTGzfvp0JEyYwZ84cPv744yLtelHknv2ZDzt37sTZ2ZmWLbNuPb948WJWrFhBjRo1WLx4sc3moEiSRMOGDZkxYwYA9evX59KlSyxbtowBAwZY3WbcuHGMHj3a/P/ExESbJS/OHmqUKnJNxE2KMeLqZb1H4KeF19n+/VoqB9Yh1rE97kE7MRpMrJt4mWdeL49SqcDNW4N/Jcszab+KjpzZHZNnW1JNsdxIPkqQSytquHXnSPTnRd9BwGiKICppI36u/SnjNorENOtZuLuHCpWKXBNx46JNlLrnLCubRykVs1f4kp4mkRAv4e2rYvEncZQub3kYqjUKygWqAahWW8ufF9LZuCqRsTO9bLCHtlXKU4lKBdExlr0K0dFSrrPNbF6lVKxf5UVamsztOAl/PyWTZyQQeFccJk5L4J3hLjzfI+u4qFldza1bJuZ9nkTfXvbX25Adh3snXkZHm/D1tv6r4lVKxQZzHEz4+6mYNCOBwPI5cZs4LZ5Rw114wRwHDSG3Mpn7eSIv2WEcvDyzPhf39rZFxpjwzeN48C6l4rvVvqSlScTGSZT2U/HR9DiC7joeKgaq+XWzPympEolJEv6+DrwyLIqggEJ9hT90pfKIQ1SMdN84fLva2+J4mDg93uJzUSFQza7NvqSkSiQlyfj5qug/LMZu4/CohISE4Oqa87w5rdZ2Q+uSJOHj48Py5ctRqVQEBwcTGhrKp59+yqRJk2z2PgVRqDz1vffeMw/BXLx4kTFjxtClSxeuXbtmkTQUlb+/PzVq1LBYV716dW7evJnnNlqtFldXV4vFVhw0SsrXdOHvo/HmdZIk8/exeCrUc7G6jdEgcfRC1gMSA51bAOScQdzJlivWdyXymuXlj5HXDZQqff9x/L/itwFQxe1pmz14ESAsccmdXpdGuOpaWC2j1iioWkvDySM581MkSebkkbQHzkfR6pT4+DlgyoQDO1Np/dT9hz9kKWv82x5pNArq1VFz8LBlHA4dTqdR8P3/JjqdgtL+KjIz4aftBp7plDMvwmCQUd4z706pAsn6qEuxy4pD1rycbJIkc/BwOo2C7388ZMXBgcxM2LbdQJe74pBqkFHc0yOnVCnsOg4N6mjZf8/xcOCwgSYPjIOSMnfi8OP2FLp1zv25cHJU4u/rQFy8iT0HDVbL2AONRkH9OhoO5IpDGo3z9bnIisPW7Qa6dc59kYKToxI/XxVx8RJ7DxroaqdxeCAbTc699zcvr8TFy8sLlUpFZGSkxfrIyEj8/PysbuPv70+VKlVQqXISzurVqxMREYHRmP+ecKPRyD///ENmZtGvACtU4nLt2jVzQvHDDz/QrVs3ZsyYweLFi9mxY0eRG5WtRYsW/PPPPxbr/v33XwICbDc0UlAdB5bh8HfhHP0xgvD/Uvlm8mWMBonm/8v6o6/+4G9+nJNzqXPtdp4snfUtAGUcG3H5WCrbFl6nTrtSKFVZB12HgWW5ej6JHctuEnXDwImfoji8KZw2L/vfty0hqSdJNIajVblQ0aW9zfYxwxRpvsKorNuoPMv1HeLGtm+S+OX7ZK5dMTL7w1jSUmW6vpiVxE0ZHc2SWXHm8pfOprN/ZwqhNzM4dyKNdwZEIknwyrCc5HLJrDjOHk8jLCSDK38bWTIrjjPH0ujc09lm+2drbw514esNKXyzKYV/Lmcwemw8KQaJl3tn9Qi8PuI2U2YmmMufOpPOT9sNXL+RyZHj6bzwcgySBCPfzEl+n35Kx9yFSez61cDNkEx+3mFgyfJkuj5jn5NSAd4a6sJXG5LZcCcOo8bGkWKQeOVOHIaNiGXyzHhz+VNn0tm2PZVrd+Lwv5ejkSSZkW/mHA/PPKVjzsJEdv1q4EZIJj/tSGXx8iS6PWP9ijt7MOI1V1ZtSGLtpiT+vmzk7bGxpKTK9O+T9fd9dUQ0H824bS5/4kwaW7ancPVGBoePp9H95QgkCca86WYus+dAKrv3p3LtZga/HjTQ+YUIqlZSM6C39RMmezD8NRfWbEhm/aZk/r6cwcixcaSmSrzSJ+uzPHREDJNmxJvLnzyTztY7x8Pvx9Po+XIUkiTzzl3Hw68HDOzZb+D6zUz2HTTQ5YVIqlRS06+3/fW+5YdCLvpSEBqNhuDgYPbu3WteJ0kSe/fupVkz61MDWrRowZUrV5DuOlv4999/8ff3R6N58AlzamoqgwcPxtHRkZo1a5o7Ht5++20++eSTgu3AHYXqX9NoNKSmZvUQ/Prrr/Tv3x8AT09Pm06GHTVqFM2bN2fGjBn06tWLEydOsHz5cpYvX26z9yiohl18SLqdwU+LbpAYbaRsdWfeXlHLPFR0Oyzd4gyxyxsB7Fh2k9CwW5QpXZZbe8tSo2UoPd4JMpcJrO3C64tqsGXuNX5ZcgOvsjpeHFeRJt19c72/JZm/ErbRxHsYNd178m/iTpvtZ1jiUnyc++KiC8ZN14aEtIO5yjzV3Yn42yZWzIsjNtpE5eoa5n3lax4qigjN5O6TZWO6zBefxRN2MwO9k5Lm7fRMmueFi1tOJh8Xa2LK6Ghio004uyipWE3D/K99adLKfn+o/tfDkZjbEjM+SyQq2kTtmmq+X+dlHiq6FZZpMRchPR2mz07g+s1MnByVPNVex7KFnri55RSa9bE7M2Yn8u74eGJiTfj5qhj4ihPvj7JdD6KtPd/DkdjbJmZ8lkBktInaNTVsXud9VxxMFnFIS8+6uVx2HDq117F8YSnc74rD7I89mD47gTHj44iOlfDzVTLoFWc+sOM4vNjDmZhYiamfxhEZbaJuTS3b1vuah0hCQjNzxWHyrDiu3czE2VFB5w6OrFrojftdn4uERIkJM+MIDc/E011Fzy6OTBnriVptv7d8f6GHEzGxEh9/mnU81Kmp4cf1PnfFwWQxfyUtXWbqrHjz8dC5g44v7zkeEhIlJs9MIDQ8Ew93JT26ODJprLtdx+G+inr320JsO3r0aAYMGEDDhg1p3Lgx8+fPJyUlhUGDBgHQv39/ypQpY54n88Ybb/D5558zcuRI3n77bS5fvsyMGTMYMeL+F3BkGzduHOfPn+fAgQM8/fTT5vUdO3Zk8uTJjB07tsD7oJALcQvKZ599FqPRSIsWLZg2bRrXrl2jTJky7N69m+HDh/Pvv/8WuCF5+fnnnxk3bhyXL18mKCiI0aNHM3To0Hxvn5iYiJubG/NONUfvXHzjoC18RlLL43/8Ff8zhyI/tVm9OpU7r1T4DpVSw+Ybw4hO+zvPsvV0eQ+xWVPOfRyl3V4jJf0ilyJ68KTcX7qq+jG9WZWNKUvoc07upVWU7PkRd8vk8bw6x5YSkyRKV71FQkKCTacaWLzHnd+lcvOnotQXvhdVMqQR8s7EArf1888/59NPPyUiIoJ69eqxcOFCmjRpAkDbtm0JDAxkzZo15vJHjx5l1KhRnDt3jjJlyjB48GA++OADi+GjvAQEBLBx40aaNm2Ki4sL58+fp0KFCly5coUGDRoUqrOjUJ/Yzz//nDfffJPvv/+epUuXmm9Es2PHDouMyha6detGt262u+S3uFxPPkwtj/8R4NwcRaQSGdsM0qeZ4rmafIDKrp2o6d6TAxGF63qzJjxxGb4uL+GkrY2n4zPcTi2+OyUKgiA8cQp5EzmL7Qth+PDhDB9u/UajBw4cyLWuWbNmHDt2rFDvFR0djY+PT671KSkpueav5Veh5riUL1+en3/+mfPnzzN48GDz+nnz5rFw4cJCNeRJF556jnRTEo4Onvjqa9m07j/itgBQ0aU9OpXb/QsXQKYUR3jilwCUdX8XReHyXEEQBMGaEvCQxYYNG/LLL7+Y/5+drHz55Zd5zqt5kEIlLiqVyurtgWNjY/PVdVQSSZi4nvw7AEHOrWxad2TaH0QZ/sZBqaW6W3eb1h2RuJIMUwx6dRDezi/atG5BEAThyTZjxgzGjx/PG2+8QWZmJgsWLKBTp06sXr2a6dOnF6rOQiUueU2LSU9Pz9cs45Iq++GIQS6tbV73pfgfAKjh3gMltkseTXIyoQmLASjj9g5Khf1OkhUEQXislIAel5YtW3L+/HkyMzOpXbs2u3fvxsfHh6NHjxIcHFyoOgvU9589DKRQKPjyyy9xds65RNVkMnHo0CGqVatWqIaUBLdSTpIhpeKi9sNbV+2+E2kL6r+k/TT1fh1ntQ9BLm34L2mfzeqOStqAn8sgdOry+LkOJizBNje7EwRBKNGK4aqiRykjI4Nhw4YxYcKEBz6upyAKlLjMmzcPyOpxWbZsmcWwkEajITAwkGXLltmscU8ak2zkZvIxKrq2p4JLW5smLpKcwZ/xW2no9Sq1PV60aeIiY+RW/GdU8l5IaddhRCV9S6aU9119BUEQBEGtVvPDDz8wYcIEm9ZboKGia9euce3aNdq0acP58+fN/7927Rr//PMPu3btMl9SJVj3X9J+ACo4t7V53X/EbyVTSsdXXwNfXU2b1h2b+jPJ6edRKZ0p6z7SpnULgiCUSDa6c64969mzJ1u2bLFpnYW6TGT//v02bURJEpJynAzJgKvG3+bDRWmmeC4n7qG6ezfqePZmT9hEm9UNMjfjZlDDbyM+zn2JTPoaQ8ZlG9YvCIJQshTm7rf3bm/vKleuzNSpU/n9998JDg7GycnyLsf5vZHd3Qp9feutW7fYtm0bN2/ezPW8grlz5xa22ideppzOjeQjVHLtQEWXdjZNXAAuxn1HdfduBDm3wlVdhsSMUJvVnZR+gtupO/F0fJoAjwn8HdXfZnULgiAIT56VK1fi7u7O6dOnOX36tMVrCoXi0SUue/fu5dlnn6VChQr8/fff1KpVi+vXryPLMg0aNChMlSXKf0n77iQu7TkWvQxbzrCKM17nRvJRApybUcezN4cjbZtE3oybibu+HW76Vrjr2xNvsN1cGkEQhBLlCZ+cC1lTTGytUJdDjxs3jnfffZeLFy+i0+n44YcfCAkJoU2bNrz4orjXx4OEpJwg3ZSMs9oHP31tm9d//vY3AFR1fRqdyt2mdadn3iQicTUA5T0+RIHapvULgiAITyZZlvO8nUpBFCpx+euvv8wPVnRwcMBgMODs7MzUqVOZNWtWkRv1pDPJRq4n/wZAJZcONq8/3HCeSMOfOCi11HL/n83rD0tYjNEUjV5dAV/XgTavXxAEoSRQUMSnQxf3DuTT119/Te3atdHr9ej1eurUqcPatWsLXV+hEhcnJyfzvBZ/f3/+++8/82sxMeIy2fy4kvgrABVc2tr0hnHZzt/eAEAtj/+hVjratG6TnMytuKwHRZZ1G4Fa5W3T+gVBEIQnw9y5c3njjTfo0qULmzZtYtOmTTz99NO8/vrr5lusFFSh5rg0bdqUw4cPU716dbp06cKYMWO4ePEimzdvpmnTpoVqyMN2K90Trdp+hjVupd+gtV8cLmoPtJoO/JN0+sEbFUBI+l/UK3ULH11Z/J37cDh6K54OyTar/2bCPtycL1FKV4tSbpM4EWXLK5gerqrq3I+rKImkx2GA/BFIl8XTwrOpCvnQO6GQiukhi4/SokWLWLp0qXmUBuDZZ5+lZs2aTJ48mVGjRhW4zkL1uMydO9d8v5YpU6bQoUMHNm7cSGBgICtXrixMlSWOhMSF+KxnF9XzaGPz+mVkDkVvBqCl17M4KGz9KAaZszGzkGWJAJeueOnq27h+QRCEJ1wJuOV/eHg4zZs3z7W+efPmhIeHF6rOQiUuFSpUoE6dOkDWsNGyZcu4cOECP/zwAwEBAYVqSEl0Lv4AANVdG6G18XAOwPm437htjMRF7UEjz442rz8u/U+uJmYlRw28x4qnRwuCIAgWKlWqxKZNm3Kt37hxI5UrVy5UnYX+pYmPj+f777/nv//+47333sPT05MzZ87g6+tLmTJlClttiRJmuEpk2k18deWp5dbs/+ydd3gUVReH3+2b3nuvJAFC6L03BaSIggiofIoFO1ZQUUBFEBFBbCiCdFGK0pGO9B5aaCG9103b/v2xkBBIBFI3MO/zzJMns3fuPXN2duY39557Lsdyttdo/Qb07Elfw2DvF+niOoRtCb9gMGrufOA9EJ09D2/rntjJgwmxH8HF3KoHXAkICAg8UDwA06EnT57M8OHD2bNnDx07dgTg33//Zfv27RUKmruhSj0up0+fJjQ0lOnTpzNz5kxyc3MBWL16NRMmTKiSIQ8qJ3J2A9DcoVut1H88Zwe5mkxsZU4E2Ayq8fq1hnxOZX0DQGOHF7CUetR4GwICAgL3I9WaUVTNrLt1xdChQzl06BDOzs6sXbuWtWvX4uzszOHDhxkyZEiV6qyScBk/fjzPPPMMly5dQqlUlu7v168fe/bsqZIhDyqncvdgMOoJsG6Mo9y9xuvXG3XszVgDQJjDM4hrIe9KnOpvMoqPIRVb0ML5/RqvX0BAQECg4dKyZUuWLFlSmj13yZIlNG9e9bjIKgmXI0eO8MILL9y238vLi9TU1Cob8yCSr83icsFpAFo4dK+VNo5m/0OeJgtLqTsBtoNrpY1jGZ+jN2rwsOqEt1XvWmlDQEBA4L7iAQjO3bhxI1u2bLlt/5YtW9i0aVOV6qyScFEoFOTn59+2/+LFi7i4CDk97pVj2abYluYO3RBV7Sv5T3RGLbsz/gQg3OF/iEWKGm9Dpb3G+ZwFADR3fgeZ2LbG2xAQEBC4r3gAhMv777+PXq+/bb/RaOT996vWQ1+lp+TAgQOZMmUKWq0WMC2UFB8fz3vvvcfQoUOrZMiDzPn8wxTpVNjLXQiyjqyVNo5m/0ORNhULqStBtrXzHcXkLCRfcxWl1IlmTm/UShsCAgICAg2HS5cuERERcdv+sLAwLl++XKU6qyRcvvrqKwoKCnB1daW4uJiuXbsSHByMjY0Nn332WZUMeZDRG3WczDXFBrWqhWnLN9o4m/MTYOp1kYpqfvq1AS1HMz7FaDQQYDsINwvzTEYoICAgYA48CMG5dnZ2XL169bb9ly9fxsrKqkp1Vkm42NnZsW3bNtavX8+cOXN45ZVX2LhxI7t3766yIQ86R7NNSwCE27bGSmJXK23Eqdaj0sShkDgQYv9krbSRVXKKy3krAWjp8mGtCCQBAQGB+4IbmXOrs5k5gwYN4o033ii3NNDly5d56623GDhwYJXqvGvh4ujoWLoO0f/+9z9UKhUdO3Zk3LhxvPvuu/TqVTs9BQ8KaSVxJBRdRCqW0cKxR620YUTPmezvAWhkPxq52L5W2onO/pYCbSJWMg8ihSEjAQEBgYp5AGJcZsyYgZWVFWFhYQQEBBAQEEBYWBhOTk7MnDmzSnXetXDRaDSlAbmLFi2ipKSkSg0KVM6RrK0AtHbsjaiW1v1MLPyHHPUFZGJrwh3+Vytt6I0lHE2fCkCQ3VDcLNrXSjsCAgICAuaNnZ0d+/fvZ8OGDYwbN4633nqLnTt3smPHDuzt7atU510Ll/bt2zN48GDGjBmD0Wjktdde43//+1+F2/3O0RVXmffwFqa3XsfCkbtIjs7+z/KHl1zmh4HbmNFmHXP7bGbbl6fRqcuirPf/EsOvT+7k2RYfkJuXi5PCHZfCqqVCvjNGorPmAhBsNwxLqWe1atu8OIOXu55hZMQJJg69wOVThQBklBzlUu4KAFq5foRMbA3Ahl/Teb33WUY2PsFLnaJZ+GkiGrWhtL7iAj0LP01gXJczjGx8gg8fj+Hy6cJq2VgXzF9YQGTbFNwDE+k1II1jJyrPUKzVGpnxdT7NO5jKd+qVxj87y78I6PVGPpuRR7N2KXgEJdK8Qwpffp2P0Wjer1iCH0zMX6iiadtkXAMT6DEgjWMn1JWW1WqNTP86j2YdTOU79krln53F5cro9UY+nZFH03bJuAUl0qxDMjO+zjN7P/z4q4qINkk4BcTTrX8qR+/gh2mz8mjaPhmngHja9UphWwV+mDIjl8Ztk3AOTKBp+2S+aAB+qIz7OcblwIEDrF+/HjBN4OnTpw+urq7MnDmToUOH8vzzz6NWV349/Bd3LVyWLFlCv379KCgoQCQSkZeXR05OToVbTfHJJ58gEonKbWFhYTVWf1U4tzmR7TOj6fRCGP9b0R3XRnaseGk/hVkVfwFnNyaw85uzdH4xjOfX9KL/J805vyWJXXPOlpaJP5pJy+GBPP5ja46l7wAgMLcDmqLaWbU2rfggqUUHEYtkNHV8pcr17N+QzW+fJ/LYqx5MXxeGX5gFn425TF6WabZZdPZcVJp4LKVuNHd+l31/ZbPsyyQef9WDr7dE8OI0Pw5szGH5zOTSOn+YGMfpfSpemenHVxvCiexkw9SnLpGdWrNLFdQkq9cV8eHkXN4bb8uuzW40iZAzdGQGGZm3TwEE+HRGHguXFDB9qj0Hd7ozZrQVo5/L5PSZsnOcPU/Fgt8KmfGpPYd2ufPJRDvmfK/ipwU1t8J3TSP4wcSf64qYeN0Peza70yRCxpD/8MPUGXn8uqSQL6c6cGinB2NGWzPyuSxO3eSHr+ep+OW3AmZ+6sDhXe5MnmjPN9+r+NGM/fDHukImTM5hwng79m3xoEmEjMFPppNeiR+mTM9lwRLTOR7d5cmzo60Z8Wwmp6LL/DBrXj4/Lyrgq88cObbbgykf2DP7u3y+/8V8/fCf3MdDRVOmTOHs2bLnXHR0NGPHjqV37968//77/P3330ybNq1Kdd+1cHFzc+OLL75g1apV+Pr6snjxYtasWVPhVpM0btyYlJSU0m3fvn01Wv+9cnjxZaIe9afZYD9cgmx5+MMopEoJp9Zeq7B84slsvKOcaNzPB3svKwI7uBHxkDfJZ8oE3hPfdyRykB8uwbZEG3YB0K9Pf7TxNb2icxmns77BaDTga9MXR0WTKtWxfkE6PYc70/0xJ7xDLBg71Re5hZidq7IA05DR4fRJGI16/Gz64ybrRaOW1nQa6Iirt4JmnW3pOMChtEdFU2Lg0JZcRr3nRUQbG9z9lQx73RN3PwVbl2XW2LnXNN/NV/HUk1aMHG5FWKiMWV/YY2khYsmKinuKfv+ziDdftaVPTwv8/aQ8+7Q1vXtY8O2PZTffw0c19OurpG8vC3x9pAwaYEn3rkqOndTW1WndM4IfTMybr+LpJ60ZNdyasFAZs79wwNJCzOJK/LDyz0LeetWGPj0tCPCT8tzT1vTuoeTbH1WlZQ4fVdOvrwV9e1ng5yNlcKkfzFfQf/uTimeetGb0E9aEh8qYM90RCwsxi5dXLDKW/1nE26/a0ve6H8Y+bUOfHkrm/FiWM+zQUTUD+lrw0HU/DBlgSY+uSo6drNqbu0DtcfLkSXr27Fn6/4oVK2jTpg3z589n/PjxzJkzp27XKoqNjeXkyZNMnDiR5557rtww0bPPPlslQypDKpXi7u5eujk7O9do/feCXmsg5Xwu/u3KkuyJxCIC2rmQdLri4SLvKEdSz+eWDiflJBZyZV8qQZ0rTu+foU7kQuYJJBIJfSIfrfmTuE6e5iLXVH8D0Mx5/D0fr9MYuHqmiKYdbUr3icUimnaw4eKJsht0tjq6NDHdG8/NpCTboXQ4KS1ezYndeTTvappFpdcZMehBpigf3yNXirlw1DzfqDQaIydPa+nWuWzpC7FYRNdOSo4cq/iholaD8pZzVCpFHDxcdvNt00rO7n1qLl+53nt1VsPBw2p6dVdijgh+MGHyg4ZuncuSPIrFIrp1UnDkWMUPV7UaFLf4weI2PyjYs6/kNj/0NmM/nDitofst10P3zkoOV3I9aDTG264HC6WIAzf5oW0rBbv2lXDpJj8cOKymTw+LWjiLOqC6w0Rm3OOSk5ODm5tb6f+7d+/m4YcfLv2/devWJCQkVKnuKq0OPWXKFCZPnkyrVq3w8PBAJKq9KVmXLl3C09MTpVJJ+/btmTZtGr6+vpWWV6vV5cbNKsrwW1WKctQY9UasnMpnnrVyUpIVW/GDtXE/H4pyNPz2jClPi0FnpPnjAXR8rlGF5Y0GI3O+nsN3n/1K1+D+HDq/Dp2xdt4uz2R/h491H5yVzfC26k1i4ba7PjY/R4dBD/ZO5S8he2cpyVfLxymcy/kZd8v2OCqbsG7jUpqFd8VoMKDXQe8nnXl0nEnEWVhLCG1uxZ/fpuIVpMTeWca+v7O5eKIQd7+az/ZbE2RlG9DrwcW5/DuAi4u49OZ6Kz26KfjuJxUd2soJ8Jeye5+a9RuL0RvK7kJvvmKDqsBIm65pSCSg18OH79ky7FHznF4u+MHEDT+4OkvK7XdxkXDxSsVDvz27KZn3k4qObRUE+EvZtU/N37f4YfwrNqgKDLTqmlrqh4/es2PYo+aZfiIrW2/yg0t5P7g6i7l4ueLroWdXJXN/UtGxnYJAfym79pbw1y1+eOsVW1QqIy26pJT64eP37Rhupn64I9UVH2YsXNzc3IiNjcXHxweNRsPx48eZPHly6ecqlQqZrGpr51Wpx+X7779n4cKFHDp0iLVr19baUFHbtm1ZuHAhmzdv5vvvvyc2NpbOnTujUqkqPWbatGnY2dmVbj4+PjVmT1WIO5LB/l9ieOiDKP63ojtDZ7Xlyt5U9v14ocLymz8/xcrFf5JdnI6V1I6m9p1qzbYSfSYxuYsAiHR6rVaWAgAwouNQ+kdodEVEBHZixcapTF8XztvfBXJ8Zx5/fJtSWvaVmf4YjfBixzM8GXGCTb9l0HGAA+KaXwmh3vhiij2BAVLadE3D1T+Jdz/I5cnhluXOcc3fxaxaXcT8eY7s2uzGd7Md+PaHApb/bv6ByneL4AcT06fYExQgo1XXVJz9E3nngxxGDrdCLC57IVx93Q8/z3Niz2Y3fpjtyNwfVCy7j/wwY6oDwQFSWnRJwcEvgbc+yGHULX74868iVq4uZME8J/Ztceenb5yY84OKpb+bZ4+suTJv3jz8/f1RKpW0bduWw4cPV1p24cKFt8Wa3ry4cmX069eP999/n7179zJhwgQsLS3p3Llz6eenT58mKCioSvZXqcdFo9HQoUOHKjV4L9zcrRQZGUnbtm3x8/Pj999/r3RIasKECYwfXzb0kZ+fX2PixdJBgUgiui0QtzCrBCvnih/6u+edp8kAH6Ie9QfANcQObbGOjVNP0nFsI0Q3/Si3fH6Ky3tSGb2gM4dzt/CQxWg6OPfnRM7OGrG/ImJyFxNgOxgrmSeN7J/ifM78uzrO1kGKWAK5WeXfInMzddg7366iC7TxTP3iHaZ+OI8hPd5lR9J5fBudo6RIz08fxvPoOHfEYhHufgomLw+lpEhPcYEBB1cZX792FVcf8+xxcXIUI5FARqah3P6MDMNtb5s3cHaSsHSBMyUlRrJzDHi4i/nk8zz8fct+jpOm5vHGKzYMHWTqWWgcLiMxUc/X36oYMcz83i4FP5i44YdbA1AzMvS4uVSsvp2dJCwr9YMeD3cJH3+eh79vmd8mTc3lzVdseKzUD3ISEnXM+jafJ83SDxKTHzLK+yE904BbJdeDi5OEFb+6lPPDpM9yy10PH07NZfwrtjw+2HTOTcLlxCfqmDk3n5HDrGvvhGqLeuhxWblyJePHj+eHH36gbdu2zJ49m759+xITE4Orq2uFx9ja2hITE1P6/92MskydOpVHH32Url27Ym1tzaJFi5DLy+I2FyxYQJ8+fe79BKhij8tzzz3HsmXLqtRgdbC3tyc0NPQ/1zdQKBTY2tqW22oKiUyMR7g91w5llO4zGoxcO5SBV6RjhcfoSvS3fckiien/GzP4jEYjWz4/RcyOZEbO74S9txVHs7ehMajxtAjE3+r2dR5qCr2xhFOZswEIs38GC2nFsTe3IpWLCWxiyZn9Zb1fBoORM/tVhDav+Ea6dMWv7Dv6F2KRlHZu05CKrRFf98WtP0ClpQQHVxkFeTpO7VXRupf9vZ5anSCXi4iKlLF7X9nwmMFgZM8+Na1b/ndwtVIpwtNDgk4Hf28s5uE+ZeP0xcVGxLfcG8QSMBgwSwQ/mDD5wRSXcwODwcjufWpat/xv8W3ygxSdDv7aWEy/m/xQVGy87T4ilojM2g/NI+XsuuV62LWvhDZ3dT2Y/LBuYzED+t50PZQYb+t9lUjK7qUNjfqYDj1r1izGjh3LmDFjiIiI4IcffsDS0pIFCxZUbqdIVC7W9ObYlcpwdnZmz549pbONhwwZUu7zVatW8fHHH9/7CVDFHpeSkhJ++ukn/vnnHyIjI28bp5o1a1aVjLkTBQUFXLlyhdGjR9dK/XdDm9HB/P3RMTwa2+PZxIHDS66gLdYTOdgPgL8+OIqNqwXdX28MQHBXdw4vvoxbmD1eTR3ISShkz7zzhHRxL31ob/n8FGc3JfLY7HbIraQUZJZQQAnHnHfQ3u1hOjkP5FrhuVo7p8TCbaQXP4arRSuaOb3JwbT37uq4Af9zZd47cQQ2tSQ40pKNCzNQFxvo9pgTAN++fQ1HNxlPvuMFQMsedjw+6BnOnj+No603wbzLS18PpWUPu1JfnNyTD0YjnoFKUuPULJ6ehFeggm5DnWrn5GuAcWNtGPdmNs0j5bRoLuf7+QUUFhsYOdwk4F58LRsPDwkfTzAFIR89riYl1UDTxjKSU/VM/yofgwFeH1cW6PxQbyWz5qjw9pIQ3kjG6TNavvupgJFPmGdsBwh+uMHLY2146c0smkfKadlcznfzVRQWGxh13Q8vvJaFh4eETybYAyY/JKfqadpYTkqqnmlf5WEwGHl9XNlL18O9lXw1Jx8fLwlhjWScPqNh3k8qRj1hfr0tN3jleRteeCOLFs3ktGyuYN58FUVFBkY9YeoZGftaJp7uUiZPtAfgyHU/RDaWk5yq4/PrfnijnB8s+HJOPj5eUsIbyTh1RsPcH1U8ZcZ+MCc0Gg3Hjh1jwoQJpfvEYjG9evXiwIEDlR5XUFCAn58fBoOBFi1a8Pnnn9O4ceO7atPOruIlbBwdK37ZvxuqJFxOnz5NVFQUAGfOnCn3WU0G6r799ts88sgj+Pn5kZyczMcff4xEImHEiBE11sa9EvGQN0U5avZ8d57CTDVujewY/l0HrJ1MY375qcXlhn86jW2ESAR75p1DlV6MpYOC4K7udHulrBfl+O+xACx9dm+5ttTzlLQf9zCNbFvhrPAkU51MbXEy80t6eS/Fx7oXsfntSCs+eMdjOvR3JD9Lx++zU8jN0OIfYcHEBcGlQ0WZyRpEN70dDX3ZA5EolVFPPcm6VdtpGtCfDz55FZuoraVlilR6ls9MIitVi7W9hLZ9HRjxlidSmfmuyfHoIEsysw18PjOf9Aw9TRvL+GOJc+kQSWKyrtxboloNn83I41q8DitLMb17KPlhjiN2dmWFpn9qz+cz8nl7Yi6ZWXrc3SQ8M8qKd9+suR7Emkbwg4mhgyzJytbz+cw80jJMgmT1Epeb/KAv54cStSm53A0/9Omh5Kc5Ttjf5IcZnzrw2Yw83pqYQ0aWAXc3MWNGWfOeGfvhsUFWZGYZ+PRLkx8iG8tZs9S1dKgoIUlfLn6lRG1kyvTcUj/07ank51v8MPNTB6bOyOPNCdlkZBnwcJPwv9HWTHizdtZ3ayjcOglFoVCgUNzew5eZmYler7+tx8TNzY0LFyqOu2zUqBELFiwgMjKSvLw8Zs6cSYcOHTh79ize3t41dxL3gMhoxikHn3jiCfbs2UNWVhYuLi506tSJzz777J4CevLz87Gzs+OtfwegsK5aBHN9MsrvfcLt2nA4ayvrkn6oVl1RVnH/+Xkzp/GE2o9EpYlja8JwDNReroxQu1E0c34TvVHDjsQx5Goq/tHUBr0t0uusLQHzR1xLy2s0RCS1OEO0oZCvMuDZKJG8vLwaDTUo18b151LQhM+R3EWga2XoS0q4Mm3ibfs//vhjPvnkk9v2Jycn4+Xlxf79+2nfvmwplnfffZfdu3dz6NChO7ap1WoJDw9nxIgRTJ06tcq2V4cq9bjUFStWrKhvE+qdvRnrCLdrQ3OHbvyTupxCfV6ttXU25yd8rPtiI/ejkcPTnM/5udbaupi3BBeLFnhadaW9+3T+SRyF1lD5bDEBAQGB+43qpu2/cWxCQkI5kVVRbwuY4k4kEglpaWnl9qelpeHufnfxjTKZjObNm/9nrGltcx9NMr0/iSs6T3zhRWRiOe2d+9VqWzpDAaeyvgYg3P5/WMtqdyr54fSPKdAmYi3zpq3rpyC8+QoICAjcM7dOSKlMuMjlclq2bMn27dtL9xkMBrZv316uB+a/0Ov1REdH4+HhUSO2VwVBuDQA9maYcuO0c+6HQly7GSITCjaTWnQAiVhBC+fbuyBrEq1BxYHUd9EbSvCw6kSEw9habU9AQEDA7KjjdYrGjx/P/PnzWbRoEefPn+ell16isLCQMWPGAPDUU0+VC96dMmUKW7du5erVqxw/fpxRo0YRFxfHc889VzUDagBBuDQAzucfJr0kEQuJFW2c+tZ6e8czvkBvKMHNsg1+1v1rta1cTQzHMk0LbTV2fAF3y9pLuCcgICBgVtTDIovDhw9n5syZTJo0iaioKE6ePMnmzZtLA3bj4+NJSSlLCpqTk8PYsWMJDw+nX79+5Ofns3//fiIiai9Nx50w6+DcmqChB+feoLlDNx7zeY0CbS4zL7yI1njvi6vdKTj3ZhrZP0Ok06uo9blsjh+KxpB7z+3dC82d3yfY7nG0+gK2Jz2NSnut1toSgnMFbkYIzi1DCM6t2+Dc4Pc+R6KoRnCuuoTL0yfWqq3miNDj0kA4lbOXbE0a1jJ7Wjn2rvX2LuYuIVcdg0JiT3Pnd2q9vZOZM8koPoFMYk1H96+QiRtgFkwBAQGBe6A+EtDdDwjCpYFgQM+e9NUAdHEdjFRUu71HRnQcSZ+CwajD1+YhPC271Xp7B9LeoUibio3cn7ZunyNcngICAvc19TBUdD8gPBkaEMdzdpKrycRW5kRLx5613l6u5gIxuYsBaOkyAbm4dpM8qfU5/Js6Hp2hBA/LjkQ6vV6r7QkICAgINDwE4dKA0Bt17Mkw9bp0dRla670uAOdyfiJfcxWl1Jnmzu/Wenu5mhiOpH8CQCP7UQTYDPnvAwQEBAQaKMJQUdUQhEsD42j2P+RqMrGTO9G6DmJdDEYNh9M/Lh0y8rbqVettJhZu40z29wC0cHkfV4s2td6mgICAQJ0jDBVVCUG4NDD0Rh270v8AoKvrUGSi/15xtibIUZ/jQs5CAFq4TEApca71Ns/n/EycagNikZT2bjOwkQXUepsCAgICAuaPIFwaIMdzdpCtTsVG5lDr2XRvcC5nPjnqCygk9rRynVQnbR5Nn0pG8QnkEhs6e8ytE8EkICAgUGcIPS5VQhAuDRC9Ucf2tJUAdHEZglJS+0u6G9FxKO1DU5Zby44E2Q6r9TYNaNmf+hYqTRxWMg86eXyDVCQsXy8gIHB/IMS4VA2zXmSxJtmXEYi0qPaHVeqKvenJtHBMIcjaA3/LMfx4ZfMdj3H2Kqheo5p8FOm/0N39ZSKd3uBM/mWyNHef1K6qZMVPYrj/bBwUYbRwnc3ahA8xoKtyfcny1Bq0ruEie1DverdgJeRcK8WuDgL+BW6iur0mD+hPWOhxaaAYMPLTZZNYedy3E86KusmaeDJnHbEFR5CKFTzs9T6SOrjR5WlTWJfwIRpDMX7WLejj+TbCgowCAgICDyaCcGnA/Jt5nlM5sSglcp4L7FNn7W5NnkmhLgcXZRBdXF+okzbTSi6xPnEKeqOOcLsedHN7sU7aFRAQEKg1hBiXKiEIlwbOd5c2ANDPsxVB1u510maRPoctyV8CEOU4kGCbulkYMa7wGFuTZwLQ3HEIbZ1H1km7AgICArWBEONSNQTh0sA5mx/PP6knEYvEvBIyoM7ajSs8ypHMFQD09hiPncyjTtq9kL+DnanfAdDB5WmiHAbXSbsCAgICAuaBIFzuA368vAmNQUdrp1A6OofXWbv7MxaRXHQWpcSa/t4f1km8C8DJnLUcyPgNgO7u42hs17dO2hUQEBCoUYShoiohCJf7gJSSHFbG7QHgldBHkIkkddKuAT0bkj6nWJeHmzKEbm7j6qRdgIOZSziWZUrE19vjTRrZdq+ztgUEBARqAmGoqGoIwuU+4bdrO8lU5+Nj6cxjvnUTcwJQoMtgU/IXGI0GIh36E2FX+8sQ3GBP+k+czlmPSCTmIc936yzWRkBAQECg/hCEy31CsV7Nj5c3ATAmoFedTY8GU9DsgUzTKtI93V/HTRlSZ21vT53L2dwtiEUS+nlNJMimY521LSAgIFAthKGiKiEIl/uIzSnHOZMbh6VUUaeBugCHMpdxRXUAqVjOI96fYCGxr6OWjWxL+Zrzef8gEUnp7/UBwYJ4ERAQaAgIwqVKCMLlPsKIkVkxa9EbDfRyj6K5Q1Cdtr45eTrZ6gRsZC4M8PoQMXUTa2PEwJbkmZzP23FdvHxIiE3nOmlbQEBAQKBuEYTLfcZFVRJrEw8A8FbY4DoL1AXQGIr4K/ET1PpCvK0i6e7+cp21bRIvMzif90/psJEQsCsgIGDOiGpgexARhMt9yM9XtpKtVuFv5caT/l3rtO0cTcJNwboDiHIYVGdt3+h5uRHz8rDne8JUaQEBAfNFGCqqEg/MIos1Tcq64yStOoImuxCrIFcCX+6JTVjFSdii31pB/umE2/Y7tAkk4rOhGHR64n/dR87hq5Sk5iGxlGPfwg+/Z7uicLa+Z9tUumLmXvybj5s+yVP+PdmeeprE4sx7rudu2LcsgZ0LrqHK1ODZyJohH4RB5CH2pv9MF7fn6er2IjmaJOIKjwKw+7c49q9IJCelBGsHGZF93Oj/ZjAyhalnaPO3V9j63dVybbgGWPL+hruLWzFiYGvKLPRGLZEOA+jj+RYysQUnc9bW6HnfyrJFhfz6YwGZGXoahcuYOMWOyCh5hWW1WiPz5xXw1x9FpKXp8Q+UMn6CLZ27KSssP3+eitnTVYz6nxUTPrGrzdOoNksWFvLLj4VkZOgJC5fx0RRbmjWv3A8/zitgzapi0tL0BARKeWeCDV26l/lhziwV335dfnHQgCAJW3a51up5VJeFCwv5/geTHyLCZUydakvz//DDt98WsOqPYlJT9QQGSvlgog3du5e/HlJS9Hz+eT47dqopKTbi7y9l1iw7mjWruF5z4MdfVXzzfT5pGXqaRsiZ+akDrZpXvNitVmtk5tx8lq0qJDlVR0iQjKkf2NO7u0VpGb3eyGdf5bHyz0LSMgx4uEkYOcyK996wRSRqeP0P1Z3SLEyHbgB88cUXiEQi3njjjXq1I2PXBWJ/3IXPqA5Eff8UVoEunJ2wCk1OYYXlwz4eROuVL5VuzeePAbEIpy6NADCodRRcTsNnVHuaffcU4R8Ppjgxh/OTVlfZxm1pJzmUFYNCIuPd8KGIaqFT8cSmVNZNj6HvuEDG/9EWzzAbfnr+OKosDcey/+BM7mbEIgn9vT7ASe7HsfUpbJh1mT7jAnl/fQeGT23MyU2pbJx9uVy97sFWfLK7S+n2ypLW92iZke2pcziatQowJamrzeUBNv1VzIypeYx7w4ZVG1xoFC7jhVFZZGXqKyw/50sVq5YWMnGKHX/948rwUVa8Pjab82e0t5WNPqVh1bIiQsPN/x1jw1/FTJuazytvWLN2ozNhEVKeHZ1dqR9mf6lixZIiPppqy8btLowYZcnLY3M4d4sfQkKl/HvMtXRbvtq5Lk6nyqz7q5jJU/IZ/6Y1mzc5ExEhZeSobDIr8cOMGSqWLCli6hRbdu5wYfRoS557LoczN/khN9fA4CFZSGUilix2ZOdOFyZNssXOznxv4X+sK2TC5BwmjLdj3xYPmkTIGPxkOumV+GHK9FwWLClg5qcOHN3lybOjrRnxbCanojWlZWbNy+fnRQV89Zkjx3Z7MOUDe2Z/l8/3vxRUWKfA/Yn5XvW3cOTIEX788UciIyPr2xSS/zyK28ORuD3UFEs/Z4Je74NEISN9y5kKy8tsLZA7WpduucevIVHKcO4SCoDUSkGT6cNw7hqGpY8jNhGeBL7Sk8JLaajT86ts58zzqynWa2jhGMRArzZVrqcydi+Mo93j3rR51Av3YGse+zgcmVLC4dVJAGxPmUNiUTQKiRWDfT9DdU1JQHN7Wg7wwNHLgkYdnWjez5346PLnKJaIsHVRlG7WDlV7o9ybPr80w24Hl6fp6vYitTEqvOjnAh4bYcmQYZYEh8r4eJodSgsRq1cWVVj+79VFjH3Fhi49lPj4SXlitBWdeyhZOL/8zbew0MB7r+Uw+Qt7s35A3eDX+YUMG2HJ0OEmP0yZZodSKeKPlcUVll/3ZzEvvmJNtx5KfP2kPPmUFV17KFnwU3k/SKTg4iop3RwdzdsX838q5MkRlgwfbkloqIwvvrDDQilixYqK/fDn6mJefdWanj2V+PlJefopK3r0UPLjj2V++O67Ajw9xXw9y57mzeX4+krp2lWBv7/5Ctpvf1LxzJPWjH7CmvBQGXOmO2JhIWbx8opFxvI/i3j7VVv69rQgwE/K2Kdt6NNDyZwfy+4Ph46qGdDXgod6WeDnI2XIAEt6dFVy7KS6rk6rZhGGiqqEed8BrlNQUMDIkSOZP38+Dg4O9WqLQaun4GIq9i38SveJxCLsWvihOpd8V3WkbYrGuVsYEovKH8j6QjWIQGJVcbfq3ZBSksNP13O7jAvpj43Upcp13YpOYyDxnIrQdo6l+8RiEaHtHbl2Mg8AAzr+TvyEbHUCtjJXvpn0GznxBuJOmz7PSiji/N4swjuXf4POjC/ik667+bTPPpa8E01OcsU3/LvhYOaS0rWNWjg+ysOe7wE1tzSBRmPkXLSW9p3KviexWES7TgpOHb+9B+XGMYpbvlalUsTxI5py+z79MI8uPZS071z1a6Cu0GiMnI3W0uEWP3TorODkMU2lxyiU5YWkUgnHjpT3W1ysnk4t0+jRMZ23Xs0hOaniN3ZzQKMxcjpaS+fO5f3QqbOCY8cr9oNabUShuN0Ph2/yw9ZtaiIj5Tz/Qg6RzdLo0zeDpUsrFsbmgEZj5MRpDd07lw13icUiundWcvg/rgflLX6wUIo4cLhMlLRtpWDXvhIuXTH5JvqshgOH1fTpYUGDRRAt90yDEC4vv/wy/fv3p1evXncsq1aryc/PL7fVJNq8YjAYkTlYltsvd7CsdKgIKB2qUV1IoehaJm4PV95zZNDouPbzHpy7hyOthnAB+DNhP6dzr2ElVdLT441q1XUzhbkaDHojNs7lxZeNkxxVZtmNpkSvYm3CBxTqcvB3C2fLrr/44ZkTvB35D5/1/Zfg1g70eiGgtLxfpB1PfNaE539qwWOTwshOKubb0UcpKdRV2daTOWvZlPQFeqOOMLse+LosQiyyqnJ9N5ObbUCvByfn8rO3nJzFZGZU/IDt2FXJovmFxMXqMBiM7N9Twj+bSshILyu/8a9izp/R8uZ7dZdIsDrkXPeDs0v5W4qzs5iMDEOFx3TqquDX+YVcu+6Hf/eo2bqphPSb/NCsuYwvZtnx8xJHJn9mR2KCnieHZlFQUHGd9U12JX5wcRaTkV6xzd26KvhpfiFXr5r8sGePmo23+CE+XsfixYUEBEhYttSRp0ZbMWlSHr+vMk/xkpWtR68HV5fyvwtXZzFplfwuenZVMvcnFZevajEYjOzYXcxfG4tJvckPb71iy2ODrGjRJQV733g69Enl5bE2DH+0Zn7PAg0DsxcuK1as4Pjx40ybNu2uyk+bNg07O7vSzcfHp5YtvDODvdqxssO7BFt7kLb5NJYBzpUG8hp0ei5M/QuMRoJeq376fANGvji3CrVeS4B1axrbPVTtOu+VPG0q6xI+QqMroUVoZ7Yc/J23/mjHM3OacW53Jlu/LwvGDe/iTNRDbng2siGskzNjf2hOsUrHyc1p1bLhQv4Okw2GYqyVXfFz/ROpuH4CPCd8YotfgJQB3dOJCkrhs0l5DB5mgfj6y2ZKsp4vPslj+hyH23ok7ic+nGyLn7+Eh7pl0DgwlSkf5fHoMMtSPwB07a7k4QEWhIXL6NxNwfxFjuTnG9i0vqT+DK9hpkyxJSBAQtduGfgHpPLBh3kMH17eDwYDNGkiY8L7tjRpImPUKEuefNKSxYvNU7hUhRlTHQgOkNKiSwoOfgm89UEOo4ZbIb7JEX/+VcTK1YUsmOfEvi3u/PSNE3N+ULH094YZ4yKsVVQ1zFq4JCQk8Prrr7N06VKUyopnXNzKhAkTyMvLK90SEm6fzVMdZHYWIBahzSl/w9DkFCF3qFj1N3cIwtPSieHencjceQG3hyrubTHo9MR8+hfq9HwaTx9W7d6WG8QXZfDz1a0AdHN7EVuZe7XrtLKXI5aIUGWW7/ZVZWmwcb7d7rSSi7z01tPo9Tq6NhvM8E7jiezlSr83gtk+PxaDoeJfoIWtDBd/SzLjqn+Djis8xh9x76DTZ2Ihb4q/298opKHVqtPeUYxEwm0BqFmZBpxdKs6h4+gkYe7Pjhy94MG2A26s3+mKpaUYb19TvMK5aA1ZmQYe75dBZEAykQHJHDmoYemvhUQGJKPXm9/dyuG6HzJv6V3JzDTg4lLxbcbRScL3vzhyKsadnQdc2bzLBSsrET5+lcdt2NqJ8Q+QEnet6j1wtYljJX7IyDTg4lqxH5ycJCz4xZFLF905dNCVPbtdsLIU4XuTH1xdJYSGlPdLcIjUbIfNnBwlSCSQfkvvSnqmAbdKfhcuThJW/OpC+mUfzh/25PheD6ytRPj7lp33h1NzGf+KLY8PtqJJuJwRj1nx8lgbZs6t2Z71OkOIcakSZi1cjh07Rnp6Oi1atEAqlSKVStm9ezdz5sxBKpWi19/+o1UoFNja2pbbahKxTIJ1qDt5J+JK9xkNRvJOxGET4VnhMcvidgPQy6M5nm4euPSKuK3MDdFSkpRLk+nDkNnW7Jjtyrg9JBZFI5dY0tfzHUTV/OqlcjHeETZcOphdus9gMHLpYDb+URVP2d36zyZmLHwPgJZOj9HaaTjiG/ewSn6A6kIdmfFF2LrUjIhLK7lIbNpA1NoryKXe+Lutw0pR9cUZ5XIREU1lHPy3TMAZDEYO/aumWYv/jqVRKEW4uUvQ6WDbpmJ69DGJ83YdFazd5sKfm8u2xpEyBgy24M/NLkgk5tcLI5eLaNxUxoF/y4YJDQYjB/apiWr538HVCqUIdw+TH7ZsLKFn78q/68JCAwlxOlxd6y6x4r0gl4uIbCpj377yfti3T03LFv/tB6VShMd1P2zcWEKfPmV+aN1KxpWr5cXa1at6vLzN1w/NI+Xs2lfWM2YwGNm1r4Q2d7gelEoRnh5SdDpYt7GYAX3L7oXFJUbEt9y6JBIwPqAP8AcVsxYuPXv2JDo6mpMnT5ZurVq1YuTIkZw8eRKJpH5+tJ5DW5G68TTpW89QFJfFlTlb0Zdoce3bBICL0zdw7Zc9peVjVIkcz76CTCJlwvRPbhMlBp2emCl/UXAxjdD3+2M0GNBkF6DJLsCgrZk3KgNGtiZ/iUZfhLdlU1o6PVbtOrs+48fBP5I4sjaZtCsF/DH5PJpiPW2GmATcsvfPsH7WpdLyEd1cmPz6Nyzb9SUAnVyfxS27O427uSC+/jD+a8ZFLh/JJjupmNgTufz62inEEhEt+le/l+gGWn0c19IHUaQ+hERsi6/LEuytRlS5vqefs+aP5YWsXVXElUtapkzMo7jIyJBhpjioCW/k8PUXZW+Ep09o2LapmIQ4HccOqXlhdBZGA/zvRVPOHitrMSGNZOU2S0sRdg6m/ebKmLFW/L68iNWrirh8ScvHE/MpLjYydJjpen/njVxm3uSHUyc0bNlUTHycjiOHNDw7OhuDEca+VJa76Iup+Rw+oCYxQcfxoxpeHpuDWCJiwKC764GtD8Y+b8Wy5UX8vqqIS5e0vD/B5Ifhw01+eO31XKZNK/PD8eMaNm4sJi5Ox6FDGkaOMvlh3E1+GDvWiuPHtcyZW0BsrI41a4pZurSIZ54239iOV563YeGyApb+XsCFS1pefz+HoiIDo54wndfY1zL5+PPc0vJHjqtZt7GI2Dgd/x4qYfDIdAwGI2+MK3v5fLi3BV/OyWfzP8XEJej4a1MRc39U8chDDTM4VxgqqhrmO5cOsLGxoUmTJuX2WVlZ4eTkdNv+usSlWxi63CLiF/2LJseUgK7x54+VDhWp01W3JUNacPQvWvR5k6cHPcH6A1+Qpy0b+tBkFpB9wJTL5OSLi8od12TmcOya+daI3XnaVHal/UAfz/F0cHma+MITpJdcuvOBldD8YXcKsjVsnnuF/Ew1XmE2PP9ji9KhopyUEkQ3SePeLwYgEsFrT31M3MtaJrw3kRmfzmZ9rDtXNLsAyE0rYcnb0RTmarF2lBPQwp7Xl7fB2rFmk2zpDTnEpY/A0/Er7KyG4Ok4E4WsEWm5U4F7E4sPD7QgO9vAt7NUZGboCYuQ8eNip9KhopRkfTk/qNVG5nypIjFBh6WlmC7dFXwx2wHbBjDl+b/of90Pc74qICNDT3iEjF8WO5b5IUlfLm5DXWJk9pcFJMTrsLQU0bWHki9n25fzQ2qKnvGv5JKTa8DRUUzL1nJWrXPC0ck8exoABg20IDvLwMyZJj80jpCxZLEjLtf9kJykL9droFYbmfFlAfHX/dCjh5I535SfAh8VJefnnx34YpqK2bNV+PhImPyJLY8+ar4P7McGWZGZZeDTL/NIy9AT2VjOmqWupUNFCUn6cvErJWojU6bnci1eh5WlmL49lfw8xwn7m/ww81MHps7I480J2WRkmRLQ/W+0NRPeNO/EjJVS3eGeB1S4iIzGhtXJ1q1bN6Kiopg9e/Zdlc/Pz8fOzo62a1+rsZiRqvJzm9cIs/Vm4dV/SmNO6pKhXicBGOD1ESG2nclRJ7I0dhxaY/0EOnZzG0dzx8EYjHo2JU3jomrPnQ+qAfpany33v7PtG7javQNAQfEOErPGYTCq6sSW+kT2oL6u3YKV+Y281Rt2YvPt0asr8lUGPBslkpeXV+OhBqVtXH8uNX32cyTyqvce6jUlRP8y8Z5tnTdvHl9++SWpqak0a9aMuXPn0qbNnXN9rVixghEjRjBo0CDWrl1bZburS4N7xdu1a9ddixZz47fYHQAM9emIlaT+urq3pcxGpc3AQeFND/dX682OXWnfE52zEbFIwkNe7xNk3aFe7MjMn01C5gsYDMVYW/QgwO0v5NLAerFFQEDgwaE+hopWrlzJ+PHj+fjjjzl+/DjNmjWjb9++pKen/+dx165d4+2336Zz585VPNuao8EJl4bM3oyzXC1IxUZmweO+VQ8IrS5qg4pNSV9gMOqJsO9NhF2ferLElJr/fN4/SERS+nt/QKB1+3qxRFW8nmvpQ9DqUlDIQglwW4+1sme92CIgIPCAUA+zimbNmsXYsWMZM2YMERER/PDDD1haWrJgwYJKj9Hr9YwcOZLJkycTGFj/L3WCcKlDjBhZGLsdgOG+nbGW1l+vS1JxdGk6/B7ur+Ck8K8XO26s6HwhbwcSkYwB3h8RbHN3CyrWNCXaaK6mPXw9aNcOH+eFONu+zoO7eLyAgECtUkPC5dakq2p1xUsgaDQajh07Vi6Zq1gsplevXhw4cKBSM6dMmYKrqyvPPvtstU63phCESx2zM+10aa/LMN/67XI7nLWCawVHkYmV9Pf6EJm4fgL9jBjYnDyD83k7TD0vXh8SYlM/vtEbMriWPpxs1UJEIjGudu/i47wAsaiBBv8JCAjc9/j4+JRLvFpZwtbMzEz0ej1ubm7l9ru5uZGamlrhMfv27eOXX35h/vz5NW53VRGESx1jxMivV7cBMMy3E7YyyzscUbvWbE6eToE2EyeFL3083qpHSwxsSZ7BudxtiEUS+nlNJMy2voZqtKTmfkBS9psYjCXYWPQh0H0TSln9zWQTEBC4/6ipGJeEhIRyiVcnTJhQI/apVCpGjx7N/PnzcXY2n1XZBeFSD+xKP8NFVRLWUgtG+XWvV1uK9XmsT5qK3qgl1LYLrZyG1ZstRgxsTfmKM7mbTQG7nu8QaT+g3uzJK/yda2mD0ejikUv98Hdbh73VyHqzR0BA4D6jhoaKbk26qrh1FdfrODs7I5FISEsrv4RKWloa7u6358q6cuUK165d45FHHilNAvvbb7/x119/IZVKuXLlSrVdUBUE4VIPGDHy0+XNAAz16YCzon4X0kspPs+u6ysod3QZg69Vi3qzxYiBbSlfcyJ7LSKRmJ4er9HaaXi92VOijeZq6kOoirchFinxdJyBl+M8xCLrOx8sICAgYEbI5XJatmzJ9u3bS/cZDAa2b99O+/a3T4wICwu7LQnswIED6d69OydPnqy3tQAF4VJPHMyK4WTOVRQSGf8LrP5iitXldO6G0p6Ofp4TsauB9YyqjpFdad9xKHMZYMqw29n1uXqzxmDMIyFzDGm5UzAaddhZDSbAbTNKWdN6s0lAQKDhIzIaq73dK+PHj2f+/PksWrSI8+fP89JLL1FYWMiYMWMAeOqpp0qHmpRKJU2aNCm32dvblyaHlctrNjHo3SIIl3rkh8ubAOjv2ZoAK7c7lK59dqTOJbX4AhZSWwb5TEEurs/4G9ifsZA9aT8B0MppGH093kFMfWVMNZKl+pFr6UPR6pJQyAIIcPsLJ5uXEGYdCQgIVIl6mA49fPhwZs6cyaRJk4iKiuLkyZNs3ry5NGA3Pj6elJSUap5Y7SIIl3rkTF4cO9NOIxGJeTmkf32bg96o5a/EydeDdf3p5zWx2osxVpdj2X+wJfnL0pwzg3ymIBPV3zTyYs1RrqT1Ib9oAyKRHDf7D/F1WY5UUp89VAICAgJ3zyuvvEJcXBxqtZpDhw7Rtm3b0s927drFwoULKz124cKF9Zo1FwThUu/8cHkTWoOOds5htHEMrW9zKNRl8Vfix2gNJQRYt6GL2/P1bRLn8raxLmESWkMJ/tatedxvJpYSh3qzx2DIJTHreZKz38ZgKMJa2ZlAt23YWPSrN5sEBAQaHsIii1VDEC71TFJxFn8m7Afg1dABSET1/5WklVxiS7JpBecWjo8S5TConi2Ca4VHWBX3DkW6XNwsQhkRMKfekubdILdwOVfTHqJYcxqpxBEf5/l4On6DWGRTr3YJCAg0EOphqOh+oP6fkgIsjP2HHE0BAdbuDPGun5T3t3JJtZd96b8A0M3tJYLqKZvtzaSVxLDi2htkqxOwlbkx3O9r/Kxa1qtNGt0VYtMGkpE/B6NRj73VYwS5b8dKUX9LOggICAjcz0jr24C6IjnZEbFF/cVG3IkZ8n1M6/AQY/z7svhEPFklRTXexknbe5u6dlK1Hy1BdHftxkOeE5h+YSaXC+pn3v7NHM37kldDxhFuG8Ygn09ZErecHek77/p4S3HF6bCrRdGfuOVcoLvHROzk3vi5ruRszhoOZvyIzlhc8+3VAFHK+Po2wSxQifT1bYIZoa1vA+odlcFQZ21Vd7hHGCoSqFdWXjrNmaxU7BRK3m/Zrb7NKeW3a0s5kXMSuVjOm6Gv46n0qG+TKNQX8mXMLPZm/ItEJOFp/1E85TcKiai+ZhyZSCs5yx/XnuNszloAGjsM4XH/X/GyrL+8OAICAmaMMFRUJQThYiYYjEYmHTQtBfB4SFPauHnXs0UmDBj47sqPXC64grXUircbjcdJ7lTfZqE36vk5dgG/J/yBwWigp1t33mk0Hhtp/SaG0xmL2Zf+NesTxqPSpmAr92CAz9d0dXsXuVhIWicgIFCGEJxbNQThYkYcz0hmWcxJAD5t1xeZ2Dy+Ho1Bw6yL35BUnIyTwpF3w8ZjK63fbL832JCyidmX5lKsLybcNoyPG3+Er6VvfZtFUtExVsWO4UzOagDC7PszLOA3Aqy71LNlAgICAg0b83gyCpQy/dhuMosLCXVwZmzjNvVtTimFukK+vDCLDHUm7kp33gkbj5XEqr7NAuBU7mmmnP2M1JI0XBTOfBQxgY5O9R/krDUW82/6N6yNf5kcdRxWUif6eE2lr9fnWEtd69s8AQGB+kYYKqoSgnAxM/I0JXx2xBRo+npURwJs6y9fya3kaHP48sJX5Gry8LX04e1Gb2AhsahvswBILklh8tlPOZl7GrlYzvNBz/G03yikovqPP08rPsOfcc9xLHMReqMOf+uODAtYRKTDMET1lglYQEDAHBCGie4dQbiYIWuunmVPUiwKiZQvOjxsVgnl09TpzIj5CpVWRaB1IG+FvoFSbB6ztYr0Rcy+OIc1ieswGA30cOvOB+Hv4yyv/+XY9UYNR7MW8Oe1Z0kpOo1MbEl715cZ6vcTbhZN6ts8AQEBgQaDIFzMlAn7N1OgVdPW3Yenw+s3V8mtJBUnMSNmFoW6QkJsgnmrkfmIFyNG1ib/xdcXv6FAV0CgdQBTmkyihX3z+jYNgBzNNf5KeI1dqdMp0efhpAxmsO88urm/j0U9ZgMWEBCoB4zG6m8PIIJwMVOSCvP54uhuAN5r2dWshowA4ovimXHhKwp1hYTahPB2ozfNZtgI4HTeGT46M5nLBVewklrxeugrjPQdgcwMho7ASEzeRlbGjuZ87noAGtk9zPCAJTR1GIb4wUmvJCDwQCPMKqoagnAxY5bGnGBf8jUspDK+6tQficicBo3gWlEcMy58RcH1npd3G5lPwC5Atiabz89PZ2PKZgD6uPfi48YfYi/3q2fLTJTo89iT9iVr4l4ioyQGhcSaDq4v85j/AnwszScwW0BAQMCcEISLGWME3tm3kXyNmhauXrzQpO0dj6lrrhXFMf3CzNKYl/fD38FGaj5r9eiNelYmrOKrmK/J1+bjY+nDUL/5hNsNrG/TSkkvOceauBfZnTqDYl0ODgo/+vl8yUNe07CX1//UbgEBgVpCmFVUJQThYuakFKn45JApMd2bzTvRzLn+M9feSnxRPNMufFk62+iD8PdxlDvWt1nlOJ13hg/PfEx03hmkYgVd3N/iIa9pWEjMw04jBi7kbWBF7ChOZ/+O3qjDz7oDj/v/SkfX11FK7OrbRAEBgRpGZKj+9iAiCJcGwOorZ1kfex6ZWMKcLo9gLZPXt0m3kVScxOfnvyBTnYWHhTsfhk8wi+UBbiZPm89XMbPZn/4tOoO6VBgEWHeub9NK0RgKOJAxj1WxT3Ot4F/EIilNHB7liYBlRDmORCpS1LeJAgICAvWKEAVYBVTbD5C3aTf6vALkvh44jhyIIrDyBQwNRcXk/LmF4mNn0RcWIXVywHHEACyahQFQEnOV/E170MQloc9V4fLqaCxbNC5Xx8QDW4hy8cTP1oFP2/Xhjb3ra/Uc75YLq85xdukZirOKcQxxIPWjVL4Y+BmeFp58EDGBry9+U7ow45aXNpJ2PPW2Orw6eNPz6z4AaIu0HJ93lITdcajz1Vh72BA2PIJGj4bViL1GjETnrCKx8Cg9PD7AWRlCH69PuZi3hX/T56AxFFSp3l1Lk9n6SwL5mRq8w6wZ/mEQAZGVZxfeviiRPctTyE5RY+0gpXlfF4aMD0CmML1L5GkTWXH8LeK3ePL8sI+Iatacti7PE2Y1iBN5C7mYvxkj5ve69cdv+Sz5MY/sDD3B4XLemuxE46iKxZZOa2TRd3ls/LOAjFQdvoEyXn7fgfbdLEvLLJqXy64tRcRd0aJQimjaQsHL7zviFySrq1OqEr8vUvHbTyqyMvSEhMt5d7I9TSrxg1Zr5Nfv8ln/RyEZaXr8AmW89r4dHbqVBbuvWlzAH0sKSEnUARAYImPs67Z07G4+AfEVsXBhId//UEhGhp6IcBlTp9rSvHnFL15arZFvvy1g1R/FpKbqCQyU8sFEG7p3Lz9jMSVFz+ef57Njp5qSYiP+/lJmzbKjWTPze6G7I9Ud7hGGisyP77//nsjISGxtbbG1taV9+/Zs2rSpXm0qPHSK7BXrsR/UC49PXkXu40H6V7+gz6/4gWfU6Uj78hf0mTk4vzwSr2lv4fTMo0gcyh5qRrUWmY8HjqMGVdpuvkbNa7v/RmcwMDioMY8HN63xc7tXYrdd5eg3h2n2bBQDFg3EIdiRlWOX8eH+T0rXNnq30Vs0t28GQLcvevL4xidKt4HLhyCSiPDrGVBa59HZh0g+mEinyV0ZtOJRwp+I4PDMAyTsqdmVjHM0sayJe5ETWUswGPWE2vVlWMAi/Kw63HNdRzem88cXVxjwsh8TV7fAu5EVc587Q36WpsLyh/9OZ81XsfR/2Y+PN7Ri9KehHNuYwdpZsaVlCvO0fDniJCfP72flxWdZe+YjslRJ2Fm60c3jPbPrKQLY9nch33yazXOv27NogychEXLeeCqN7MyKV1/+YWYOa5epeGuyI8v/8WLISBvefyGDmDNlq3efOFTC0NE2/LzGgzmL3dHp4PWnUikuMj/RdoOtfxcx69Ncnn/dlqXr3QkNl/HK6IxK/fD9zDxWLy3k3ckOrPrHg6EjrXn7+SwunCm7ftw8JLz6nh1L1rux+G83WndQMH5sJlcumu9qzuv+KmbylHzGv2nN5k3ORERIGTkqm8xK/DBjhoolS4qYOsWWnTtcGD3akueey+HMmbJzzM01MHhIFlKZiCWLHdm504VJk2yxszPrR1mlCLOKqoZZf9ve3t588cUXHDt2jKNHj9KjRw8GDRrE2bNn682m/K37sOnSBuvOrZB7ueH41GBEcjkFe49WWL5g71EMhUW4vPoUyhB/pM6OKMMCkft6lpaxiGyEw9C+WLb870RkxzOSmHViLwBT2vUmzMGl5k6sCpxffoaQQY0IfiQU+0AH2r3fEYlSysnVx5l+YSYnc0+hkCh4LeQVern2QGGnwMLJsnRLPpSMVCHFr6d/aZ0Z0ekE9QvBvaUH1p42hA4JwyHYkcxzGTVuvwEdhzPnsy7+lesp+Z15yHsaPTw+vKeYkn8WJtHxcQ86DHXHM9iKJyeHIFOK2f/n7b1LAFdO5BPUwo42j7ji7K0kopMjrfu7cC1aVVpm68+JOHooeHpaI/wjbUiT7WFNyjMcSJ9HiT4PB4U/fbw+ZYjvD3hbtqq2L2qC5T/nMegJGwYMsyEgRM57nzmhtBCx/ndVheU3rynk6Zft6NDdEi9fGUNH29K+uwXLfs4vLTP7N3cGPG5DYKickAg5H810JjVJz4XoikWhObDkZxVDnrBm4DBrAkNlTPzcAaWFmHW/F1ZYfsPqQv73sg2deljg7Svl8dHWdOyuZMn8Mr916WVBpx4W+AbI8AuU8fK79lhaiok+rq6wTnNg/k+FPDnCkuHDLQkNlfHFF3ZYKEWsWFFcYfk/Vxfz6qvW9OypxM9PytNPWdGjh5Iffyx7KfzuuwI8PcV8Pcue5s3l+PpK6dpVgb9/Ax08EPK4VAmzFi6PPPII/fr1IyQkhNDQUD777DOsra05ePBgvdhj1OnQXEtC2Ti4dJ9ILEYZEYz6clyFxxSdOI8iyJfsJetIeP1Tkj/8mrz1OzEaqvbG+H30QXYlXsVCKuOH7kOwlddPzINeqyfrQhYebcoEmEgswqO1JxnRGWgMGr65+C270vcgFokZ7T+Skb4jEN2UB/jy3xfx7x2AzKKs29+lqSsJe+MpSi/EaDSSejSF/IQ8PNt61dq5pJec48+45ziZvRyDUU+IbW+G+f9GiG3vOx6r0xiIP6sivIN96T6xWER4e3uunqz4gR3U3Jb4sypiT5se0BkJxZzZk02TLmWBwqd2ZOHbxIafXj/HOx0O8NmQY+xaGcfpnN9ZfnUExzIXoTUU4WoRTn+frxjoMwcPi8jqOaIaaDVGYs5oaN2xrFtfLBbRuqOy0oerRmNErig/xV+hFHHqSEml7RSoTL8bW3vzvHVpNUYuRGto06nsdykWi2jTSVGpH7QaKvTDyaMVl9frjWz5q4jiYgORLcwz5kmjMXI6WkvnzuX90KmzgmPHKxadarURxS1+UCrh8JGyHpet29RERsp5/oUcIpul0advBkuXFtXOSQiYLQ1Gpur1elatWkVhYSHt21e+gJ5arUatLvvB5+fnV1r2nm1QFYHBgMTWutx+iZ012tSKewR0GdmUnM/Bqn0Urm8+gy4ti+zF6zDq9NgP7nXPNhiBN/b+zfpHnsHf1oGvOvXn+R2r63yoU52rxqg3YuFYfozdwtGC/LhcAAwY+PXaItLV6QzzeYw+7r1wUTjzw5X5JEYnkHslhw4fdCp3fJu323Ng2r/88chKRBIRIrGI9hM74tbcvVbPR2/UcCjjB66qdtHV7R2clMH08PiQENve7E37GpU2pcLjCnK0GPRg61R+fN3GWU5qbF6Fx7R5xJWCHC0zR57CaASDzkiXJzx4+MWyqc+ZCcXsWV5Mr2e8eegFX+KiVfz+2RWkMhHth7hzNGsBZ3JX09xxJBH2g/CwbMZA37kkFh7lWNYiUotP15hv7obcHD16PTg6l197ycFFwrUrFQ9ntOtiwfKf84lqo8TbT8qRf0vYtbkIg6Hiq9lgMDJ7SjaRrRQENTLPeIbcHAN6PTjd4gcnZwnXrugqPKZdFyVLf1bRoq0Cbz8ph/9Vs2Nz8W1+uHRBw5gh6WjURiysRMz80ZnAUPOM9cnONvnB2aW8wHRxFnPlcsV+6NZVwU/zC2nbVo6/v4R9+zRs3FTCze948fE6Fi/WMXasFa+96sjJk1omTcpDJodhj1tWWK85U93hHmGoyEyJjo7G2toahULBiy++yJo1a4iIiKi0/LRp07CzsyvdfHwqD5qtE4xGJLZWOD3zKAp/b6zaNsPuke4U7DpU5Spz1SW8uHMNar2O3r4hvNasYw0aXPNsSNnEt5e+R2PQ0Nwhio8iJlJyuBj7YAecG5cf7rrw+zkyz6TTfWYvBiwaRKvX23DoywMkH06qE1szSi6wOu55DmfMR2dQ42PVlmH+i2juOAqxqGYeEjGHctn8UzwjJgXzwZ8teGFuBNG7s9nwXVmvndEIvhE2DB4fgG+ENZ2He9DpcXf2rCgTUCX6XA5kzGN57JOczVmD3qjF26oVg3znMsD7azwsmtWIvbXFmx874uMv5YmeSXQOieOrj7MY8Lg14koSLX75UTZXYjR8Ord+h0hrmnc+sccnQMbQHqm0C05kxqQcBj5udZsf/ANlLN/kxqJ1bjw2ypqP38rmqhnHuNwrU6bYEhAgoWu3DPwDUvngwzyGD7dEfJMbDAZo0kTGhPdtadJExqhRljz5pCWLFzfQXhchj0uVMHvh0qhRI06ePMmhQ4d46aWXePrppzl37lyl5SdMmEBeXl7plpCQUGO2SGwsQSy+LRBXn1dwWy9M6TH2NsjcXRCJy1wt83BFn6fCqKv4zeNuOJOVxocHtgKm/C59fUOqXFdVUNgrEElEFGeXH68uzi5G6Xj7m8+RnKNMOz+DXE0u3pZerPpsJU+OH1mujK5Ex4nvj9Hq9bb4dPbFIcSRsMcj8O8VyLmlZ2r1fG7GgJ4T2Uv449r/SCw8ilSsoI3LWB7z+wVPy/JrHlk7yBBLuC0QV5Wpwda54l6Bv+dco+1ANzo97oFXIyua93Zm8Jv+bP4pofQt285FjkdweT+6B1mSnXL78EGRLpN96bNZcXUk53LXoTdq8bJqwUDfOQz0mVMnMTD2DhIkEm4LQM3J0OPkUvEK2A5OEmbMd2PnOV/W/OvNyu1eWFiK8PS9vSN45qQs/t1RxHcr3HH1MN+OYnsHMRIJZN3ih6xM/W29DzdwcJIwa74z+857s36/B3/ucMfSSoSXb3m/yeQifPxlhDeV8+p79oSGy1j+a8XDkfWNo6PJD5kZ5YfEMzINuLhW7AcnJwkLfnHk0kV3Dh10Zc9uF6wsRfj6lX3frq4SQkPKf//BIVKSkyoO+BW4PzF74SKXywkODqZly5ZMmzaNZs2a8c0331RaXqFQlM5CurHVFCKpFLm/FyXnLpfuMxoMlJy/jCK44jTyimA/tGmZ5WJatKkZSOxtEEmrdwNedTmaX8+ZgoK/7jyACEfXatV3L0hkEpzCnEg5kly6z2gwknokGZemFb8RXy2M5ZOzUzmbeA5HR0fmvvgNfd37lH5u0Bkw6AyIbrkqRWIRxkqGD2qTPG0iGxLfYnvyVIp02Tgo/HjEZzY9PSZhJTWdo1QuxrexDRcO5JYeZzAYuXAwl8CoijMIa4pvP0fxjdfK66cZ1NyWtNjyb5Fp14px8qx8McsCXRp702ax4uqTnM1dh96gwcOyGf19vmKI7w/4W3eGWlprXCYX0aiJnCP7y+JTDAYjR/aX0PQOcRgKpRhXdyl6HezaXESX3mWCzWg0MnNSFru3FPHtMnc8fcxzaOQGMrmIsKZyjvxbJjANBiNH/lXfhR9EuLpL0elg+6Ziuvb576nOBoMplsQckctFRDaVsW9feT/s26emZYv/HuZTKkV4eEjQ6WDjxhL69CnzW+tWMq5cLf/Cd/WqHi/visWxuSPMKqoaZi9cbsVgMJSLYalrbPt0QrX7CAX7jqFNTif7t7UY1RqsO5lWcM6cv5KcVZtLy9t0b4ehsJicZX+jTc2g6NQF8jbswqZHWZyOoUSNJj4ZTbxJBOgystHEJ6PLyr2jPZ8e2cGepFgsZXJ+7jkUN8uKe35qg/ARTbi07iJXNlwiNzaXg9P3oyvRETwgFIB9n+zm+Lzys61ytLk8/OjDrNryB2KRmCd9hzMu6AWUYiVyazluLdw5NvcIqcdSUCWruLz+Elc3Xca3W/2tL3RZ9Q8rY0dzJmc1BqOeYNueDA/4jeaOo5CI5PR6xot9q1I4sCaVlCtFLP/kEppiAx0eNcXl/PreBdZ8VTbVuWl3R/YsT+HIhnQyE4s5928Of825RmR3J8QSk7Do+Yw3V0+p2PRDPOlxxRz+O519v6fQdeSdk/oV6NLZlzaLZbEjOJ39O1pDCa4W4fT1+pRh/otoZPtwrSzkOOI5O/5armLDHwXEXtYw44MsSoqM9H/cJOAmj8/gu+k5peXPnFCzc3MhSfFaTh4u4Y2n0zAYYNQLZS8bX36UzeY1BUz+xgUrKxFZ6Tqy0nWUlJjvdOhRz9mwZkUBf/9RSOwlLdM+yKG4yMDAx03reE16M4u503NLy0efULNjUxGJ8TpOHFbz6lMZGA1Gnr7JD3On53L8UAnJCTouXdAwd3ouxw6qeXiw+awNditjn7di2fIifl9VxKVLWt6fkE9xsZHhw02C7LXXc5k2rSwG8fhxDRs3FhMXp+PQIQ0jR2VjMMK4l8ruaWPHWnH8uJY5cwuIjdWxZk0xS5cW8czT5uuH/0SYVVQlzLfPFdOwz8MPP4yvry8qlYply5axa9cutmzZUm82WbVthl5VSO7abejzVMh9PXEd/z8kdqabsy4rF24am5Y62eP21v/IXr4e1UffIHWwxbZ3R2z7dS0to7mWSNr0+aX/56zYYGqrYwucnxv2n/bojUZe2b2OP/uNIsTemV96DmXYpmUU6Wp/7DugdyDq3BJO/nTclIAu1JGes/tg4WS6MRWmFSISl3/Dz4vLI+FIPD9d/JmSMDUjfIbT1qkNPpY+fHv5O7p82o3j846x9+PdaPLVWLlb0/zFloTWUAK6qqIxFPBv+jdcyNtIJ7fXcbdoShuXsYTZDcB32Peospfx99w48jM0eIdb8+r8JqVDRdnJakQ3XRP9XvJDJBLx1zfXyE3TYO0oI7K7I4PeKMtn49/UhhfnRrB2ViwbvovD2VvJ4xOCaPuI213bXKTL5EDGPE5kL6Wpw2M0th+Mg8KPbh7v09r5WbIKfiFdtQy9sWaGG3o/YkVutp75X+eUJl77epFb6VBRapLu5p8GGrWRH2fmkhyvxcJKTIfuFnz8tTM2dmVvz6uXmGwb90T5qeUffunEgMfNZ02sm+nziCU5WXp+mJVHVoae0Ag5c39zKfNDsr5cj5tGbeS7mXkkJeiwsBTTqbuSqbOdsLkpN0lOpoFJ47PJTNdjbSMmJEzGt4tdaNe58h64+mbQQAuyswzMnFlARoaexhEylix2xOW6H5KT9Nw0go5abWTGlwXEx+uwtBTRo4eSOd/Yl8vREhUl5+efHfhimorZs1X4+EiY/Iktjz5q3on4BGoWkdFovpLt2WefZfv27aSkpGBnZ0dkZCTvvfcevXvfeZrqDfLz801But99gtjCfH/k1cXb2o61/UfjbGHFzsQrPLf9T/S3fLVdIy7Wk3WVE2wdxMvBL+Iod0StV7Pw2mL2Zx2o1TY72F2+c6E7EGzTi7YuL2AtMw3PJRed4ED6d2Sqzc/HN5CJLYmwG0hTx8exkjoDoDeoSC9YSWr+r2j0yXeo4f5EJhLiI27gLql63N39gkplICw8jby8vBoNNbiZG8+l9g9PQSqr+nNJpy3hwKZJtWqrOWLWwqUmeFCEC0CUswfLHxqBhVTG75dO8+6/5bMMm6NwAbCR2vBS0PM0tjPNFtubsY/FcctQG2pnSLAmhAuAVKQkynEEzRxHIBWbxuEv5m3lSObPFOjSaqSN2kAskhFi04s2To9iKTcN6xmNOrKLNpOav4ACzYl6trBuEYRLGYJwqWPh8lANCJfND55waXAxLgKVczIzhVd3/4XeYGBYSCQTWnWrb5PuCpVOxZcxs1iduBaD0UBnl05MbjwJX0vfOx9cj+iMJRzN+pWVsaO4mGea4RVq14fhAYtp5/ISCrF53kgMRi0x+ZuITnmIC2ljyCveh0gkxclqAI09VtPYfQ1OVoMQYd6BsAICAg8mgnC5z/gn4TLv7zcFB7/QpC0vNW1bzxbdHUaMrEv+my8ufEm2JhsPC3c+jviAfu4Plcu2a44U6NLZmfoZf14bS1LhcaRiBc0cn2BE4HKaO45CKjLXnj4jeSW7uJA+mujkfmQUrMJgVGOtiCLYeTZRXvvwsnsNmeT+ypsiIGAuCLOKqoYgXO5DVl2O5tMjOwB4r2U3Roc1v8MR5kOM6iIfnvmEY9nHkYqlDPd9nPfC3sZR7njng+uZTPVF1ie+ycbEd8ksuYRCYk0bl7GMCFxGY/tHayyBXW1QpD3P1ax3OZHYkYTcr9Do0pBLXfG2f5Mor38Jdp6DjaJhiGABgQaDwVj97QFEEC73KT+fPcLcU/sBmNquDyNCzTuL6s0U6gqZc3kev1z9lRJ9CeG2YXzWZDKdnTvd+WAzIKHwEH/GjWV78lTyNElYSp3o5PY6IwKWEW73SK1MRa4pdIYskvO+5WRSZy5nvIaq5AhikQwnq0eIcF9BU48tuNk8jURknjN6BAQaFPWUOXfevHn4+/ujVCpp27Ythw8frrTs6tWradWqFfb29lhZWREVFcXixYur1nANIQiX+5ivTuxl/hnTBTmtw0N0aSAP/hvsydzHR2cmc0l1GUupJc8FjmF86Os4yBzq27S7wMhl1T/8HvsUe1K/okCbjrXMlS7ub/NE4FKzFzBGtGQV/c25tGFEJ/cjXbUcvaEIS3ko/o6f0Nz7EAFO07GWN5zePAEBAVi5ciXjx4/n448/5vjx4zRr1oy+ffuSnp5eYXlHR0c++OADDhw4wOnTpxkzZgxjxoyp17QkwqyiB4BJbXryv4hWGIwGfo1dxJ7MffVt0j0hQsRD7n141HsIcrGMQl0Ry+NXsreK51FTs4ruBYlITrjdI0Q5jcRK6gSASpvKiaylxORvwmCs+zVnopTx91ReIrLB2WowrjYjsZQ3Kt1fpLlAesFKsgrXojPk1rCVtY8wq6gMYVZR3c4q6thrMlJpNWYV6Ur495+P78nWtm3b0rp1a7799lvAlNTVx8eHV199lffff/+u6mjRogX9+/dn6tSpVba9Ogg9Lg8AUw5v59dzRxGLxDwbOIZerj3q26R7woiRTalbmHRmMlcKrmJ1vffl3UZv4aqou2UOqoPeqOFM7p8sv/oE/6bNoVCXiY3MnS7ub/FkwHKaOgxDKjLvJFp6o4q0gsVEpzzE2dShZBT8gd5QjKU8DH/Hj2nufZBg57nYKbsg3FoEBO6CGsqcm5+fX26rLLu8RqPh2LFj9OrVq3SfWCymV69eHDhw5/xZRqOR7du3ExMTQ5cuXWrGB1VAuLs8IEw+vJ3NqaYpu6P9RzLAo189W3TvpJSk8Om5aayI/x21Xk1juwg+azqZAR79kIgaxlolZQJmBPvSvqFAm46VzIUOri8zMmglLZ2eQSmxq28z70iB+jhXs97hRGJbrmVNolBzFrFIgZPVAMLcFtHcax/e9m+jlAbcuTIBAYFq4ePjg52dXek2bdq0CstlZmai1+txcyufgdvNzY3U1NQKjwHIy8vD2toauVxO//79mTt37j0lgq1pzHeQXaDGWR6/khJ9CYO9BvK4z1AsJBasSvyzvs26JwwY2JS6hWM5x3nG/yka20XwuM9QOji1Y1HcEmJU5plk71b0Rg1nc1dzPvcvQuz60NxxJHZyb1o5j6GZ4xNcyNvA6exVFOgqv5mYAzd6YdIKFmMpi8DFejjOVgORSz3wsnsZL7uXUamPk1mwmqyi9egNefVtsoCA2VDdKc03jk1ISCg3VKRQ/PeCnveKjY0NJ0+epKCggO3btzN+/HgCAwPp1q1bjbZztwjC5QFjTdI6SvQlPOE7jAGe/bCV2bLw2m/ojQ1rnD9dncGMmK/o6NSeJ3yH4WXpxcTw99iX+S+/J/xBnjb/zpWYAQZ0xORt5GLeZgJsuhLlOAIXZaPrawsN4apqF6dzfiej5EJ9m3pHirTniMv5mPicz3Cw7Imz1WPYW3TBRtECG0UL/Bw/Ird4J5mF68gt2oERTX2bLCBQv1RjZlDp8YCtre1dxbg4OzsjkUhISyuf2TstLQ13d/dKjxOLxQQHBwMQFRXF+fPnmTZtWr0JF2Go6AFkU+oWFsQuxGA00MWlE2+EvIpCXLMKva74N+sA75/+kB3puzAYDXRy7sj0yM95yL1Pgxk+AjBi4KpqJ6vjnmd9wngSCo8gFkkItu3Jo34/MtBnLgHWXRBh/udkREN20SYuZjzLicT2xGVPLR1KcrR8iFCX72nhc4QAxy+wVXZAuA0JCNQNcrmcli1bsn379tJ9BoOB7du30759+7uux2AwVBpHUxcIPS4PKLsz9pKnzWdc0AtE2jdlYvi7fH1xLrna3Po27Z4p1Bey6Npi9mbsY7TfkwRaBzLCdzhdXTqzLH4l0Xln6tvEeyKp6BhJRcdwVAQR6TCMYNueeFhG4mEZiUqbwpmcNVzI24DGUFDfpt4RrSGTVNUCUlULsJCF4Ww1CCergSiknrjaDMfVZjgaXTrZRRvIKvz7gVsnSeDBRmQ0IqrGxN6qHDt+/HiefvppWrVqRZs2bZg9ezaFhYWMGTMGgKeeegovL6/SOJlp06bRqlUrgoKCUKvVbNy4kcWLF/P9999X2e7q8sAIF6/1YqSyB/vNbndJePn/0bD7zCp+efhR/K38eS/kY57dtIbzWRn1ZGH12A0s3Luaxxo14b12XfC08OTtRm+yKz6Wzw7s4lJOlqmcotF/V2RWnMbF4gqjwpozKiwKJ6UH7V3HEeU4ljVXzrH4/HHO51Tt+1LYldSwrXdDOiJ+prWzH/19mtDXMxwHhSvutmNwtx1DUlEumxPPsSnpHNE5dbNadbBzZp200xCwldfHNWFeaAs1wKK6acxwfavO8ffI8OHDycjIYNKkSaSmphIVFcXmzZtLA3bj4+MRi8uelYWFhYwbN47ExEQsLCwICwtjyZIlDB8+vBqGV48HJo9Lu37VW4XzfiDhoYrX/PG1tePXhx8lyMGJQq2GN7dvZOu1us91UpPYyhW80qIdzzRtgVwiQW8wsPJCNLOP7iddr6pv86qEQiJlUGA4z4S3IMKpbFbA0bREllw4yaa4GNT6u49Vqh/hUh6ZSEwHtyAGeDemp0cjrGRlQ5aJhTlsSTrP5qTznM5JqjUbBOFShiBcTMLlz16L6iSPS+cuH1c7j8vePZMfuNWhBeHyAFGZcAHTg/67PgPp5O0HwKwj/zL32IFqxY2ZA/529rzXtgsPB4YCUKzV8vO5I/wUfRiVtuEGh7Z28+bp8Bb09QtBJjbFvWSVFPHHpTOsuHiK2PycO9ZhDsLlZhRiKV3cg+nn3Zhu7iFYSuWln6UU5bEt+QJbks5zPCsBQw1emYJwKUMQLnUrXLp0nlRt4bJn7xRBuNxvCMKljP8SLgBSsZgP23fjmaYtANgae4nxOzZR0IAf8Ddo5e7FhHZdaOnuBUB2SRHfnT7E4gsnUOsbbrZQFwsrhodG8mSjZnhald24DqTEszzmFFviL1baC2NuwuVmlBIpXdyCecgrgm7uIeV6YrJKCtmRGsM/yTHsT7+KxlC9GXGCcClDEC51LFw61YBw2ScIl/sOQbiUcSfhcoPHGzXh0869UEilXMnN5qUtf3Ex5/64uffxD+a9dp0Jsjel3U8tVPHtqQOsvHQaraE6g831i0QkoodPEE+ENqO7dyBikem7zlUXs/bKOX6/FM257PJrkZizcLkZuVhCR9cg+niF0cOjEfbysgzDhToN+9KusD0lht2pl8jVFN9z/YJwKUMQLnUsXDp+VH3h8u9UQbjcbwjCpYy7FS4AkS7u/NB3IJ7WthRrtUzat51VMQ1rdk5lSJRGHg1uwutRHfC2NmWpTSrIZ97pA6y6FN2gBQyAp5UNw0MieSykKV7WZTezs1lp/HH5DGuvnCNHXdxghMvNSEViWjn70duzEb08w3C3KDs/vdHA8awEdqZcZGfKRa4WZN1VnYJwKUMQLoJwaQgIwuUB4l6EC4Cj0oKve/Sjq68pbfuai+f4cO82CrV1vyBgjaIwCRO5WMLw0EheadYeN0trwCRgvj99kFWXo+8p0NUcEYtEdPLwY1hoJL19g1FITJMINXo9uxKv8lfKCXalXkJbzaGW+qSJvQc9PRvR06MRjezKpzGPK8hmV+pFdqVe5khmXKXnKQiXMgThUrfCpWuH6guX3fsF4XLfIQiXMu5VuACIgBej2vBWm05IxWKu5Gbz+j8bOJOZdsdjzRZF+R4VhUTCE6HNGBfZrlTApBaqmH/2CMtjTlGka+BCDbBXKBkYGM5jwU2JdC7LkJmrKWZz4ln+SjjD8az4Bh2M7WVpRzf3ULp7hNLWxR+5uCxZX6FOw4H0q+xJu8ye1MukFJdlVhaESxmCcKlj4dL+w+oLlwOfCsLlfkMQLmVURbjcoJW7F3N69cfT2hatXs/XR/fzw8nDGBri5aOoeCjohoB5oWmb0kDXnJJifjt/nIXnj5Ojvvf4CXMk1N6ZR4MbMzg4vNxQS1JRLhsSzrI+8QwxeQ1YmAJWUjntXQPo5h5CV7cQXC1syn1+OT+DvWlX2Jt2mRxOoDE0fHFaEwjCRRAuDQFBuDxAVEe4ANgplHzepTf9g0wJ3I6kJDJ+xyYSVA1s4bxKhMsN5GIJg4MieCmyHQG2DgAU67T8fiman88cIaGggZ1vJVjYqWnr4s8jvk3p6xmO9U0zd67kZ7Ah8SwbE88Se5exIuZMhL07XdyC6eIWTJSTNxJRWYIttV7DmbwrnMi5wIncGK4V1k3iO3NEEC51K1y6ta2+cNl1SBAu9x2CcCmjusLlBo+GRjC5U09s5AoKtRqmHdzD0rMnG84wwx2Eyw3EIhEP+YXyYtO2pcMreoOBrfGX+PnsUY6l115StLrg5uBchVhKd48Q+ns3oat7SGk8DMCF3FQ2JZ1jS9L5+0LE2MqUtHcJoLN7EJ3dgsv1OgHkaPI5mRPDydwYTuRcJEuTWz+G1gOCcKlj4dLmg+oLl8OfCcLlfkMQLmXUlHAB8Lax5ctuD9HeyxeAg8kJvLdrC3H5uTXWRq1xl8LlZtp7+PJCkzZ08w4s3XcyI4WF546x8VpMtXOJ1AeVzSqyliro6dmI/t6N6eAaWJrgDiAmL40tSefZmnyeS/kNc2mIW+nuK6WFQxgtHMJoYheMUiIv93liURoncy9yKvci0bmXUOmK6snS2kcQLoJwaQgIwqWKDHm4OSOGtMbR3oor19KZPX875y+lVli2S7sQRj/WDi8Pe6QSMYkpuaxcd4Qtu84BIJGIGTuyE+1aBuLpZkdhkYajp+L44bfdZOUU1pjNNSlcwBS4O1xhx0fDnsTKyorikhK+3rWNBfGX0FUwpbjgwBGyfvu9/E6pFL+500r/NZSoyV27kaJTZzEUFiJ1csSmeydsutz9yqV3pArC5QYh9k4817g1gwMjUEhNvRIZRQUs2LyebydNITHmEnIfDxxHDkIR6FNpPYaiYnL+3ELx8TPoC4uQOjngOOIRLCLDSsuotu8nb/Me9Hmqu6rzXrmb6dB2MiW9PcN4yDuCdi4B5URMrCqLf5IvsDX5AtE5SRiB3E2HyF63H31uAQp/N1ye7YdFiHel9esLi8lctp2Cg+cxFBQjdbHHZcxDWLcMLS2jzconc8k2Co9fwqjRInN3xP3lwSiDvap1/je4OThXKpISYRtAlEMjouxDCbbxLTesZDAaiC1M5nTuJaJzL3Em7wqF+ttjn66tOU3siuOos4uwCXKm8etdsA93v60cwMHXV5N98vbeO5d2frSePvC2/dFf7SThrzOEv9KZgMejqnDGlVPTwuXSH2c5v/Q0JdnF2Ac70nJ8B5wau1ZYdvu49WScSLltv0cHH7p+9RAAK9rPr/DYZi+3IXxUsxqxuU6FS+saEC5HBOFy31EbwqVHx0Z88EY/vvp+G+cupvD4wJZ079CIJ1/+hdy829/Gopr4YGOlJD4pC63OQIdWgbw8pjvvTf2TwyevYWUpZ+q7g/h722kux6ZjY63k9ed6IBaLGfv24hqxGWpeuBQePUnmohW0eO0lvh73Kl2CTA+bCxlpTNz3D8fTyt+ECg4cIfv3v/D65J2ynSIREtuywMmspX9QEnMZp1GPI3VyoPjcRbJXrMHl+aewbNa4ZgyvhnC5gaPCghGNmjE6rDnuVib7dXo9m2LO8P1PP7Jl/kI8P38bia31bccadTpSP/8eia01tv27I3WwRZeVi9hCidzXE4DCw6fI/HklTqOHIA/0RbVtH0VHoyutsyrcax4XW5mSHh6h9PUKp6NrULnhpPRiFZtPHGTF599wJtgCcYAbuesPojpwFv+5ryK1q8APWh3xH/yC1M4Kx6FdkDraoM3IQ2KlROF/fWiuoJi4t3/Asok/dn1bI7W1QpOShczdEbm7Y/UccJ3/mlVkJbGgqX0wUfahNLUPwd/Ks9znBqOBqwVJROdd5kzeZc7kXeHi1pOc/nwbjcd3xz7CnWurTpKy6zJdl4xC4WB5Wxua/BKMWn25//c9u5ym7/TE++HyC6Om7rnCpUWH0eQWE/hEC7MWLvH/XOHglF20ercTTo1diVl5hoQdV+m/YhhKR4vbyqvzSjDoyn6bmrwSNj+1mtYTuhDY//qSHVnl768pBxI4/PkeBqwajrVXzTy461K4dG81sdrCZefRzx844WLWq0NPmzaN1atXc+HCBSwsLOjQoQPTp0+nUaP6Xd13+KBW/L31NBt3mBKyzfx+K+1bBtK/ZxOWrj58W/mTZxLK/f/H+uM83L0JTSO8OHzyGoVFGsZ/sqpcma9/2s78maNxdbYhPdM8FwXM374Hm45tyQrx46ltfzE4NowPotoR5uLG6iEjWXH+NDMO7SW75KY3UhFI7Cr/gamvXMOqXUuUoUEA2HRuR8Heg6ivJdSccKkBstXFzDt9kB+jD9PueCzjxo6lQ9MoHoloxiOzv+PCuDdYvH8XG+Ql5KrLPwwK9h7FUFiE+8RxiKSmHgypc/mHcP6Wvdh0aYN159YAOD41hOLTFyjYewS7/t3r5iRvIV9bwtr406yNP42VVE4Xt2B6eYbRzd00a+epDr15an1vCnUa/k27wvYOvfht1Hjyt5/A8dHOt9WXt+MEhoJiPD9/rtQPMleHcmWy1+xD5myL+ytDSvfJ3MqXqU0K9cUczIrmYFY0APYyG5raBxNpF0KkfQjelm4E2/gQbOPDEO/uGIwGzjme51ib0yT7l3A2/wrWbzmQfvAaiRvPETSy1W1tyG3LP7iSd1xCopDi3i243P6SjALOzdlN6y8HcfT9v2vvpGuIC8ujCRoYRuAA0/269budSPk3nqvrY4h4Kuq28gq78n6I33YFiUKKb4+A0n0WTuWFX9LeOFxbeNaYaBFoGJi1cNm9ezcvv/wyrVu3RqfTMXHiRPr06cO5c+ewsrKqF5ukUjGhQe4s+fNQ6T6jEY6eiqNxI8//OLKMlpG++Hg5cOq3xErLWFkqMBiMFBSqq21zbWDU6dDEJ2HXt0fpvrWXL7Dmy6/5dNwrjB40hCfCI3koIISZR/5l+blTpuPUGhI/+AyMRuQ+XtgPehi5Z1kXuiLIn+LT57Du0AaJnS3qi1fQpmfi8HjobTaYA1qthqXzfmCrsYAWPbsxKiyKIUGNCQsN5bPQUCbpdWy+dpGVl05zIMWUJ6Xo5DkUQX5kL1lL0clzSGyssGobhW2/bojEYpNv45LKCRSRWIwyIhj1lfj6O9mbKNRp2JR0jk1J55CJJbR18KHV+SIGjxiGh50jfbzC6eMVzrTzAzl69jT7xTnsSr3E+byy4dSCIzEoG/mQPn8DBUcuILG1wqZzUxwHd0IkMQ3PFB6NwTIqiOSZKyk+G4fUyQa7vq2x7327AKgLcrUq9macYG/GCQAc5bY0tQumiV0wTe2D8bF0p0lYY5qElYns5OIM9i3rwYGjhyiysCaxOL2y6gFI2HAOjx6hSC1kpfuMBiOnPttGwBMtsAlwqp2Tq0H0Wj05MZnlBIpILMKttRdZZ/77/G9w9e8YfHsHlfPDzZRkF5H8bzxtP+pWAxbXE0ajaavO8Q8gZi1cNm/eXO7/hQsX4urqyrFjx+jSpUu92GRnY4FUIiY7t3yXZU5eEX7elXddW1nKWf3LS8hlEvQGI7N+3MbRU3EVlpXLJLz0dBf+2XueomLzXOBQX1AIBsNtwxa5Rj3PvfE6a43FTOnUk8bObnzauRcjI5oxSSRjp0iE3MsDQ3EJ+f/sJvXLeXhOegupgz0AjsMGk7X0D5ImfApiMYhFOI18DGVIYAVW1D96VVGpHy7kZPDhgW1MO7Kb3jl6nu7Rh+ZNmjIoKIJBQRHEq3JZdSmaefLlxB6NxqpdFK5vjEGXnkX24rUY9XrsB/UuV+fNSGxt0KaYX0Cs1qBn16XTLHjpK77IOU6rtq3p7mFKBNfY3oM2TaNoA7zRuDvpxSr2pl1mT9pllhXryTpzDpvOTfH6YBTa1GzSfloPej1Ow0yiTZuWQ96Wozg80h7HR7tQcjmJjAWbEEml2HWPqtfzBsjW5LM74zi7M44DYKESY1yQwPCPn6VlYCQBVp54WrgwrPcQhvU29RrlaQu4kB/L+fxYzuVd5VJBQmkemdzzqRTEZhH5Xo9y7VxZdgyRRIT/0JqJ46htNLklGPXG24aElI4W5Mfl3vH4rLPp5F3Noc3Eyu/zsRsvIbOU49PNv5rW1iNGoDoj1w+mbjFv4XIreXmm/BmOjpULBLVajVpd1kuRn59fadm6xN3VjmfH/4ZSKaNlpC+v/K87yWl5tw0jSSRiJr8zEBEivvphWz1ZW32OpSbzyJ9LeDKiGW+37ki4kwurnn+NbX368cXBPVzJzUYR5E/y5C8p2HsQ+4Gm4Lv8XftQx8bj8tIYpI72lFyOJXvFWiR2tliEm2evy60U6jT8umkj38/+hj6zP2V4aFMGBkbga2PPWy068+bhY+zat5e/jSq2xF+iyN8bfU4e+Zv3YD+od32bXy2MGDmTm8KZ3BTmnt+NbMMJuniE8Oi4/9HeNRBXCxuG+jdnqH9zvooewuHjRzliWcy+jKucyUlGl5VP9rp/S4WL0WhEGeSJ88heACgDPdAkpJO39YhZCJdbyVHns2P1alJ6inHI9cBSoiTcNgD3y3IivcJp3bIVdjJr2jo1pa1TUwB0Bj1XChK5oIpl2+EN5HWOKhfImxeTzrU/T9Fp/nBEopqNUzNXrv4dg12QY6WBvDfK+PUNQqJoUI+xcoiMRkTV6DWpzrENmQbzjRsMBt544w06duxIkyZNKi03bdo0Jk+eXGt25KmK0ekNONqXH2t1sLOsdAZQh9ZBTHlnIFt2neXL77ZyOTYdf28nRg9tW064SCRiprwzEHcXW16ftNJse1sAJNZWIBajzy8ot1+fX1AabGswGlly9iR/X77AG63aM7pxc3r7B9PdN5DfL0Qz++h+Mn280GaYcoMYNFpy123G5YWnsWxqCkqUe3uiTUgm/5/dZilcJDaWlfhBhcTOhuisVKIPpPLp4Z087B/K4yFN6eDhR48uXekBFGo1bIm7xAq1hD9XbcKo092xTnOk1Obc8jYnXI3lt+jzbG9hjUwsoZWTL13dQ+jiFkSQrQsd2rSjA/A63cnVFLMvtC/rZPO5LLMmWVuA1N4aubdLuTrlXs6oDp6rw7O7e+R2FogkItQ5ph7ZIn0Jx3LOc+rHbWgL1LSbNogga2/CbQMJt/Un3DYQJ4UdjWz9aGTrx6C3u8HbplwyF/KvEaOKY/ep7ZzSitk5bGFpO0a9kfPf7ePaHyfpvvKZu7KtsV0Qze0bcT4/lmuFKbWan0Zur0QkEVGSXX7GVUl28W1xKreiK9YS/88VmoytfDgw/WQKqvg8Onzas0bsFWhYNBjh8vLLL3PmzBn27dv3n+UmTJjA+PHjS//Pz8/Hx6fmppDqdAYuXkmlZaQfew9dBkAkgpaRfqzeeLzCY+QyCVKJmIF9mlFQqOb7RbsRiUTIZGVTS2+IFm8Pe17/aCX5KvPOpyCSSpH7elEScxnLKJOQNBoMlMRcxqZbh3Jl89QlTP53J0vOnuL9tl3oHRDMkxHNGBISwTc5ar7budVUUK8Hvf72t0qxyGzHckVSKXI/L0rOX8ayhSmuwWgwUHL+MjY9yvxQotex5so51lw5h83eEzwa0pRnxr1IgJ0jjwY35tHgxqQMHsnm7ETWXTlP6l3UaU6IZFKUQR4URV/Fuq1JdBoNBopOx2L/cBvANKR0ICOWAxmxfBENyq3RdLDyYvCbz9PBLRB7uQUDmrRhwHxT+biCbP6ZH8aO3Tu5IrcgR2N6CGpSspC52NfLed4JsUyCbagrWccSce9sCjA3GoxkHU/Ab0gkOqOeGFUcMao41l6fAe2qcCTcNgDvHFtC5N40b9EcB7kt7Z0jae8cyTOvPsIvr8ziWm4S5zOvcD7zKn98+As5Xjrc+9y9mO/l1pYI2wC8Ld3wtnDlXP5VVsZvJUuTh6eFC3KxjDxdHHpj9XMSSWQSHBo5k3Y0Ce+u/qV+SDuaTMhjEf95bPyOWPRaA/4PBVda5urfMTiEOeMQYv7xPv+JkWrGuNSYJQ2KBiFcXnnlFdavX8+ePXvw9q48JwSAQqFAoVD8Z5nqsnLdUSa+3o8Ll1M5fymFxx9phYVSxsbtpllGH7zej8wsFT8u2QuAt4cDq9Yf44lBrXlySBsCfJ1p3cyvdChIIhEz9d2BhAa58d6nqxGLxTjam4KP8wuK0emqP323NrDt2YXMRSuR+3qj8Pchf8dejGoN1u1NM2EyFy5HYm+Hw+B+ABxbupJR+w/QvkVLJnbvQxu/QN5//Q1efP555kcfY2H0cRQhgeSsXo9ILkPi6ID60hUKDx3DYegj9Xmq/4lt385k/vw7cn9vFAHe5G/bh1GtxbqT6Y0xc/5KJA62ODz2MAA5jQOY+uEUvt6+ga6jn2BwYASDIqLwcHdnjLs7YyJaca19X5b9vIAtcZlclulvq9MccXikA6lz16AI8kIZ4kXu+gMY1BpsezQHIGXOaqSONriMMg2HqVr48tMb81hx/gBO/dsTIbGnZY6Mhx4dRMuQCPysHXl28DCeHTwMgHOZiew9c4INshNcGBxSb+d5JwKGRXF62j/YhbliH+ZG7B8n0RXr8H7Y9MA+9dlWFC7WhD1vEqHp6mzSM7I58MofKF2saTv5EYKsvWlk40+YrT+NbPxwVToS6OBDoIMP/UO68fb2/6HWqoktTuGSKp5LBfFcViWQUJSKoZKnmbvSiW8vrSQ6z/TCpRTLKTFoaO3YmO6urfCycMVGpmRZ/J8czj6OCBFGjEhFUnRG3T37IWxEUw5O3Y1jmAuOjV24uOIMuhItgQNMYuvg5J1YuFjRbFybcsdd/fsC3l38bptldANtoYaEHbE0f7XtPdtkdgjBuVXCrIWL0Wjk1VdfZc2aNezatYuAgIA7H1QH7Pg3Bns7S54d0RFHBysux6bz9uQ/yLmew8XNxYab0+MoFTI6tg5Gp9MjlUpo3zKQrbvPsf4f0xRLFydrOrc13YgXzn6mXFuvfrjitjgYc8GqVRT6gkJy129Bn69C7u2J66vPlQ4V6bJzTd1R1zEUFZO19A/Wff8rf1taMPTpp5g88QPC3T15p01nnm3akvnBjZk99VMyFizDUFSExNEB+4EPYV2TCehqGKs2zdCrCsldu/V6sjhPXN/8X+mwji4719RrdB2poz1u458le8XfrH9uPJsdbJnQvT39n32agUER9PENwd/ZlYnvv89EICYmhtV2fmx/rJDLVpKKjTADbDo2QZdXSNaKHaYEdAHueH04Gqm9KchYl5lXrjdN5myH10ejyfh1M1ffnEe8ow37e7ZgabAW6xglrZ396OgaSGtrT8LdfYhw9iaimzcvdHsEvdHA+dxUDmXEcSQzjqNZcai05jEDz7NHKJrcYi4uOIQmuxCbYBfafDkQhaNpiKQ4vaDc9QBQEJ9DTnQKrWcOQmPQcv568C7Xe2UcZDY0svUnxMaXEGtfAsXuONg7ECYziZsbPHPoYzLUORXa5W/lSSeX5ohEIi7mx1FiMA1Fvxg0lAWxf/Fv5kmiHNwY5jOYi6or5Grz8LbwZJDXw/hb+pCpyea3aytJKbm7BTh9ewVRklNC9M/HKMkqwj7EiW5fP4zyuh8K0wpv80N+XC6Zp9Lo9s3DldYbt+0KGI349qm8R0bg/sasE9CNGzeOZcuWsW7dunK5W+zs7LCwuD2BUUWYW8r/Z4a159knOwHw+kcrOR5dd9NbazoBXU0gFokYENSI11t1IMjeFHSdpy5hwelj/Bp9nHxNLTyMaiABXW1iIZXRwzuQRwLD6e4VWJqhF+Bafg6b4y6y+dpFTmWmVKun+F4T0NUnTgor2vIZrRIAADzVSURBVDj70c41gLbO/gTYlB8iMBiNXMhL5WhmvGnLiidLfXdZp/8rAZ0546F0JtTGl2AbX0JtfHGW2/PskSkVlpWJpPRxb4+jwpZQGz9SijP54fIfhNj4MCHifzxz6GNEiLCRF/NDy5lMOP0pOdpcpjedxObUHRzPPUV3l85Yy6xYHr+6RoaTzJW6TEDXo+l7SCVVHyHQ6dXsiJ7+wCWgM2vhUlkE/a+//sozzzxzV3WYm3ABGP1YW2xtLJj3667/LCeXS9Fo7r2LtjLMUbjcQCISMSA4jFdbtCPYwfRQUmnULD13igWnj5FeVHNLH5i7cLkZK6mcnr5BPOwXSnfvQJTSspwWqYUqtsZfYmv8JQ6lJqCtYJmF/6IhCZdbcVXa0NbFj9bOfrRx9iPAxvm2MrGqLI5lxZu2zATiCrMrrKuhCpeqIhGJGd9oFAlFaaQUZ9LTrQ2TznwPQKCNFW+GvMg3l37EQW7PayFjefn4ewDYy+z4oulHvHT8HYz3cXBFXQqXnk3erbZw2X5mxgMnXMx+qOh+ZPEfh+5YxtJCztsv9eZsTAp/bqg46Pd+Qm80su7Sef6+fIF+gaG83KId4U4uvBjVhjFNW7Dm4jl+Pn2MyzkNf3Xie6FQp+Gvq+f56+p5LKUyunsH0ve6iHG3suGp8BY8Fd6CfHUJu5Ji+SfhMrsSr9ZOT5UZkV6i4u+EM/ydYIorc1Fa08rJl1bOvrRy8iXUzo0AGycCbJx4zN8UY5NZUsCJ7EROZCVwIiuRM7nJDXJxzHvlRqzKDfRGAwW6YmxlVhTqisnRlqWM8LHwJEebC0CAlS+XVLGln9lIrcnR5mEltaRAV4MvEgIC94hZC5cHGaVCxsp1R/npy9FYWcr5bdXB+japTjAYjay/EsP6KzF09w1kXPM2tPbw5onwSJ4Ij2RXfCw/nz7KvsSKk/fdzxTptGy4FsOGazHIxRI6evrRxzeEXj5BuFhaMzAwnIGB4egMBo6lJ7E94Qo7E69wKff+F3sZJQWlmXzBtK5ScycfWjr50MrJlyYOnjgrrentGUZvT9NClhqDnnO5KVwrusQF1TUu5F+rND6kISMWiRgbOBSpWMLJnBhsZdYEWnmxIHYdbR2bUKAtS6bZxC6cfK2KdHUmPhZepJSUZTr2sfQitSQdqUh4bNQYQnBulRCuQDMlO7eQ0CBX4pOyOHrywXtIA+yMv8rO+Ku0cPNkbLNW9A0IoZtvAN18A7iYncmiMydYffEcxTptfZta52gMenYmXmVn4lUmAlEuHvTyCaanbzBhDi60dfehrbsPE1t3I1GVx66kq+xKjGV/ShxFD4C/8rUl7E69xO7USwDIxBKa2HvQwsmHKEdvmjv54KK0JsrRmyjHspmKOZp8YvLjiFGZcqhcUsVTpG+4Q2pg6mH5J+0QEbaBtHSMQCGW8dOV1VwqiEeEiEFe3WjlEIHaoCHMJpjVSRsAcLdwJTaz7N4TZhtMliYbla7gtjZcFE44yh1ILEqmUH/7QrMClSAIlyph1jEuNYE5xrjcDY72Vnz7+QiWrznMhu3RGAymr0kiFqE3VO0rM+cYl7vB19aOMU1bMCysKVYyOQD56hJWxZxh6dlTXM27y7flBhTjUhW8rW3p4RNEd+9AOrj7lQvu1ej1HElLZE9SLAfzY4jJS7uPoxX+G29Le5o7edPV04lGtv4EWnkjFZeftWUwGkgsSudiQRyXVQlcVMVztSARbRWmB5srQ7y609IxHCupBX8mriE67zxGjAz0fAhbmQ1L4lZhK7Xhk8bv8uu15UTn3Z78b7BnP4b7DgYgR5NHYnEyiUXJJBYnk1ScQlJxSoMZXqrTGJeIt6sf43Ju5gMX4yIIFzNlxoePkp1bxKwft6G5vuT9Wy/0Ri6X4OFmx6wf/uFa4r0NATR04XIDG7mcxxo14ekmzfG3K1sp+N/EOJaeO8W2a5f/O1D1PhcuN6OUSGnv4Ut370C6egXgZ1t+ZeWskkL2p19lf8ZV9qfHklpsHktk1CU3gnPlYllp/pRGNn6E2vrhrrw9wZnOoCeuKIXLqoTS/CnXCpPvCzFjKy/rXbKQKHk1eCyuShfU+hJ2Zxxga9rOCo97xKMvvd274aKoPCFcniafxOIUkotTrv9NJak4pTSmxlyoU+ES/lb1hcv5rwThcr/RkIRLRIgH5y6l8NiAFvTt1piPZqwjNT0fSws5E159CDtbC77+aTtNw7wYPqgV70z9k+TU3Luu/34RLjcQAV19AxgZ0YwevoFIxKYVhbOKi/gz5iwrL0RzJbeCmSQPkHC5FX9bB7p6BdDZ05/2nr5YSeXlPo9VZXIw4xoH0mM5nHmtNFvt/cx/zSqyk1kTauNLqI0fIda+hNj4Yi+/fdmFG2LmSkECl1WJXC1M5GpBEmqD+S7bURE3C5cbSEVSnOQOpKnvvMCnUqzAy9ITHwtPvC088LTwwNvS8z8FTZGumOSSVJKLUzmbf4E9GQeqdQ7VpU6FS6MaEC4xD55wEWJczASlQsZTw9rhYGeJk6M1H36xjrQM09vvoL7NcHW25ZWJy9Hq9MTGZ9IkzBN7G4t7Ei73G0ZgV3wsu+Jj8bS2YUR4JI+HNcHdyobno1rzfFRrjqUmsSrmDBuuxKDSNKyHSG1wLT+Ha/k5LDp/HGt7DVFOPnRwDaC9SyCRjp4E2DgTYOPMiEBTht4LuakcyrzGoYw4jmbGkadt2PEe90qetoAj2ec4kl02POKicCDE2odgGx+CrX0JtvHBTmZNkLU3Qdbe9Lm+PqLBaCCpOIOrBSYRc6UwkdiCJHK1qno6m6qhM+ruSrQAlBjUXCmI5UpBbLn9CrECLwt3vCw88LouaLws3HFTumAptSDYOoBg6wCkIkm9C5e6RFhksWoIPS5mxqv/687DPZsw/dst7D5wEQ83O76b9iRTv95QmqzOycGKhbOfYfwnq7gUmw7cXc6X+63HpSIkIhHdfAN4IiyS7n6BSK/3wpTotGyNvczqS+fYlx6Lzvjg9rrc4NY8LjYyhSnJm0sAbV38aWTnVu5zg9HIxbw0jmTFczQzjqOZ8WTeZZI3c6Ym8ri4KBwItvYpFS9B1j44KewqLJujyedqQRKxhUnEFiYTW5BEYnEaejO4JivqcalNpCIp7koXPJTueFq4k1ScwtGck3Vqw63UZY9Lr9Dx1e5x+efirAeux0UQLmZIl3YhPDO8A8+/s5hXxnTHxkrJ1NkbSj//6I3+FKu1zPx+Kz6eDgzs2wwvd3vik7L54bc9ldb7IAiXm3GxtOLR0AgeC/1/e/cdHkW1PnD8u+m9l00vkBBCSOghoBiKdAERKaKgiCiCXhBF8YoCPxUE9aLIVa8NC4KgAoIg0kKRUCWUkAQS0jeb3nuy8/tjw8KaAIH05HyeZ5+wM2dnz7zMbt6cOSUAH5sbTdVZpcXsjI9m57Uo/s5UtGANW9adJqC7PlttsL0n/ew86GRhX6tMfSd5a82aagI6a31zvMxc6GTmirepK95mLjgb26Mj06lVtlJVRXJJOonFCuKLFSQWp5FQoiCrPK9J6nYrzZ24tEbNmrj4LGx44nL1P3dd1/Xr17NmzRqUSiVBQUGsW7eOfv361Vn2iy++4LvvvuPSJfWcSb179+bdd9+9ZfnmIBKXVkpXV4fqahWPjOmJvp4em3ecBmDq+L70CfLgi41HyS8s5YO3HuV0RAL7jkQxdXwfVJLEig921TnyqKMlLjcLtJfzsG9XHurcFTtjE832lMJ8dsZHsTM+mss5GS1Yw+Z3tzPn2hia0NfWg772HvStmeRN5x+zW2eXFfN3TjLnspOJyEnhUm4a5arW3Wm1OWfONdQxwNPUCS9TFzxNnfEyc8HL1BlTvbqXMCmqKiGpWEliSRqJxWkklqSRVKxssttNInFp5sSl04KGJy5xa++qrj/99BMzZszgs88+Izg4mLVr17J161ZiYmJwcHCoVX769OkMHDiQAQMGYGRkxHvvvce2bduIjIzExcXlnuveECJxaeUG9u3E/FmD2f5HBDoyGVMn9OXttbuJiVMyd8YDmJgY8NaanQBYWZrwwqzBvLd+b523jTpy4nKdno4O93m5M967K8PdfTTDqgHiC3LZHR/N7sQrRGbXbyG5tqyhU/5fn+Stj607vWzd6G7tjKGudre5ClU1UXlKzuekEJGTwvmcVFJK8hr0vo2tNUz5b29ojZepOonxMHXCw9QJV2PHWsOzr8uvLCK5RElSsZKkEvUjuURJTkXDRoWJxKX9Jy7BwcH07duXTz75BACVSoWbmxsvvPACr7322h1fX11djbW1NZ988gkzZsy457o3hOic28r9dToOZUYBT04JITpWyTtrd3M6IoFRQ7oR6O/Ks4t/0JTtHeiOX2d5o65v1N5UqVSEpVwjLOUaRrp6DHHrxENefgx29cbLwpp5QSHMCwohpTBfvZhh4hX+zlSgat/5/T2pa5K3blZO9KyZ4K1XzSRvQTYuBNm4MINgQN0qcyE3lQu5qVzMVXAxV0FeBxi9dDuZ5blkludyKueSZpueTBcXYwdNIuNh4oS7qRwnIzss9c2wtOxMgKX2CsnFVaUkl6STXKIkuSSdlJJ0kkvSUZZlo6Ll+9AI/9BIE9AVFGgnrIaGhhga1k6IKioqOHv2LEuWLNFs09HRYdiwYYSH169TdElJCZWVldjY2Nx7vRtIJC5tQFxiJktX/6Z5rqsjY/JDffhuazhFxeo1aawsjJn8UG82bTsFgI6OTDNpnVC3suoqdifEsDshBlM9A4a4eTPKswuhLl64mlsyO6AvswP6klVazMHkOPYlx3JMkdghZ+qtj0pVNRE1LSvfxKqXqHA1sSLIxkUzQ62flRxbI1MGO/ky2MlX89qkohwu5iq4lJfGxVwFl/PSKK7q2KPAqiT1EOvEkjS4aVCPoY4+LsaOeJjKcTNxxM1EjoeJE3JjO0z1jPGz8MTPwlPrWJWqKtJKs0gpTSelJIPUmp8ppRkUVYmZbltOAxOXmukj3dzctLa+9dZbLFu2rFbprKwsqqurcXTU7njv6OhIdHR0vd7x1VdfxdnZmWHDht1blRtBh0lcjHafRU+mf+eCbYBMJuPqmJ4kfnUAo8hkAF7cMJ+EI5c5t2obRoq6O0h2PS1vzmq2Xvp1X/axJLKOQ/zPSJ9eg7owcGQQ/Yb6Y2dpymTfQCb7BlJeVsH547GcOhjJ6UNRZKS24bVtbnEbonEVEEUSUcAmQN9Aj07+znTp4Y5voBu+Qe64etnjbmaDu5kNY9wCNK9MuZbB1UspxF1KJTYylbjIVIoKGr9lpsLZ8c6FWpEKIJpKokkGkjXb9fV1cXG1wd3TFncPO9w8bHFzV/80MtLH3VSOu2nt74D8vBJSknNITc4mNT6L1KRs9SM5h/KyjpekV1W3vQVKk5OTtW4V1dXa0hhWrVrF5s2bCQsLw8io5bpedJjEpT2RJInqqmqe/2gWm1b+ygOTB+AZ4Maqxz8m+xZJi1B/5WWVhP95ifA/L6Grp0NAX2/6PxhA/wcDkLvZ0m+IP/2G+AOQdFXJ6bAozoRFE3k6jsqKu1tt2MBQn35D/UlLzCIuMrUpTqdVqayoIjoiieiIJM02MwtjfAJd8enuhk93V3wD3XBwtsbV2wFXbwcGj+ulKatMzuHa5VTiLiuIi0zlWrSCTEVeC5xJ61NZWU1CfCYJ8dpzrshkYOdggbu7bU0yY4uruy2ubrY4OFpgaWWCpZUJ3bq71jpmVkYBiuQcUpNzUCRno0jOUT9Scikr7dgtYo2ikW4VWVhY1KuPi52dHbq6uqSna/fhS09PRy6//R+277//PqtWrWL//v0EBgbee50bQYfpnBvK+HbT4nLdpEUP4d/fF8W1dHas20PmHZYA0HMSLS7ALVtc6sPdR07wsG70G+xP114e6OrdaLUoK63g4olYzh6J4e8j0STH3XmUklsnB2a8PBprO3OMTA05ue8S3//nj3uu311plhaXe2NpY0qnbi74dHelczdXOvk74+RhV2fZwrwSrkUpiI9WcC0qjfhoBUlX06kor19frypn6zsXaqeMjPRxdrXG1c1Gncw4WeFSk9hYWJnc9rU5WUUoUnJIS8khLSW35t+5pKXmkp/bduf3qaou52DEqubpnOsxHz2dBnTOVZWzP/GTu+6c269fP9atWweoO+e6u7szf/78W3bOXb16Ne+88w579+6lf//+91zfxiISlzZOV0+X6ir1X/kymYx//neOmj2U49tPk59VIBKX6xqQuNzMzMKYnvd3oe/grvQe5IeNg/YXR5Yyj70/neSH2yQiRiYGVFdVU1lRjYevnMdeHMGOb45w+Ww8wUO7Mf6pQRTkFbNv6ynOHq7fPeh6a8WJS13MLIzx9nfG29+ZTl1d6NTNGbdOjujp1z6P6moVioQsEmLSSIhREh+tIOGKkvTknFp9vzpy4vJPOjfdGjK3MMbZzUbr4eJmi7ObDZZ3SGpKSypIS81FmZqr+alMzUWpyCNdkUd5eeu9BdXeE5effvqJmTNn8vnnn9OvXz/Wrl3Lli1biI6OxtHRkRkzZuDi4sLKlSsBeO+993jzzTf58ccfGThwoOY4ZmZmmJmZ3XPdG0LcKmrjrictQK2kJfABf17633PM/fBJtq/bzbaNJynMFR3xGktRQSlHf4/g6O8RAHj6OdF7kB+97u9CQD9v7ORWmJjd/j5wWUkFOrrqCckUiVk4uFhhZGrAsEl9CR7Sjb0/ncDM0pgRk4NJvZaJMlndqmYnt8TG0ZL4aAWV9WxZaOuKCkq5cCKOCyfiNNv0DXRx7+yIt78LXn5ONQ9nLG1McevkgFsnB+4fHaQpX1ZaQXJsBolXlSRdTSfxqpJr+aWkK/Mb1keyHSosKCUmMpWYOm5hmpoZ4eRqjYubDU6uNji5Wqt/ulhj52CBsYkB3j6OePvU3X8oO6uQdEUe6Wl5pKfmoUxTJzSpSdmkp+U18Zm1IpJK/WjI6+/SlClTyMzM5M0330SpVNKjRw/++OMPTYfdpKQkdHRuTJL46aefUlFRwaRJk7SOc6sOwM1BtLi0Y/4hvsz7aBa+fToBUFJYys4NR9n+ZRh5WW1rvZRG1UgtLrdjYKiPf29PstPzb3vL6ObRX0+8NIruwd4sm/0VH+1YyNerdhL+p3p47NrtC9j1/V/s/+U0QSGdeWBcL7y7OmPraMnWzw/y24ajd1/JNtbicjes7c3x6uKEZxd1MuPZRY5bZ0cMjer+DigtrSA5MZukhCwSE7JISswiKSELhSIXVXW7/orUotMInXH19XVxdLbCydUGubMVcmdrnFytkTtbI3exwvQ2yfzxsGiWv7y5wXVoiGZtcXGb2/AWl+RPO9yU/6LFpR27HH6Fef1eI2RcH2Yum0KnHp5MeWE4E2aHsndTOL98dqBtj4ppxSrKK4k4fvWO5VQqCQ9fOeOevB9vfxdWv/g9JmZG2DlZaZIWgNzMQqqr1X9dPbN0An9uOcnHS7ZgamHE298+y+lDUaQltvxEaq1FbmYhuZmF/H3simabjo4MJw9bPHzkuPs44ukrx91Xjqu3A8bGBvj6OeHr56R1nMrKahQpOSQlZpOSlE1yUjYpydkkJ+VQVNj4k7W9sGgkhgZ6KBS5JCVkEX7squb/va2orKwmJTGblMS6+9yZWxjj6GyF3MUauZMVjs5WONb8TIqv32KO7YZK4vqQ5nt/fccjEpcOIPy3M5zYeZYBTwxl6osj8OvlybhZDzBmxn0c3RXBti8OcSUisaWr2eEYGhtw36hA+g8LIC0pmyWP/ZeykgruGxVEtjJfU87a3pyqympKispwcLXGrZMDv204ikwmo7igDFMLYwyNO1Zr4r1QqST1cN/4LI7flBSq3GxwdrbG08sed0/18GEPT3tc3W0wNjbAw8seD6/a6zTl5hSRnKQecZOSnK0eUpySgyI1965Hl113+OBl7O0tcHa1ZuiI7gAcOxyD3NmKef8ajqGhHnGxGXz9+SEqK+/tPVpaYUEphQWlxEantXRVhDZKJC4dhCRJnNx3iZP7LhE00JfJ8x+k1yA/Qif0JnRCby6fucZvXx/hr90RVLXRL8S25uUPH2PAiO58/8EeNq/fr9nu6m1PfPSNxR+9/JyR6chIuZZBYHBnkq6qhzJKkoSDizWK+CwsrU2bvf7thapaIiU5h5TkHDgSo9l+fRixR82cKK7u6qHE7h622NqZY21jhrWNGYE93LWPp5LIzCggNaVmGHFqLqnJOaSm5pKmuH1Sc+HcjWHiQx7sxoxZgzjx11UW//shDv4ZSUJ8JsNHBzJ6XE92/HIGgK7dXJj74oPo6+sSezWdj9bspqqqbbXSdFiNNBy6oxGJSwd0/q8rnP/rCp26uTLhmVAeGN8b/z7e+PfxJiejgD82/sWeH4+TJebHaFJ7fzpBfJQCv16efLRjIchkLJ/9JZf/TsDdV46FtSkFucWMmNKfbGU+qdcyeeSZwUSfS9Acw8NHTnFhKaXFbW/SrNZOkiAzvYDM9ALOnLqmtc/Y2ABXd/UQYhdXG/Vw4pqHqZkRjnJLHOWW9OrjpfW6X7ec4tOP993yPeVOlox/pC96ejqYmBpyaH8k3YPcsbQ0YdeOv9XvbWLAnHlD2fHLGTy97Xn+X8P57usjJCdmMWlqfx6ZEsxPG+s3fbvQwiQamLg0Wk3aFJG4dGBxkSl8sOAHvn73N0ZNH8joxwdiK7fksYWjmPLiCM4cuszeH8M5deAS1eIvuEZ3JiyaM2E3hjh7dXUmN7OQnIwChk7sw3ub55GXVUhJcTnbvzkCqFtZ8nNuzJHRa1AXcrMKSa+jr9LTSx4iOTad2MgUkq6mi5a0RlRaWsHVGCVXY5S19llZmeDiZoOLqw3OrtZaPxV36FNWXFRO9OVU7g/1o7S0kl3b/2bilGAu3zSyRyaTUZBXgkwGQT09qCiv5HTNSKsL55N4dGp/kbgI7ZpIXARyMwr48T97+GndXgaMCmL0E/fRY6AvwcMCCB4WQG5mAYe2nWH/1lPEX27/s7u2lPioG7eH/vPKZuzklnTq5srFU3GU1HQE3fntMWb/exwhwwPIVuYz6KGeLJ/9FfnZRVrHsne2YtKzQzTPKyuqSLqqJO6yeur8+CgF8THpTTKFfkeXl1dCXl4JkRdTau3T0b39Cu2FhWUcPhjF4YNRLH7jIYaPDsTAQFdriLC9gznKtDxsbM1xcrYi6vKN68ZAX5fc3GIMDPTEYqttgbhVdE9E4nIPxj0/gkdfHoeN3Iq484msf/FrYk7H1lnWw9+Vmcun4NPbG7mnA/9d+A3bPtqtVab7/V159OVx+Pb2xtbZhrceXs3xHaeb41S0VFepOLrzHEd3nsPF256Rjw1g6KR+WNtbMHHOECbOGcK1y6kc+vU0YTvOkqXIY+zM+5k0dyjW9hZcu5zKp0t/vmVHX3dfOU+8PAafQDcc3Wz5/K1f2P5lmFaZDSeW4ehmW+u1Ozcc4b//3toUp90oxj4xkEnPDsHa3pxrUQo+fetXrpxPqrOsu4+cJ14aiU93Nxxdbfh8xTa2f31Eq4yxqSGPzBlMyPDuWNmZEReZyufLtxEbmcrxvRcZ+8R96OnrsnbxT3W+j6SS+OWLQ3Tq5kqnbi6YW5rU/NsVHr1RLkORS3x0GvHRaZrJ2lKuZdxzC9vYJwYw6ZnQmjik8emybVy5kFxnWXcfR55YOAKfAFd1HP5vB9u/0R7WbWxqyIyXRqjjYFsTh//bcctjthbjJvbm0Wn9sbExIy4unfX/+ZOYKEWdQ6tHPdSD4aO6azoAX41R8vXnYXh42XPyeCy+fk5EXkzB3cOW2XOH0KefNzIdGZ7e9uTllXDirxvfPbZ25mRlFKBvoFsrcTEy0qesmdceeujRvkx6YiA2tmZcu6rkv2v21DkvDMCoCb0YNiYIj04OAMRGpfHNfw/csvyLS8Yy5pE+fPbBH2zbdKLJzqFJqVTQkFW7VR2zJVwkLnfpgckDePaDmXw8939EnYxl4oIxrPzj38zy+xd5mQW1yhuaGJIWn8GRn8N57sMn6zymkakh1y4ksvebQyz79ZUmPoP6Sb2WyVdv72DDqp30GezPsEf7ETwsAG9/F7z9XXj6jQkkXVHi4mXPFyu2ce5oDBNmh/L2xud5ZtD/1WoBADAyNkCZlMWxXeeYs2xine/7r9Hva/1V6uHnzMrN8zm661yTnWtDDRrbgzlvTGDdG1uJOZfIhFkP8PZ3z/LMkJW3iIM+yqRsju0+z5ylE+o85r/em4KnrxPvv7SR7PQChjzcm3d/mMuzD77H7o3H2b3x+G3rlKXM58t3bqwo7uhqUzPrrAudurng5eeM3M0WB2drHJytCa5ZewnUrTMp8ZkkXlGSeOXGRG1pidm3XXF80Jgg5rw+jnVLfyEmIokJT93P298+wzPDVt/mesjh2O4LzHljXN1xWPkonr5y3n9pE9kZ+QyZ0Jt3v5/Ds8PXkJ1e+/PWGjwwpCvPzh/Gx+/vIeqygomT+7Hyw6nMmvYZeXm1J4AM6unB4UPR9CutxMBAD2sbUz5c/wTRlxVcPJ9MZ185Hl72zHx6EHt2ncfNw44dv5wmPS2fJ595gPz8G8f06SLnWlwGJXX0eXpjxUR69PYgK6OQjPR8MjMKyMgoJDOjgKyMAjIyCshJbrxh3g882I05C0ewbuUuoi+l8vC0/ryz7nGefuSTOpcECOztyaG9l7h8IZnK8iomzxzIu588wZzJ68nO1J53akCoH34BrmRltM5rQGharT5xOXLkCGvWrOHs2bOkpaWxbds2JkyY0GL1eWThWPZ8eYC9G8IA+Oi5/xE8uhcjZg3hp/e21yp/5UwcV86o7z8/vXJ6ncc8/UcEp/+IaKIaN0x1lUozGsnc2oT7RvcgdEIfAgf44O6rXkJgzvKJXDoRx/E/zhNcHsDwqSFsXV+7A+KV80ma1oGnXq/7F1V+jvYvuMnzu6GIz+RieN0tWq3Bw7ND2bM5nH1bTwGw7t9b6TukK8MnB7P10wO1yl+5kKxpMXjq1bG19hsY6nPfyECWP/M1l2o6hW5cu5fgod0Y8/gAvvtgz13XMT0lh/SUHK25YUwsTWsmZ6uZpM1XjlcXJ0zMjfDq4oRXF+05TSrKK0mNzyTpajpJcRkkx2aQHJdOanwWlRVVPPz0A+z56ST7fla3Fq574xf6Du7K8Ef7svWzQ7ePw+LRdcRBj/tGdmf5sxu4dLomDh/9SfAQf8ZMH8B3HzbTmk536ZGpwezZGcHe3RcA+GjNboJDOjNibBA//VC778mqFTsAOHHsCq5utjg5W/Hciw9yJCyKnOwitmwM58sfnkWSICDQjbD9kez9/QKlpRX07OOJl7cDRw5GYWVtSmcfOdt+Pl3nHQQHRwsMDfXV/W/cbG5Z/7LSCnUyk65OaNSPQrIza35mFJCXW3zbJBZg4vQQ/tj+N3/ujADg45W76HefDyPG9WTLt8dqlX9v6a9az//z9m8MHOJPz37e7P/9vGa7rb05z78ymn+/8D0r1tb9ndpmiFtF96TVJy7FxcUEBQUxa9YsJk6s+6/05qKnr4dvb282r9qm2SZJEn/vv4B/f98WrFnzKMwtYc/G4+zZeBy5uy1fHXuTtMQsXLwdCBzgQ+AAHwAmzxuGrp4OJ/ddalCfGD19XQZP7Mu2/9X+pdda6Onr4hPgypb/3hjOLEkSEX9dpWsvj3s6pq6eDrp6ulT+Yz2XirJKuvX1blB9b1ZSWEbk6XgiT8drbbd3tsLTV45nFyfcfRzx8JHj1tkBI2MDvPyc8fJz1ipfXa0iPSUHJzdbcjMLGDU1mJRrmaTEZ6rj0PNe46BbdxzKK+n2j9E6rYWeng6+vk5s/v5Gi5gkwd9n4vHvVnv15Zsp0/JRpuVjbGzAsy8MQ1kzqq+oqAwjY332/n4B/wAXxkzoRe9gbzZ/f5xvvzrC0hUT+fL7OVRWVvPz5pNcrqNvDcC82V9ja2+Og4MF9tcfjhbY25trnltamWBkbICbhx1ut1jUEtR/0ORkF5GdWUB2ZmGtR35uMT5+zmz+5kaCIkkS505dwz/w9nG4ztBIHz09HQrzb/TDkslkLF4xkZ+//4vEa+1gsjqRuNyTVp+4jBo1ilGjRrV0NQCwtDNHV0+X3PR8re25Gfm4+bm0UK1aRkV5JTq6Ory/4HtylPkMGN2DASMDCQjuhJmlCTMXj2Xm4rFkKnI5tf8Spw9eJuLYFcpLK+r9HiEjAzGzMGbfltZ7/9rC2lR9TfxjCYXczEJca+7V363S4nIun41n2ovDSYpNJy+rkAfG9cKvlydpCU0/O26mIo9MRR6nbxrxJJPJcHCxxt3HEffOjrj7OOLmbY9bZ0fMLIxxrvklF/JgACEPBmheV1lRRXWVilc/mo4iPovUhEwUCVkoErMouMO6Weo4JDBt/oMkxWao4/BQT/x6erTaWYItLU3Q1dMhN0f7VkhuTjFuHrX7btVl9vNDyM4q4u8z6oTSytoUExNDRo4NYsMXhzn/dyJ9+nvz1juTeOXFH3jtpU2YmhliZWVCasqtRy1VVlajVORpEqK6GEkSdvbqhMbWwQK7muTG1t4cOwf1T2tbM3T1dNRJj+Ptp5l/Y9WjZGepk5mcrCLkzlZYWpswYnxPcrOKyMkqIie7SN2C848Zgp9+4UGyswr5+6ah6JNnDqS6WsX2zSfrEUmhvWr1icvdKi8vp7z8xv3dggJxD7SpZaTmsv2LQ2z/4hBz355E3yHdSIhW0HOQH/bO1oyZcT9jZtxPZXklS6Z8QuTpa3c+KDBiaghnDl0mp5X2ZWhK7y/cyMI1U9l4ajnVVdXEXkrh8G9/07m7W4vUR5Ikze2m04eitPZZ25vj39uTN/47k8M7z2FiboSLpz2ObjboG+ihbwChD/WsdczC/BK+fHcnf269dUf09xdtYuF7k9l44k11HCJTObzzHJ0D6vdXe1sz5fEQQof68/ILP2gmqtORqft8hR+7wq9b1Lcj42LT6RbgytgJvbgQkURxUTnFRQ2fy6eivApFSg6KlJxbltHR1cHaxhRbe3Ns7a8nNep/29iZqZ/bW2BuaYyevq56On8nK61jvLR0vNZzlUqiIK+EI/sjWb96N5Nn3kfo8ABeeXYDlTWdjDv7OTFhan/mPf55g8+z1RBT/t+Tdpe4rFy5kuXLlzfJsfOzCqmuqsba0VJru7WDJbnKvCZ5z9aqIKdYHQs77b+4TMyMSIhWsGLWFxgY6RM0wIe+Q7vRZ7A/dk5WXKvnrSMHF2t63N+Ft2d/2RTVbzQFudfjYK613drenNw6OmvXV1pSNounrMfQ2AATMyNyMwt47ZMZKJPqXv+lJeVmFnLywGWqq6o5vCuC8H2RgHrl5iUfP4G1gznHdl/AxcseZ087nD3ssHe2wtzShJI7/LJNS8pm8bRPa+JgSG5mIa99/DjK5Fv/Ym1J+fklVFepsLbRnsnY2saU3OzaHVJvNmlaMFOnD+DVBT8Sf9PCnPn5JVRVVZP4j9a2pMQsAlogkVVVqzS3hEBRZxk9PV1+O/ZvPl61i4TYDE1LzZiJvTE1NyIhLgMbWzNs7MyxsjFFV1cHKxtT9A30mPT4AKY8eR+vPf8d8bHpmmN27+mBlY0pP+xaqNmmq6fDMwuGM2Faf2aOW9vEZ974JEmF1IDVoRvy2ras3SUuS5Ys4aWXXtI8LygowM2tcT7cVZVVXDl7jZ5Du2uGK8tkMnoO7c6O9a2zo2BTqaqs5uqFZHrc50v4XnUnRJlMRo/7fPmtZkhrRVklpw9e5vTBywDYOVvVe4bXB6f0Jz+rkFMHIpvmBBpJVWU1Vy+l0GOAr6bjq0wmo8cAH377rnYHxLtVXlpBeWkFZhbG9B7kx9crdzb4mE1BHYdUegzw0SQuVZUqfLq78tv3f/HLl4e1yhsa6SN3tyXrpvlJbkc7Dl34etWuxj6FRlFVpeLKlTR69vbk+FH1Ao8yGfTs7cmOX8/c8nWTH+vPYzMGsmTRJq7EaK/hU1WlIiYqDbd/TBPg4mZL+j9uW7cWVVXVXI1W4O3jyB/b1TP+ymQypj51P79tOaXVOVdHR4a5pQk2tmYMGdWdx2YP4vX5P3A1Sjsp2r/7vNZtI4B31z3Ogd0X+HNn6x11eFuS1LBWE9HHpX0wNDTE0PDelwm/k1/+s4vFG+Zx5UwcMadieXjBGIxMDdn7jboD6eIN88lS5PD16z8C6g69Hv7qZm19Az3sXGzpFORJaVEZijj1rJtGpka4dJZr3kPu5UCnIE8KcorITG6d9/IBtn1xiEX/eZyrF5LUw4CfCcXQ2JB9P6n7pCz66Amy0/LYsEr9yzYvsxDvbuq+QHr6etjKLfHu5kJpcblW3w2ZTMaDU/qzf+upWve9W6NtX4ax6IPHuHoxmZiIRCY8/QCGJgbs26q+D7/og8fITs9nw+rfAXWHXncfR82/bR0t8fZ3prS4QtN3o9egLshkMlLiMnD2tOPp18eREpfOn1tb7739bV8dZtH7U7l6MYWY8+rh0IYmBppRRoven6qOw5o9lJepRyi5d/5HHLo6U1pSTlrNysK97vdVx+FaJs6etjz92lhS4jL48+fmn+eovn7ZfJLF/x7Hleg0YqIUPDy5n6ZzLcDiNx4iK7OQrz8PA2DK9BBmPD2Ilcu3o0zL17TWlJZWUFaq7pi8ddMJ/r38YS6cT+L834n0De5EyAAfFr34fYucY338ujGcl5c9zJXLCmIiU3n4sf4YGetrkoxXlj9MVkYB36w/QH5uMSPG9WDCtP6898YvpKflYW1rBkBpSQVlpRUU5pdqddQFdVKXm110y5Wohfap3SUuTe3wluNY2Vswc/kUrOVWxEUk8Pqod8jLUP/l4+Buh3RTBm3rbM1n59Zonk9+eRyTXx7H+bBIXh6yDADfPt58cOjG7a25NfO9/LkhjDWz1jf5Od2rI7/9jaWNGY+/PAYbe3PiIlNZ+vh/yavpqOrgbK0VCxtHS9b/+Zrm+aS5w5g0dxgXjl/l1Uc/1mzveX8XHF1t+POntjFt+ZFdEeo4LByJjb0FcVGpLJ35OXlZ6qHdDi7WSNLNcbBg/e4b8/VMenYIk54dwoUTsbw6Vf3/bWpuzFOLx2Ant6Iwv4Rje87z7fu7W/XSC0d+P18ThxHY2JkTF6Vg6ZNf3ojDP68HBwvW/36jdXTSnFAmzQnlwok4Xn3sU6AmDq+MuhGHPy7y7Qd7WnUcDh+MwsrKlJmzH8DaxpS42HReX7SZvJq5SxwcLbXiMHZCLwwM9HjrnUlax/nu6yN8/7W69fKvIzF89P4epj0+gHkLhpOSlMPyN34h8kLdI4hag8P7IrG0NmXGc4OxtjXj2hUl/37hB/JqOi7byy21hlSPeaQvBgZ6LF09Res43/8vjB/+F9acVW8+UgP7uHTQFheZJLXuMy8qKiI2Vj2HR8+ePfnwww8ZPHgwNjY2uLu73+HV6ltFlpaWhDIePZl+U1e3VdNzkt+5UEegL/J1AHR0W7oGrUKVs3VLV6HV0GnmmXVbo6rqcg5GrCI/Px8Li9uPmrpX138vDTWfjp7M4J6PUyVVcKBwY5PWtTVq9d/gZ86cYfDgwZrn1/uvzJw5kw0bNrRQrQRBEARBaAmtPnEJDQ2llTcKCYIgCMLdE7eK7kmrT1wEQRAEoT2SVCokmRgOfbd0WroCgiAIgiAI9SVaXARBEAShJYhbRfdEJC6CIAiC0BJUEshE4nK3xK0iQRAEQRDaDNHiIgiCIAgtQZKABnSw7aAtLiJxEQRBEIQWIKkkpAbcKuqoU4WIxEUQBEEQWoKkomEtLmI4tCAIgiAIQqsmWlwEQRAEoQWIW0X3RiQugiAIgtASxK2ie9LuE5frGWkVlQ2a56ddUFW0dA1aB1V1S9eglRCrQwNUVZW1dBVaDZ3qqpauQourqi4Hmqc1o6G/l6romKt5t/vEpbCwEIBj7G7hmrQCypaugCC0QoktXQGhNSosLMTS0rJJjm1gYIBcLueYsuG/l+RyOQYGBo1Qq7ZDJrXzm2QqlQqFQoG5uTkymaxF6lBQUICbmxvJyclYWFi0SB1aAxEHNREHNRGHG0Qs1FpDHCRJorCwEGdnZ3R0mm78SllZGRUVDW8FNzAwwMjIqBFq1Ha0+xYXHR0dXF1dW7oaAFhYWHToL6XrRBzURBzURBxuELFQa+k4NFVLy82MjIw6XMLRWMRwaEEQBEEQ2gyRuAiCIAiC0GaIxKUZGBoa8tZbb2FoaNjSVWlRIg5qIg5qIg43iFioiTgI9dHuO+cKgiAIgtB+iBYXQRAEQRDaDJG4CIIgCILQZojERRAEQRCENkMkLoIgCIIgtBkicWkky5YtQyaTaT38/Pw0+8vKypg3bx62traYmZnxyCOPkJ6e3oI1bhxHjhzhoYcewtnZGZlMxvbt27X2S5LEm2++iZOTE8bGxgwbNoyrV69qlcnJyWH69OlYWFhgZWXF008/TVFRUTOeReO4UyyefPLJWtfIyJEjtcq09VisXLmSvn37Ym5ujoODAxMmTCAmJkarTH0+C0lJSYwZMwYTExMcHBx45ZVXqKpqO+vo1CcOoaGhta6H5557TqtMW48DwKeffkpgYKBmUrmQkBD27Nmj2d8RrgehcYnEpRF169aNtLQ0zePYsWOafQsXLmTnzp1s3bqVw4cPo1AomDhxYgvWtnEUFxcTFBTE+vXr69y/evVqPv74Yz777DNOnjyJqakpI0aMoKzsxsJ206dPJzIykn379rFr1y6OHDnCnDlzmusUGs2dYgEwcuRIrWtk06ZNWvvbeiwOHz7MvHnzOHHiBPv27aOyspLhw4dTXFysKXOnz0J1dTVjxoyhoqKC48eP8+2337JhwwbefPPNljile1KfOAA888wzWtfD6tWrNfvaQxwAXF1dWbVqFWfPnuXMmTMMGTKE8ePHExkZCXSM60FoZJLQKN566y0pKCiozn15eXmSvr6+tHXrVs22qKgoCZDCw8ObqYZND5C2bdumea5SqSS5XC6tWbNGsy0vL08yNDSUNm3aJEmSJF2+fFkCpNOnT2vK7NmzR5LJZFJqamqz1b2x/TMWkiRJM2fOlMaPH3/L17THWGRkZEiAdPjwYUmS6vdZ2L17t6SjoyMplUpNmU8//VSysLCQysvLm/cEGsk/4yBJkvTAAw9I//rXv275mvYYh+usra2lL7/8ssNeD0LDiBaXRnT16lWcnZ3x9vZm+vTpJCUlAXD27FkqKysZNmyYpqyfnx/u7u6Eh4e3VHWbXHx8PEqlUuu8LS0tCQ4O1px3eHg4VlZW9OnTR1Nm2LBh6OjocPLkyWavc1MLCwvDwcGBLl26MHfuXLKzszX72mMs8vPzAbCxsQHq91kIDw+ne/fuODo6asqMGDGCgoICzV/pbc0/43Ddxo0bsbOzIyAggCVLllBSUqLZ1x7jUF1dzebNmykuLiYkJKTDXg9Cw7T7RRabS3BwMBs2bKBLly6kpaWxfPly7r//fi5duoRSqcTAwAArKyut1zg6OqJUKlumws3g+rnd/IVz/fn1fUqlEgcHB639enp62NjYtLvYjBw5kokTJ+Ll5UVcXByvv/46o0aNIjw8HF1d3XYXC5VKxYIFCxg4cCABAQEA9fosKJXKOq+Z6/vamrriAPDYY4/h4eGBs7MzFy5c4NVXXyUmJoZff/0VaF9xuHjxIiEhIZSVlWFmZsa2bdvw9/cnIiKiw10PQsOJxKWRjBo1SvPvwMBAgoOD8fDwYMuWLRgbG7dgzYTWYurUqZp/d+/encDAQDp16kRYWBhDhw5twZo1jXnz5nHp0iWtvl4d0a3icHPfpe7du+Pk5MTQoUOJi4ujU6dOzV3NJtWlSxciIiLIz8/n559/ZubMmRw+fLilqyW0UeJWUROxsrLC19eX2NhY5HI5FRUV5OXlaZVJT09HLpe3TAWbwfVz++cIgZvPWy6Xk5GRobW/qqqKnJycdh0bAG9vb+zs7IiNjQXaVyzmz5/Prl27OHToEK6urprt9fksyOXyOq+Z6/vaklvFoS7BwcEAWtdDe4mDgYEBnTt3pnfv3qxcuZKgoCA++uijDnc9CI1DJC5NpKioiLi4OJycnOjduzf6+vocOHBAsz8mJoakpCRCQkJasJZNy8vLC7lcrnXeBQUFnDx5UnPeISEh5OXlcfbsWU2ZgwcPolKpNF/k7VVKSgrZ2dk4OTkB7SMWkiQxf/58tm3bxsGDB/Hy8tLaX5/PQkhICBcvXtRK4vbt24eFhQX+/v7NcyINdKc41CUiIgJA63po63G4FZVKRXl5eYe5HoRG1tK9g9uLRYsWSWFhYVJ8fLz0119/ScOGDZPs7OykjIwMSZIk6bnnnpPc3d2lgwcPSmfOnJFCQkKkkJCQFq51wxUWFkrnzp2Tzp07JwHShx9+KJ07d05KTEyUJEmSVq1aJVlZWUk7duyQLly4II0fP17y8vKSSktLNccYOXKk1LNnT+nkyZPSsWPHJB8fH2natGktdUr37HaxKCwslF5++WUpPDxcio+Pl/bv3y/16tVL8vHxkcrKyjTHaOuxmDt3rmRpaSmFhYVJaWlpmkdJSYmmzJ0+C1VVVVJAQIA0fPhwKSIiQvrjjz8ke3t7acmSJS1xSvfkTnGIjY2VVqxYIZ05c0aKj4+XduzYIXl7e0uDBg3SHKM9xEGSJOm1116TDh8+LMXHx0sXLlyQXnvtNUkmk0l//vmnJEkd43oQGpdIXBrJlClTJCcnJ8nAwEBycXGRpkyZIsXGxmr2l5aWSs8//7xkbW0tmZiYSA8//LCUlpbWgjVuHIcOHZKAWo+ZM2dKkqQeEr106VLJ0dFRMjQ0lIYOHSrFxMRoHSM7O1uaNm2aZGZmJllYWEhPPfWUVFhY2AJn0zC3i0VJSYk0fPhwyd7eXtLX15c8PDykZ555RmuIpyS1/VjUdf6A9M0332jK1OezkJCQII0aNUoyNjaW7OzspEWLFkmVlZXNfDb37k5xSEpKkgYNGiTZ2NhIhoaGUufOnaVXXnlFys/P1zpOW4+DJEnSrFmzJA8PD8nAwECyt7eXhg4dqklaJKljXA9C45JJkiQ1X/uOIAiCIAjCvRN9XARBEARBaDNE4iIIgiAIQpshEhdBEARBENoMkbgIgiAIgtBmiMRFEARBEIQ2QyQugiAIgiC0GSJxEQRBEAShzRCJiyAIDZKQkIBMJtNMWS8IgtCUROIiCO3Qhg0bsLKyqrXd09OTtWvXNnt9BEEQGotIXARBEARBaDNE4iIIrVBoaCgvvvgiixcvxsbGBrlczrJlyzT7P/zwQ7p3746pqSlubm48//zzFBUVARAWFsZTTz1Ffn4+MpkMmUzGsmXLCA0NJTExkYULF2q2A2RnZzNt2jRcXFwwMTGhe/fubNq0Sas+KpWK1atX07lzZwwNDXF3d+edd96ps+7V1dXMmjULPz8/kpKSmiZAgiB0WCJxEYRW6ttvv8XU1JSTJ0+yevVqVqxYwb59+wDQ0dHh448/JjIykm+//ZaDBw+yePFiAAYMGMDatWuxsLAgLS2NtLQ0Xn75ZX799VdcXV1ZsWKFZjtAWVkZvXv35vfff+fSpUvMmTOHJ554glOnTmnqsmTJElatWsXSpUu5fPkyP/74I46OjrXqXF5ezqOPPkpERARHjx7F3d29GSIlCEJHIhZZFIRWKDQ0lOrqao4eParZ1q9fP4YMGcKqVatqlf/555957rnnyMrKAtR9XBYsWEBeXp5WOU9PTxYsWMCCBQtu+/5jx47Fz8+P999/n8LCQuzt7fnkk0+YPXt2rbIJCQl4eXlx9OhRli1bRnl5Obt27cLS0vLuT1wQBOEO9Fq6AoIg1C0wMFDruZOTExkZGQDs37+flStXEh0dTUFBAVVVVZSVlVFSUoKJicldvU91dTXvvvsuW7ZsITU1lYqKCsrLyzXHiYqKory8nKFDh972ONOmTcPV1ZWDBw9ibGx8V3UQBEGoL3GrSBBaKX19fa3nMpkMlUpFQkICY8eOJTAwkF9++YWzZ8+yfv16ACoqKu76fdasWcNHH33Eq6++yqFDh4iIiGDEiBGaY9U3CRk9ejQXLlwgPDz8rusgCIJQXyJxEYQ25uzZs6hUKj744AP69++Pr68vCoVCq4yBgQHV1dW1XlvX9r/++ovx48fz+OOPExQUhLe3N1euXNHs9/HxwdjYmAMHDty2XnPnzmXVqlWMGzeOw4cPN+AMBUEQbk0kLoLQxnTu3JnKykrWrVvHtWvX+P777/nss8+0ynh6elJUVMSBAwfIysqipKREs/3IkSOkpqZq+sP4+Piwb98+jh8/TlRUFM8++yzp6emaYxkZGfHqq6+yePFivvvuO+Li4jhx4gRfffVVrbq98MILvP3224wdO5Zjx441YRQEQeioROIiCG1MUFAQH374Ie+99x4BAQFs3LiRlStXapUZMGAAzz33HFOmTMHe3p7Vq1cDsGLFChISEujUqRP29vYAvPHGG/Tq1YsRI0YQGhqKXC5nwoQJWsdbunQpixYt4s0336Rr165MmTJF09/mnxYsWMDy5csZPXo0x48fb/wACILQoYlRRYIgCIIgtBmixUUQBEEQhDZDJC6CIAiCILQZInERBEEQBKHNEImLIAiCIAhthkhcBEEQBEFoM0TiIgiCIAhCmyESF0EQBEEQ2gyRuAiCIAiC0GaIxEUQBEEQhDZDJC6CIAiCILQZInERBEEQBKHNEImLIAiCIAhtxv8Dxo4RLYbNR6cAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 2 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_performance(bayes_classifier, top_5_scorer, 500, gre, distributions_mults)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "69ce91fa-7475-41f1-a3ed-bc4dd97d44d6", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "30adc7f9575145209097d858ff84a17f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nattack: 0%| | 0/6 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ae69e9bd98a14487a093dd66c4d2ae87", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3085c580a6f34e33a4c19252541e7c8f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3215 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,1: [272], 0.14\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "86e5407f77da4d50be6887551d051307", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3214 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,2: [272, 3072], 0.392\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d096e06f137340f7b3282719aeb35b32", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3213 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,3: [272, 3072, 205], 0.666\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "602b4c2771c445cd85d10860f3f09e35", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3212 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,4: [272, 3072, 205, 122], 0.792\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "45439c486ee84874ba24f3ba7c15877e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3211 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,5: [272, 3072, 205, 122, 63], 0.866\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f22fd3e976ec4e1b825ebb0cff0c27d2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3210 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,6: [272, 3072, 205, 122, 63, 1020], 0.892\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b49e857664c44b6183a415f0d7f7ebdc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3209 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,7: [272, 3072, 205, 122, 63, 1020, 316], 0.916\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "60721cdde08b47b9ab4e8df26f4267ce", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3208 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,8: [272, 3072, 205, 122, 63, 1020, 316, 768], 0.934\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ec695e29455248a18b06dc4eea8c7991", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3207 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,9: [272, 3072, 205, 122, 63, 1020, 316, 768, 248], 0.948\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4993599b66944c51b6445698a26b6c4b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3206 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50,10: [272, 3072, 205, 122, 63, 1020, 316, 768, 248, 29], 0.966\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "891d7c7410904a778fb027bf5f18cf24", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5b8fa5b1453c417dba79ef1b88ddf7c2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3215 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,1: [328], 0.182\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "78c47a6966d74856b8e49c36d1db854f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3214 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,2: [328, 123], 0.512\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7c6ea36b771046e9a3b1cb57b3ccf110", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3213 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,3: [328, 123, 3072], 0.822\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fb85165707d7410ba891a6a9241af6ad", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3212 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,4: [328, 123, 3072, 78], 0.92\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9e18d6a1285e4a038b7a7dbe00e6dcdc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3211 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,5: [328, 123, 3072, 78, 331], 0.944\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0d8511c1d9c14ddabeb4922e5d630c4e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3210 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,6: [328, 123, 3072, 78, 331, 63], 0.96\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0fa535b3be2249d0a813c2d7853bb540", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3209 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,7: [328, 123, 3072, 78, 331, 63, 58], 0.974\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b5368a2da88a414da0bb8be427d82c68", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3208 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,8: [328, 123, 3072, 78, 331, 63, 58, 1025], 0.978\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "97bfe4c441834f649bb8c4881a5688a9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3207 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,9: [328, 123, 3072, 78, 331, 63, 58, 1025, 260], 0.984\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fb9796841da7472ea47bc54650ef71c2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3206 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100,10: [328, 123, 3072, 78, 331, 63, 58, 1025, 260, 341], 0.988\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "344a7ca3f1da4216b92ab1206a6edf2d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5f33c26a88a5469dbf31a4247a9532fe", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3215 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,1: [320], 0.206\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7dff212094e3420187a3dd4313865ebf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3214 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,2: [320, 91], 0.63\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0a30c27cf73c46e1bff4666ea689ecfa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3213 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,3: [320, 91, 1536], 0.86\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a66e0aaf03474a1da38cbc90d00d9999", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3212 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,4: [320, 91, 1536, 244], 0.944\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a14311f69c30487fbc4ea5e712737a22", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3211 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,5: [320, 91, 1536, 244, 59], 0.976\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9c26dac1e36845b4be39d2be4ee49f04", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3210 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,6: [320, 91, 1536, 244, 59, 299], 0.99\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5830353333384753a29cf280d87427ed", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3209 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,7: [320, 91, 1536, 244, 59, 299, 274], 0.994\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7ed973612e8047b7a1cf3b075f52aa8a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3208 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,8: [320, 91, 1536, 244, 59, 299, 274, 290], 0.998\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0d7b7bda37644f459862cc843c6cff79", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3207 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,9: [320, 91, 1536, 244, 59, 299, 274, 290, 135], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "febf509b5448499ca83795428d38c8ae", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3206 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150,10: [320, 91, 1536, 244, 59, 299, 274, 290, 135, 87], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9ff1147243794c40af0331f8246b5302", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a42893e47144468aa4f4a6b599bfd3ce", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3215 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,1: [6144], 0.236\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e33b49718e274e0597e9cc89d260c0f3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3214 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,2: [6144, 165], 0.76\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "55384764000a434bbb77d636cda01dd2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3213 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,3: [6144, 165, 368], 0.92\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8509ecc0b41948c6b87c06815d2bd2c5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3212 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,4: [6144, 165, 368, 59], 0.972\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bd2ec3497aca4a43855f1f5d98d6321b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3211 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,5: [6144, 165, 368, 59, 150], 0.99\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a264f1f4d64a468e8a26250ab2180133", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3210 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,6: [6144, 165, 368, 59, 150, 2854495385411919762116571938898990272765493250], 0.996\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c42bf7b0e0214440ac5aaab33e7ab394", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3209 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,7: [6144, 165, 368, 59, 150, 2854495385411919762116571938898990272765493250, 17], 0.992\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f595749d8dc74f5fa006a5a0697c2806", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3208 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,8: [6144, 165, 368, 59, 150, 2854495385411919762116571938898990272765493250, 17, 1019], 0.996\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "721d135187384cf782380fcfd97504cb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3207 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,9: [6144, 165, 368, 59, 150, 2854495385411919762116571938898990272765493250, 17, 1019, 180], 0.998\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b6e188890d724406976ad0b1a1f4c330", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3206 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200,10: [6144, 165, 368, 59, 150, 2854495385411919762116571938898990272765493250, 17, 1019, 180, 343], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "79635a49078f42bf92389d472a0fba82", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3cde804f2cd84e17a964d222fe3568f7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3215 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,1: [3072], 0.25\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5f1c627a72f74a2b87c9b5fea45638a5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3214 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,2: [3072, 65], 0.796\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1044c379d09447a3a8c7c7cc5e3feee3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3213 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,3: [3072, 65, 248], 0.96\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "adaf8d6052f44a1ea2d09d3fdb92ce90", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3212 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,4: [3072, 65, 248, 139], 0.988\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "41bb28bbf3be4d1e8d0a47cea8499f30", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3211 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,5: [3072, 65, 248, 139, 262], 0.996\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f8695724b8a744ef9afaecd4be5937a9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3210 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,6: [3072, 65, 248, 139, 262, 16380], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7cf4ebbd8a004e2d97e63b905c744495", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3209 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,7: [3072, 65, 248, 139, 262, 16380, 214], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "476adc30d3e443c5855735e2d8728c1d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3208 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,8: [3072, 65, 248, 139, 262, 16380, 214, 6], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2dec120b99f2458089ff8bb2c9fa7b97", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3207 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,9: [3072, 65, 248, 139, 262, 16380, 214, 6, 74], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ed2ea578309947e7b47cd3ed725fc149", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3206 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "250,10: [3072, 65, 248, 139, 262, 16380, 214, 6, 74, 83], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "705a060f3fa24cb3a5b84d32ec12247a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "nfeats: 0%| | 0/10 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f58ba4fce42049758b0b52b5242d0f8e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3215 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,1: [6144], 0.262\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bd829f28bce549ceb4d5da563657a5ff", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3214 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,2: [6144, 75], 0.818\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ba0c8cad49bd4a7aa591062ff7f4f838", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3213 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,3: [6144, 75, 248], 0.954\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "10fd1f92fc2a44b9a179c54a13f6a44d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3212 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,4: [6144, 75, 248, 311], 0.99\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8c8c6dc23e9544648f1e44802a5e5db1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3211 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,5: [6144, 75, 248, 311, 344], 0.994\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "edf7a8742135482bb6b75ff6b7c18e73", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3210 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,6: [6144, 75, 248, 311, 344, 260], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ac87bf221d9c49acbb375bb0e9fb9b17", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3209 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,7: [6144, 75, 248, 311, 344, 260, 123], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "940e405be0c746efb122bddf93a72f10", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3208 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,8: [6144, 75, 248, 311, 344, 260, 123, 100], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5bed270a06514866af9feda320ece95e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3207 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,9: [6144, 75, 248, 311, 344, 260, 123, 100, 151], 1.0\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "05f88c6988664d3c94bf97ab06cc616c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3206 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "300,10: [6144, 75, 248, 311, 344, 260, 123, 100, 151, 138], 1.0\n" + ] + } + ], + "source": [ "simulations = 500\n", - "scorer = bayes\n", + "nattack = range(50, 350, 50)\n", + "nfeats = range(1, 11)\n", + "num_workers = 30\n", + "\n", + "bayes_classifier = BayesClassifier()\n", + "greedy = GreedyFeatures(allfeats, distributions_mults, num_workers,\n", + " simulations, bayes_classifier, top_5_scorer)\n", "\n", - "selected_greedy = find_features_greedy(nfeats, nattack, num_workers, simulations, scorer)" + "gre = feature_search(nfeats, nattack, greedy, restarts=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "54e58342-f2d8-42e9-ae63-0f0349efc8eb", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4a4df7ff85bc4f5a8a547f07e8e7553f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Evaluating: 0%| | 0/60 [00:00<?, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAHHCAYAAACY6dMIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FEUfwPHv3eVaei/00Amd0FvoCIJgoylNQSwoAr4KKl1AEKlSpCOgIhaaFJEqCNIRrCAlkN577nK3+/4RuHDkAmmQC8znefZ5kr3Zudm5Lb+dmd1VyLIsIwiCIAiCUAooS7oAgiAIgiAI+SUCF0EQBEEQSg0RuAiCIAiCUGqIwEUQBEEQhFJDBC6CIAiCIJQaInARBEEQBKHUEIGLIAiCIAilhghcBEEQBEEoNUTgIgiCIAhCqSECFzuhUCgYOXJkSRdDeIQkJCTQv39/fH19UalUXLt27Z7phwwZgrOz88MpXD5cu3YNlUqFj48P/fr1IzExscB5SJJEnTp1mD59evEXsJSZPHkyCoWixL7/4MGDKBQKDh48aDV//fr11KxZE7Vajbu7OwDt2rWjXbt2xfr9cXFxODk5sXPnzmLNV3j4HtvA5ddff2Xy5MmFOhgKQmkwb948vv76a5566ilWrlyJj4+P5bNr167ZPInkR7t27RgyZEihy6VQKGxOH3/8sVU6Hx8fVq1aRb9+/di0aRNz584t8Hd99dVX3Lhxw+qiYO3atbm+29fXl/bt27Nr165Cr1dJyczMZN68eTRr1gw3Nzd0Oh3Vq1dn5MiR/PvvvyVdvHv6+++/GTJkCFWqVGHFihUsX778gX2Xl5cXw4YNY8KECQ/sO4SHw6GkC1BSfv31V6ZMmcKQIUMsUb4gPErOnDmDt7c3K1asKNErbVs6d+7MoEGDrOY1bNjQ6n8nJyeGDBnCkCFD2LNnD+fOnSvw93zyySf069cPNze3XJ9NnTqVwMBAZFkmKiqKtWvX0r17d7Zv306PHj0K/F0lITY2lieeeILTp0/To0cPBgwYgLOzM//88w9ff/01y5cvx2g0lnQxAWjbti0ZGRloNBrLvIMHDyJJEgsWLKBq1aqW+T/99NMDKcOrr77KwoUL2b9/Px06dHgg3yE8eI9t4CKUPEmSMBqN6HS6ki6K3UpLS8PJyanQy/r6+tpd0AJQvXp1XnzxxXyn9/f3JyUlpUDfcfbsWc6fP8+nn35q8/Nu3brRuHFjy/8vv/wyfn5+fPXVV6UmcBkyZAhnz57l22+/5dlnn7X6bNq0aXzwwQclVLLclEplrn09OjoaINfF453BTVHdeZypVasWderUYe3atSJwKcUey66iyZMn87///Q+AwMBAS3Px7TEAJpOJadOmUaVKFbRaLZUqVeL999/HYDBY5VOpUiV69OjBTz/9RIMGDdDpdAQFBfH9998XSzk/+ugjlEolixYtyvcyW7du5cknn6RMmTJotVqqVKnCtGnTMJvNudL+9ttvdO/eHQ8PD5ycnKhXrx4LFiywSvP333/Tp08ffHx80Ov11KhRw+pgOGTIECpVqpQrb1v96bfH8WzcuJHatWuj1WrZvXs3AHPmzKFly5Z4eXmh1+sJDg7m22+/tbmOGzZsoGnTpjg6OuLh4UHbtm0tV2iDBw/G29ubrKysXMt16dKFGjVq3LsC7xAZGcnQoUMpV64cWq2WgIAAevXqlWusyK5duwgJCcHFxQVXV1eaNGnCl19+aZVm8+bNBAcHo9fr8fb25sUXXyQsLMwqze0xJv/99x/du3fHxcWFF154Acg++M6fP5/atWuj0+nw8/NjxIgRJCQk5Fl+WZaLHLScO3cOHx8f2rVrR2pqap7pQkND+fvvvwuUd0ZGBpmZmflKq1QqKeiL7Lds2YJGo6Ft27b5Su/u7o5er8fBwfp6Lj/bZkhICPXr17eZb40aNejatavl//z+lqdOnaJr1654e3uj1+sJDAzkpZdesnz+22+/8eOPP/Lyyy/nCloAtFotc+bMuec6r1mzhg4dOuDr64tWqyUoKIilS5fmSne/sgB8/fXXBAcHW/aDunXrWh1P7h7jUqlSJSZNmgRkdwsqFAomT54M2B7jYjAYmDRpElWrVkWr1VK+fHnefffdXMflex1nILu1b/v27QXengT78VgGLs888wz9+/cHsscBrF+/nvXr11vGAAwbNoyJEyfSqFEj5s2bR0hICDNnzqRfv3658rp06RJ9+/alW7duzJw5EwcHB55//nn27t1bpDJ++OGHTJw4kc8//5w333wz38utXbsWZ2dnxowZw4IFCwgODmbixImMGzfOKt3evXtp27Ytf/75J6NGjeLTTz+lffv27Nixw5Lm999/p1mzZuzfv5/hw4ezYMECevfuzfbt2wu9Xvv372f06NH07duXBQsWWIKeBQsW0LBhQ6ZOncqMGTMs9fjjjz9aLT9lyhQGDhyIWq1m6tSpTJkyhfLly7N//34ABg4cSFxcHHv27LFaLjIykv379xfoKv/ZZ5/lhx9+YOjQoSxZsoS33nqLlJQUQkNDLWnWrl3Lk08+SXx8POPHj+fjjz+mQYMGVgfKtWvX0qdPH1QqFTNnzmT48OF8//33tG7dOtcYK5PJRNeuXfH19WXOnDmWE9KIESP43//+R6tWrViwYAFDhw5l48aNdO3a1WaQBtknSKWy8Lv4yZMn6dChAw0bNmTXrl33HLg7aNAgatWqle+8165di5OTE3q9nqCgoFyB3t0UCgWSJOU7f8juDq5Tpw5qtdrm50lJScTGxhITE8Mff/zBa6+9Rmpqaq5tJD/b5sCBA/n999+5ePGi1bInT57k33//tcozP79ldHQ0Xbp04dq1a4wbN45FixbxwgsvcPz4cUs+27Zts3x3YS1dupSKFSvy/vvv8+mnn1K+fHlef/11Fi9ebEmTn7Ls3buX/v374+HhwaxZs/j4449p164dR48ezfO758+fz9NPP20px/r163nmmWdsppUkiaeeeoo5c+bQs2dPFi1aRO/evZk3bx59+/bNlT6v4wxAcHAwiYmJ/PHHHwWtLsFeyI+pTz75RAbkq1evWs0/d+6cDMjDhg2zmv/OO+/IgLx//37LvIoVK8qA/N1331nmJSUlyQEBAXLDhg0LVB5AfuONN2RZluWxY8fKSqVSXrt2bQHXSpbT09NzzRsxYoTs6OgoZ2ZmyrIsyyaTSQ4MDJQrVqwoJyQkWKWVJMnyd9u2bWUXFxf5+vXreaYZPHiwXLFixVzfOWnSJPnuzQuQlUql/Mcff9y33EajUa5Tp47coUMHy7xLly7JSqVSfvrpp2Wz2WyzTGazWS5Xrpzct29fq8/nzp0rKxQK+cqVK7m+25aEhAQZkD/55JM80yQmJsouLi5ys2bN5IyMDJvlMRqNsq+vr1ynTh2rNDt27JABeeLEiZZ5gwcPlgF53LhxVnn98ssvMiBv3LjRav7u3bttzr+tSpUqcps2bfK1vre/38nJSZZlWT5y5Ijs6uoqP/nkk5bt5l5CQkJy/d55admypTx//nx569at8tKlS+U6derIgLxkyZI8l+nVq5dctWrV/K3ILeXKlZOfffbZXPPXrFkjA7kmrVZrc5/Lz7aZmJgo63Q6+b333rNK+9Zbb8lOTk5yamqqLMv5/y1/+OEHGZBPnjyZ5/o9/fTTMpBrH86LrX3S1vGia9eucuXKlS3/56cso0aNkl1dXWWTyZRnmgMHDsiAfODAgVxliomJsUobEhIih4SEWP5fv369rFQq5V9++cUq3bJly2RAPnr0qGXevY4zsizLv/76qwzImzZtyrOsgn17LFtc7uX2rXJjxoyxmj927FiAXC0AZcqUsVw1ALi6ujJo0CDOnj1LZGRkgb5blmVGjhzJggUL2LBhA4MHDy5w+fV6veXvlJQUYmNjadOmDenp6Zam/LNnz3L16lXefvvtXH3Lt7sWYmJiOHz4MC+99BIVKlSwmaYwQkJCCAoKume5ExISSEpKok2bNpw5c8Yyf8uWLUiSxMSJE3O1JNwuk1Kp5IUXXmDbtm1WYyI2btxIy5YtCQwMzFc59Xo9Go2GgwcP5tkds3fvXlJSUhg3blyuvvvb5Tl16hTR0dG8/vrrVmmefPJJatasmWt7Anjttdes/t+8eTNubm507tyZ2NhYyxQcHIyzszMHDhywpM3KyuLGjRssXLiQ//77j06dOuVrfe904MABunbtSseOHfn+++/RarX3XebgwYP5bno/evQoo0aN4qmnnuLVV1/l9OnT1KlTh/fff5+MjAyby4SEhHD58mU+++wzbty4kWcr053i4uLw8PDI8/PFixezd+9e9u7dy4YNG2jfvj3Dhg3L1dWbn23Tzc2NXr168dVXX1nqwWw2s2nTJnr37m0Zp5Tf3/L2frljx4481zU5ORkAFxeX+9ZFXu5ct9stUCEhIVy5coWkpKR8l8Xd3Z20tLQitzTnZfPmzdSqVYuaNWta1dvtcSp37gOQ93EGsGwTsbGxD6SswkNQwoFTicmrxWXEiBGyUqmUjUZjrmXc3d3l5557zvJ/xYoV5bZt2+ZKt2rVKhmQjx07lu/yALKzs7MMyEuXLs3/itzl4sWLcu/evWVXV9dcV5SHDh2SZVmWv/76axmQ9+7dm2c+x48flwF5xYoV9/y+gra4vPTSSzbz2b59u9ysWTNZq9ValVmhUFjSvPrqq7JSqZQNBsM9y/THH3/IgLxu3TpZlmX577//lgF52bJl91zubvPmzZOVSqWsVqvlNm3ayLNmzZIjIiIsn3/88ccyIF+6dCnPPL766isZkPft25frs969e8ve3t6W/wcPHiw7ODjkak3q1q2bzRaC29NTTz1lSXv7qhaQe/Xqdc8r4LsNHjxYVqlUsl6vl1u3bi1nZWXle9miun3lfPcV9W1ms1l+/vnnLet251V7XvR6vfzyyy/nmn+7xeXuFgSz2SzXq1dPDggIsNrG8rNtyrIs//jjj1b72e1WlN27d1vS5Pe3lCRJfvbZZ2VAdnV1lZ966il59erVVq1fxdHicuTIEbljx46yo6NjrrLcbmnNT1mioqLkWrVqyYBctmxZeejQofKuXbusvqsoLS63885reuuttyxp73WckWVZ/vPPP+/bwifYN3FXUR5K4k6MVq1ace7cOT777DP69OmDp6dngZZPTEwkJCQEV1dXpk6dSpUqVdDpdJw5c4b33nuvwGME8iOverI1GBisr/Bu++WXX3jqqado27YtS5YsISAgALVazZo1a+479sGWoKAggoOD2bBhA4MGDWLDhg1oNBr69OlToHzefvttevbsyZYtW9izZw8TJkxg5syZ7N+/P9etu8VFq9Xmak2SJAlfX182btxoc5k7n89Sv359tm3bxu7du1myZAmLFi3i7bffLtD3d+/ena1bt7J79+6HdndN+fLlAYiPj7f5+Zo1a9i8eTMjR46kS5cueQ6EvZOXl9c9By/fTalU0r59exYsWMClS5eoXbt2gbbNrl274ufnx4YNG2jbti0bNmzA39/fqtUrv7+lQqHg22+/5fjx42zfvp09e/bw0ksv8emnn3L8+HGcnZ2pWbMmABcuXKBNmzb5Xs/b/vvvPzp27EjNmjWZO3cu5cuXR6PRsHPnTubNm2c5XuSnLL6+vpw7d449e/awa9cudu3axZo1axg0aBDr1q0rcNnuJkkSdevWzfNZPre3n9tsHWduu71NeHt7F7lcQgkp6cippMyZM8dmi8uMGTNkQP7zzz+t5kdGRsqAPHbsWMu8ihUrymXKlLEa8yHLsvzee+/JgNXV+f1wa4zL+fPnZQ8PD7lJkyZycnJygdbpdl/07Su+25YvX251pXPy5EkZkOfNm5dnXtHR0TIgjxo16p7fOXr0aNnNzS3X/IEDB9pscbk9judOo0aNkvV6fa6xFAMGDLDK43Yr2dmzZ+9ZJlmW5QULFsgqlUoODw+XK1euLD/99NP3XeZ+/v33X9nR0VF+4YUXZFmW5c2bN8uA/MMPP+S5zO3+dFtXd7Vq1ZKDg4Mt/985xuROr7/+uqxSqWyOR7iXihUryq1bt853+tvfbzAY5CeeeELW6XT5atkoDosWLZIB+ddff7X5+VNPPSUHBgYWKM9OnTrZHGuWV4uLLMvyG2+8IQPy8ePHZVnO/7Z52+jRo2UPDw85Pj5ednZ2lkePHm31eWF/S1mW5Y0bN1q1gt7etl555ZV8LX93i8u8efOsWlZue//9920eG+9VlruZzWZ5xIgRVi2SRWlx6d69u1y2bNlcx1pb8jrO3LZhwwYZkC9cuHDfvAT79NiOcbnd53z3XR3du3cHske83+l2pP/kk09azQ8PD+eHH36w/J+cnMwXX3xBgwYN8Pf3L3C56tWrx86dO/nrr7/o2bNnnn3+tqhUKgCrsQZGo5ElS5ZYpWvUqBGBgYHMnz8/1/rfXtbHx4e2bduyevVqq7to7s6/SpUqJCUl8fvvv1vmRUREWNVJfsqtUCisWmmuXbvGli1brNL17t0bpVLJ1KlTc7UeyXeNr+jfvz8KhYJRo0Zx5cqVAt1NBJCenp7rVt0qVarg4uJiuf2yS5cuuLi4MHPmzFxpb5encePG+Pr6smzZMqvbNnft2sVff/2Va3uypU+fPpjNZqZNm5brM5PJlOfTnytUqFCoJ0NrNBq+//57mjRpQs+ePTlx4sR9l8nv7dAxMTG55qWkpDB//ny8vb0JDg62uVxycjLlypW7f+Hv0KJFCy5evJjrdtm8ZGVl8dNPP6HRaCx3SOV327xt4MCBJCQkMGLECJt3KOX3t0xISMi1TTdo0ADAsj4tWrTgiSeeYOXKlTbLYzQaeeedd/JcX1vHi6SkJNasWWOVLj9liYuLs/pcqVRSr149qzRF0adPH8LCwlixYkWuzzIyMkhLS8t3XqdPn8bNzY3atWsXuVxCyXhsu4puHyA/+OAD+vXrh1qtpmfPntSvX5/BgwezfPlyS9fLiRMnWLduHb1796Z9+/ZW+VSvXp2XX36ZkydP4ufnx+rVq4mKisq18xdE8+bN2bp1K927d+e5555jy5Yted7SeaeWLVvi4eHB4MGDeeutt1AoFKxfvz7XQUepVLJ06VJ69uxJgwYNGDp0KAEBAfz999/88ccflluJFy5cSOvWrWnUqBGvvPIKgYGBXLt2jR9//NHyFNN+/frx3nvv8fTTT/PWW2+Rnp7O0qVLqV69utXgxXt58sknmTt3Lk888QQDBgwgOjqaxYsXU7VqVauAqGrVqnzwwQdMmzaNNm3a8Mwzz6DVajl58iRlypRh5syZlrQ+Pj488cQTbN68GXd393wFCHf6999/6dixI3369CEoKAgHBwd++OEHoqKiLLfFu7q6Mm/ePIYNG0aTJk0YMGAAHh4enD9/nvT0dNatW4darWbWrFkMHTqUkJAQ+vfvT1RUlOUWzdGjR9+3LCEhIYwYMYKZM2dy7tw5unTpglqt5tKlS2zevJkFCxbw3HPP5VquMM8+uU2v17Njxw46dOhAt27dOHToEHXq1Mkz/aBBgzh06NB9v2/x4sVs2bKFnj17UqFCBSIiIizB8fr16/N88JgsywW+tbtXr15MmzaNQ4cO0aVLl1yf79q1yxJsRUdH8+WXX3Lp0iXGjRuHq6srkP9t87aGDRtSp04dy2DSRo0aWX2e399y3bp1LFmyhKeffpoqVaqQkpLCihUrcHV1tVxcAXzxxRd06dKFZ555hp49e9KxY0ecnJy4dOkSX3/9NREREXk+y6VLly5oNBp69uxpCbRWrFiBr68vERERlnT5KcuwYcOIj4+nQ4cOlCtXjuvXr7No0SIaNGhQoNvk8zJw4EC++eYbXn31VQ4cOECrVq0wm838/ffffPPNN+zZs8fqYYL3snfvXnr27GmXD2YU8qlkGnrsw7Rp0+SyZcvKSqXSqmk0KytLnjJlihwYGCir1Wq5fPny8vjx43M1F1esWFF+8skn5T179sj16tWTtVqtXLNmTXnz5s0FLgs2mje3bt0qOzg4yH379s01YDMvR48elZs3by7r9Xq5TJky8rvvvivv2bPH5oDGI0eOyJ07d5ZdXFxkJycnuV69evKiRYus0ly8eFF++umnZXd3d1mn08k1atSQJ0yYYJXmp59+kuvUqSNrNBq5Ro0a8oYNG/IcnJtXE+6qVavkatWqWepwzZo1NvOQZVlevXq13LBhQ1mr1coeHh5ySEiIzYHG33zzTYGa0u8UGxsrv/HGG3LNmjVlJycn2c3NTW7WrJn8zTff5Eq7bds2uWXLlrJer5ddXV3lpk2byl999ZVVmk2bNlnK7OnpKb/wwgvyzZs3rdLk1VV02/Lly+Xg4GBZr9fLLi4uct26deV3331XDg8Pt5m+Q4cOcpUqVfK9zra+PzY2Vg4KCpL9/f3vOQg5v7dD//TTT3Lnzp1lf39/Wa1Wy+7u7nKXLl1sDl6+U9OmTeWOHTvmb0XuUK9evVwDdG3dDq3T6eQGDRrIS5cuzdUdUZBtU5Zlefbs2TIgz5gxI89y3e+3PHPmjNy/f3+5QoUKslarlX19feUePXrIp06dypVXenq6PGfOHLlJkyays7OzrNFo5GrVqslvvvmmfPnyZUs6W2Xetm2bXK9ePVmn08mVKlWSZ82aJa9evdrqeJifsnz77bdyly5dZF9fX1mj0cgVKlSQR4wYYdVdXpSuIlnOvg191qxZcu3atS37fnBwsDxlyhQ5KSnJku5ex5m//vpLBuSff/7Z5udC6fBYBy5FdTtwEezTli1bZEA+fPhwSRelRAwcOFBWqVTyjh075IiIiHwHv/bCbDbLkZGR8oEDB2S9Xi8PGjSowHl88cUXsouLS77vvCkO8+fPlxUKRa6xI0LJGzVqlNywYcN8jZUR7JdClsVzjwurUqVK1KlTx+pps4L96NGjB3/99ReXL19+LJuFjx07Rrdu3SzP47h69arN1zPYq2vXrlmeu+Pm5sbu3btp3rx5gfKQJIl69erRv3//h/LeHlmWqV+/Pl5eXrmeLSKUrLi4OCpWrMg333xj1d0mlD6P7RiXh+V+D6HT6/U231x7t5iYmDxvMYbsAZUFvX36UfX111/z+++/8+OPP7JgwYJcQUtSUtJ9Bz0XZmC1vWnRogWRkZH8+eefJCYmlrp18vf3Z9++fZaBlIV5GadSqcz1GP4HIS0tjW3btnHgwAEuXLjA1q1bH/h3CgXj5eV1z/dtCaWHaHEpgvy0uNzvSn/w4MGsXbs2X991/fr1PD8PCQmxvLzscadQKHB2dqZv374sW7Ys10vzhgwZct9nS4jdQiiI261D7u7uvP7660yfPr2kiyQIjywRuDxgP//88z0/L1OmTJ6Ppr7T0aNH79lK4OHhkeetpIK1P//8k/Dw8HumKcyj8gVBEIQHTwQugiAIgiCUGo/tA+gEQRAEQSh9HvnBuZIkER4ejouLy2N5Z4kgCIKQf7Isk5KSQpkyZQr80MOCyMzMxGg0FjkfjUZTqIHrpdkjH7iEh4fnegGXIAiCINzLjRs3CvyaifzKzMwksKIzkdF53ymaX/7+/ly9evWxCl4e+cDFxcUFgMMnfHB2frx7xjwe4NVDaeKksP1YeeHxpFaoSroIgh1JTpWo2Oia5dzxIBiNRiKjzVw/XQlXl8Ifl5NTJCoGX8NoNIrA5VFyu3vI2VmJcxE2kEeBiwhcAHBWiHoQcojARbDlYQwtcHZR4OxS+O+ReDyHPzzygYsgCIIg2COzLGEuwn29ZlkqvsKUIiJwEQRBEIQSICEjUfjIpSjLlmaizVwQBEEQhFJDtLgIgiAIQgmQkChKZ0/Rli69ROAiCIIgCCXALMuYi/Dw+qIsW5qJriJBEARBEEoN0eIiCIIgCCVADM4tHBG4CIIgCEIJkJAxi8ClwERXkSAIgiAIpYZocREEQRCEEiC6igpHtLgUwoa1abRvEU2dqhE81zOW82fzfsNnVpbMZ/NT6NgqO33PLjEcPpBplWbh3BSql4+wmrq2i37Qq1EsVq1NpWGzSMpWDqNLj2jO3KcuPpmXTOOW2elDOkWx7666aNgsEu+yYbmmd99PfMBrUjTL1iRTvekN3AKv0ebJcE6eNeSZNitLZvrcBGq1yE7fpFMYPx1It0qTkirxzsQ4qjUJxb3yNdr1DOfUubzztBeiHuDwsQyeGhROuQZXUAVcYsuu1Psuc/DXdBp3DkVf8TLVW1xj7abkXGmWrEmkcpOrOFa6TIvuoZw4m2kjJ/sh6uH+bt9VVJTpcVSigcvhw4fp2bMnZcqUQaFQsGXLFqvPZVlm4sSJBAQEoNfr6dSpE5cuXSqZwt7y47YMZk5LZuTbzmzZ6U3NIAdeHhhPXKztt3zO/ySFrzekM2GaKzv3+dD/RUfeGJ7AnxezrNJVq+7A0dO+lumr770fxuoUyQ9b05kwJYn/jXFh/25fagepef6FWGLyqIsZs5NZtyGNmdPcOXrAj8EDnRg8LI7fL+YEO3t3+vDHWX/L9N1XXgA81UP/UNapMDZvTeXdKXF8MMad43vKUDdIQ88BkUTnUQ+TZyWwakMK8z7y4uzBsgwf6EKfl6M5dyHnhPza2Fj2Hc5g9SIfTu8rS8cQPd37RhAWYXpYq1Vgoh6ypaVL1A/SsGiGb77SXw3NoueL4bRrpefM3gqMGu7OK2Oj2HMgzZJm09YUxk6OZcJYT07tKU+9IC3d+ocRHSvqwd7rQSh+JRq4pKWlUb9+fRYvXmzz89mzZ7Nw4UKWLVvGb7/9hpOTE127diUzs+Qi7DUr0ujT35Fn+zpStbqaqTPd0OkUfLspw2b6rd9l8OpIZ9p10FGhogMDBjkR0kHH6uXWVx8qB/DxVVkmT0/7bwxbuiKVgQOcGNDXiRrV1Xz6sTt6vYIvv063mf6b79IZ/aYLnTvqqFTRgZcGO9Opg44ln+fUhbeXCj/fnOmnnzMJrKSiVQv7faPzwuXJvDTAhcH9XKhVXcNns7xw1CtY91WKzfRffpfKu2+680RHRypXVPPKYFee6KBn/udJAGRkSPywM40ZH3rSprmeKoFqJrzjQZVKapZ/kfsK1F6IesjWraMT08Z583R353yl//yLJAIrqJkz2Yda1TW88ZI7z/ZwZv7yREua+Z8nMOwFV4b2cyOohpals31x1CtY85WoB3uvh3uRimF6HJXo2bFbt2589NFHPP3007k+k2WZ+fPn8+GHH9KrVy/q1avHF198QXh4eK6WmYfFaJT540IWLVtrLfOUSgUt22g5d9p2F4nRKKPVWb/BU6eD0yetW1yuXzXTOjiKDq2iGftmAuFhtq9S7YXRKHP+9yxC2ljXRUhrLSfzqguDjFZ7d10o+O1E3nW3+fsMBvR1eihvai0Mo1HmzO8GOrTJaRFSKhW0b6Pnt9O2uzQMRtv18OuJ7PQmM5jN3DONvRH1UHjHT2XQsY2j1bwu7Rw5fjr7As1olDn9u8EqjVKpoGMbR46dLr3dJHd7HOvBfOuuoqJMjyO7vay/evUqkZGRdOrUyTLPzc2NZs2acezYsRIpU0K8hNkM3j7W1ebtrSQmxnbs2zpEy5oVaVy7akKSZI4eNvDTrkyio3MCk/oN1Xw8142VGzyZMt2NmzfMDHg2jtRU+42n427VhY+3dV34+KiIjrEddLVvp2Pp8lT+u5JdFwcPZ/Ljzkyiom2n37k7g6RkiX59HG1+bg9i482YzeDro7Ka7+etIiqPeugUomfh8iQuX8lCkmR+PpTB1p3pREZnN3e7OCtpHqxl5vxEwiNNmM0yX36Xym+nDURG2WdAK+qh8CJjzPjdXW8+DiSnSGRkSJa6tZUmKvrR6SJ5HOvBLBd9ehzZbeASGRkJgJ+fn9V8Pz8/y2e2GAwGkpOTraaS9OEUd/r3783Rfa/RqFYCUyck8UwfR5R3XESGtNfRrYeemrXUtGmnZcU6T5KTJXbtKJ1XEXmZMdWNyoEOtAiJIqBSOO99kET/vo4o89gKN36dTsf2OgL8VbYTlFKfTvOiaqCaem1v4lLxGqM/iGNQX2eUd2wUqxb5IMtQudENXCtdY8mqJPr0dsqzrkojUQ+CIBTGI3c79MyZM5kyZcoDydvDU4lKBbF3ta7Exkr4+Ng+knp6KZg0cTkqpQdPPfcLzm5/MWdmCuUr5l31rm5KKgU6cP2a/V5FeN2qi5hY67qIiTHnuuq+zdtLxfrVXmRmyiQkSPj7K5k6I5mKFXLXxY2bJg79YmDtSs8HUv7i4u2pQqUiVytTVGzuq8fbfLxUbF7jR2amRFyCRBl/FR9OTyDwjnqoUknNz98HkJYukZwiEeDnwIsjogm8x3ZTkkQ9FJ6/T+5WqagYE64uSvR6JSqVApUKm2n8fEU9lOZ6KOo4Ffttk3+w7Pa6xd/fH4CoqCir+VFRUZbPbBk/fjxJSUmW6caNG8VWJo1GQe26ao4dzelflySZY0cMNAjOe/CoIesvAMqUqYvJBHt2ZtKxszbP9GlpEjeum/D1td+WBo1GQf16ag4fsa6Lw0cMNLlHXUD2GIWAABUmE+zYmUG3Lrpcab7clI63t5IuHXN/Zk80GgWN6mk5cCSndUySZA4eyaBZcN6/MYBOp6RsgAMmE/ywM40eXXN3iTk5KgnwcyAh0czeQxk209gDUQ+F17yxnv1HrAe0/3w4nebB2du+RqMguJ7WKo0kyew/kkGLYPvePwricawHCQXmIkwS9jn270Gz2zA1MDAQf39/9u3bR4MGDQBITk7mt99+47XXXstzOa1Wi1Z77wNlUQwd7sR7YxKpU09NvQZq1q1KJyND5tk+2YMS//d2In7+St4Z5wrA+bNG0gN/p36dliTG1eTlofFIMgx/LWek/cfTkunQSUuZciqioyQWzk1BqVLQo5d974yvDXdm5OgEGtRT06ihhmUrUknPkOnfN/uk8vpb8QQEqJgw3g2A02eMRESaqVNbTUSkmdmfpiBJ8ObrLlb5SpLMV5vS6fe8Iw4O9r9jvvWKK8PejqVRfQ1NGmpZtCKZtHSZQf2y1+ult2Io46/io/ezW49OnMkkPNJMvdoawiPNfPRpApIEY193s+S592A6sgzVqqj576qJ96fFU6OqmsF9XWyWwR6IesiWmiZx+WrO4PtroVmcu2jA011JhXJq3p8eS1ikiXWLsi/ARgxyY/HqRN6bFsvQfq4cOJrO5m2pbF9fxpLH2yM8GDoqiuD6Opo20LFgRQJp6RJD+rk+9PXLL1EPwoNSooFLamoqly9ftvx/9epVzp07h6enJxUqVODtt9/mo48+olq1agQGBjJhwgTKlClD7969S6zMTz6lJz5eYuGnqcTEmKkVpGbVek+8bzWHR4SZrcavGDJlvv7yDPVnQGRYNfz8VXwy3x1Xt5zGrsgIM2NGJpKQKOHpqSS4iYbNW73w9LLfFheAp3s5Ehcv8fGcFKJjsgOSbzZ4W7qKboabrcYrZBpkZsxO5nqoCSdHJZ06aFmy0Ac3N+uGv0O/GLgZZmZA39JxVf18L2di4ySmfpJAVIyZ+rW1bNvoZ+kiuRFmshqTkWmQmTwrgauhJpwdFXTt6MjqhT64u+X83knJEhNmJhAWYcLTXUXv7o5MGeeJWm2/gZyoh2ynzmfS8dkwy/9jJ8cCMKiPC2sW+BMRbeJGWE43cGAFNds3lGHspFgWrkykXIADyz/1o2t7J0uavr1ciI0zM3l2HJExZhrU1rDzy7L4+djttaeoh3yQ5OypKMs/jhSyXHKP3jt48CDt27fPNX/w4MGsXbsWWZaZNGkSy5cvJzExkdatW7NkyRKqV6+e7+9ITk7Gzc2NM3/64exSMj1jWnU9KvjtxmSO42pE3RIpA4CnGNEIgLPCfp8JIzx8akXpPOkJD0ZyihmP6ldISkrC1fXBtOTcPi/99od/kc5LqSkSzWpHPtCy2qMS3WPbtWvHveImhULB1KlTmTp16kMsVfEzZv2LLJtxUHmhUvphlqLuv5AgCIIgCLmIS/CHQCYToym7S0yrqV3CpREEQRDsQVEG5t6eHkcicHlIDFl/AKBVB5VwSQRBEAR7IMmKIk+PIxG4PCQG4+3ApU4Jl0QQBEEQSi8xKu0hMVpaXERXkSAIgkCRu3se164iEbg8JLe7itQOgSgUTshy2n2WEARBEB5lZpSYi9Dx8ei8satgRFfRQ2KW4jCZI1AolGKciyAIgoBcxPEtshjjIjxoBuNFQIxzEQRBEITCEoHLQ5SZdStw0YjARRAE4XEnbocuHDHG5SEyGC8AoFWX3NNzBUEQBPtglpWY5SKMcXlMH/kvWlweIkPW7cClBgrEY+cFQRAEoaBE4PIQmcxhmM3xKBRqNOoaJV0cQRAEoQRJKJBQFmF6PLuKRODykGXebnXR1CvhkgiCIAglSYxxKZzHZoxLglmL0VzycZqT4U+cdCHg0IB487cP97sVhof6ffZKp3hcn35gTatQl3QR7IKEVNJFsBtKcS37WFi8eDGffPIJkZGR1K9fn0WLFtG0aVObabOyspg5cybr1q0jLCyMGjVqMGvWLJ544omHXOocYit9yNJu3RLtJO4sEgRBeKzdHpxblKmgNm3axJgxY5g0aRJnzpyhfv36dO3alejoaJvpP/zwQz7//HMWLVrEn3/+yauvvsrTTz/N2bNni7r6hSYCl4cs7dadRY6amigQV7yCIAiPq+wxLkWbCmru3LkMHz6coUOHEhQUxLJly3B0dGT16tU2069fv57333+f7t27U7lyZV577TW6d+/Op59+WtTVLzQRuDxkBtMNTOZElAotek31ki6OIAiCUMolJydbTQaD7WEBRqOR06dP06lTJ8s8pVJJp06dOHbsmM1lDAYDOp3Oap5er+fIkSPFtwIFJAKXEnC7u8hZDNAVBEF4bEm33lVU2Em6dQovX748bm5ulmnmzJk2vy82Nhaz2Yyfn5/VfD8/PyIjI20u07VrV+bOnculS5eQJIm9e/fy/fffExERUbyVUQCPzeBce5Jm/B03fWucNPWAr0q6OIIgCEIJKPoD6LKfQHfjxg1cXV0t87VabZHLdtuCBQsYPnw4NWvWRKFQUKVKFYYOHZpn19LDIFpcSkCq4XcAnLSixUUQBOFxVbRnuOS0uLi6ulpNeQUu3t7eqFQqoqKirOZHRUXh7+9vcxkfHx+2bNlCWloa169f5++//8bZ2ZnKlSsXb2UUgAhcSkCaMTtwcVRXR6EovshYEARBEPKi0WgIDg5m3759lnmSJLFv3z5atGhxz2V1Oh1ly5bFZDLx3Xff0atXrwdd3DyJrqISYDRHYDTHoFH54KSpTarhTEkXSRAEQXjIzLICs1z4h8gVZtkxY8YwePBgGjduTNOmTZk/fz5paWkMHToUgEGDBlG2bFnLOJnffvuNsLAwGjRoQFhYGJMnT0aSJN59991Cl7uoROBSQtIM59E4dsJJU08ELoIgCI+h24NsC798wd+y2LdvX2JiYpg4cSKRkZE0aNCA3bt3WwbshoaGolTmlCkzM5MPP/yQK1eu4OzsTPfu3Vm/fj3u7u6FLndRicClhKQaz+Ph2AlnbX2iUkq6NIIgCMLjYuTIkYwcOdLmZwcPHrT6PyQkhD///PMhlCr/ROBSQtJuDdB11jQo2YIIgiAIJUKSlUhFuKtIkgve4vIoEIFLCUk1ngdAp66Eg9Idk5RYsgUSBEEQHqqS6Cp6FIi7igrh2y+S6d3qBm2rX+OlXuH8cS7vlxeasmRWLUjk2bY3aVv9Gi8+Ecaxg+mYpSQysq4CcOynqgx9KpwOta/TLTiUd4dHcf2/rIe1OkWydm0azZpHU7lKBD16xHL2rDHPtFlZMvPmpdCyVXb6Tp1jOHAgM1e6iAgzb76ZQO06kVSpEkHHjjGcP593vvbg8zUpBDUNwyswlHZPRnLqbN7bRFaWzMy5SdRtEY5XYCjNO0Ww90CGVRqzWWbq7ERqNwvDu/IN6rYI5+N5Sch2foW1ZE0SVZtcx7nSFVp2v8mJs7l/39uysmQ+mhtPjebZ6Rt1vMGe/elWaVJSJcZMiKVK4+u4BF6hTc+bnDyXd572QtQDHD6WwVODwinX4AqqgEts2ZV632UO/ppO486h6CtepnqLa6zdlJwrzZI1iVRuchXHSpdp0T30nnUrPJrsPnBJSUnh7bffpmLFiuj1elq2bMnJkydLrDx7t6ex4KN4ho1yZ92PZagWpOHtQVHEx9p+4/CyOQls+TKFsVM8+ernsjz9ggvjRsTwz0UDaYZzAOiU9Xl2oAsrfwhg4Xp/TCYYNSiSjHT7fmvt1m0ZTJmazJjRzuze5U1QkAMvvBhPbB51MXt2Chs2pDNtqisH9vswcKAjw4YlcPFiTpCWmCjR++k4HNQKNqz35MABHyZOdMXNzX431W+3pjF+SgLjx7hxZE8AdYLU9B4QTXQe9TB1ViKrN6Qy5yMPTh0sw8sDnen/ciznL+QEZ3MXJ7NyXSqfTvfk9KEApn7gzvwlySxddf+Df0n5Zmsq/5scy4djPTixpxz1gjQ82T+C6FiTzfQTZ8WzYn0y86d78/uh8rwyyJXnXo7k7IWcoG/E2Gj2HU5n7SJfzu4vT+cQR57oE0FYhO087YGoh2xp6RL1gzQsmuGbr/RXQ7Po+WI47VrpObO3AqOGu/PK2Cj2HEizpNm0NYWxk2OZMNaTU3vKUy9IS7f+YXnWrb2TyLmzqDCTfZ8hHhyFbOeXcH379uXixYssXbqUMmXKsGHDBubNm8eff/5J2bJl77t8cnIybm5u7LtQASeXop/8XuoVTlB9Le9M9QJAkmR6tbjJ84NdGPS6e670PZreYMhIN54blPNUw3GvRqPVKVi2cgyVvKaSmHGQf6KHWj5PiDPTLfgGSzf507CZLleehVXeIe9WgMLo0SOW+vXVTJ/uBmTXRZMm0Qwd6sTIkc650jcKjuKtN50ZMsTJMm/48AR0Oli0yAOAGTOSOXnKyA/fexdrWe/kpizel1u2ezKSRvU1zJ3hCWTXQ43G4bw61Jmxb7rlSl+1YRj/e8uVEUNdLPMGDItBr1Ow6rPs9X5uUDS+3iqWzPXKM01RaRXFWw8tu9+kcQMtC2f4ANn1EBh8nTdecuPdNz1ypa/Q4BrjRnnw+tCcOurzciQ6nYIvFvuRkSHhUe0q36/1p3unnG2maZcbPNHBkanjvHLlaQ9Kcz0oH9C1rCrgEt+tDqB3t9zHhdvGfRTLzp/T+P1gRcu8/q9GkJgkseur7GN9i+6hNG6gswRDkiRTMfgqI19y5703PYulrMkpZjyqXyEpKcnqabTF6fZ5aemZJuidCz9iIyPVxGuNTj7Qstoj+72MBTIyMvjuu++YPXs2bdu2pWrVqkyePJmqVauydOnSh16eLKPMPxeNNGmVE0wolQqatNJx4UxeL7WS0Wit77XX6hScP5lJijH7teDZA3Rz0qSmZMfRru72+/MYjTK/X8iiTZucB+gplQpat9Fy+oztbh2DQUZ7V13odHDiZE6Ly097DdSrp+GVEQnUqx9Fl64xbNyYfndWdsNolDn7u5H2bay3ifZtdJw4bbsejEYZ3V31oNcpOHYiZxtq1ljLwSOZXLrVZXjhDyPHThjo0kH/ANai6IxGmTO/G+jYxtEyT6lU0KGNnuOnbTflG2zUg06n4NcT2elNZjCbsVFXSo6esM/uAVEPhXf8VIZVvQF0aedoqTejUea0jbrt2MaRY3nUrfBost8zI2AymTCbzXbzZsrEBDNmM3h6q6zme/ioiIux3S3QvK2er1YmE3o1C0mS+e2XDA7uTicuxkyG8W8kKRMHlTs6h0Ag+wpi/tR46jXWUqWG5oGvU2HFx0uYzeDtY70J+XgriYm23YDZLkTL8hVpXLliQpJkDh82sHNXJtHROXUXGmpi/fo0AgNVfLnRk0EDnZg4MYlvNttn8BIXn71N+PpYbxO+3kqi8tgmOoboWLQ8hctXsreJ/Ycy2LYzg8g76mHsSFee6+VEo7YRuFcIpWWXSN4Y7kLfZ5xs5lnSYvOoBz8fB6v1ulOXdo4s+DyRS1eMSJLMz4fS2bIzjYjo7GZ/F2clzRtrmT4vgfBIE2azzMZvUzh+OjPPPEuaqIfCi4wx42ej3pJTJDIyJEvd2koTFV06u4puv6uoKNPjyK7X2sXFhRYtWjBt2jTCw8Mxm81s2LCBY8eO5flmSoPBkOsV3yVp9CRPyldyoF/HMNpUu86nk+Lo8bwzSoUCGROpxgsAOGsbAvDJhHj++8fIR4t8SrLYD8TUqa4EBqoIaRdDpcBIPvgwib59HVHecSEpSVCnjprx41ypU0fNiy86MmCAI+vX22fgUhizp3lQNdCBRm0j8Kh4g7EfJPBiXyeUd1TEd9vS2fR9GqsXe3Fkjz/LF3ixcFkKG7+x3zEuBTV3qjdVA9XUaXMDxwpXGPVBLIP7uVjVw9pFfsgyVGx4HaeKV/hsVRJ9eztbbTOlnaiHx5eEosjT48iuAxeA9evXI8syZcuWRavVsnDhQvr372/1ZL87zZw50+r13uXLly+2srh7qFCpyDUQNyHGjNddVwG3eXipmL3CjwN/VuCHo+XYtK8sekcFZSpk92umGm51F2kbMmdiHEf3p7Pka398A+z7TnVPTyUqFcTGWLeuxMRK+Pja/m28vFSsXuXJpX/9+e24L4cP+eDkqKBCxZx19fVVUb2a9bpXreZAeJh9Xll6eWZvE9F3ta5Ex0q5rgxv8/FS8fUaH6Ivl+evE2U480sAzk4KKlXIWe8PpyUyZqQrz/d2ok4tDf2fc+KN4S7MWVSygXhevPOoh6gYE/6+edSDt4rv1gaQ9F8g/52syMVfyuPspKTyHfVQpZKa/T+UJfG/QK6ersixXeUwmWQCKxbv+JziIuqh8Px9VLlaKaNiTLi6KNHrlZa6tZXGz9e+j5d5ES0uhWP3a12lShUOHTpEamoqN27c4MSJE2RlZeX5Zsrx48eTlJRkmW7cuFFsZVFrFNSoo+Hkrzn9qZIkc/LXTOo2uvfLErU6Jb7+DphNcHB3Om07Z/fT3n7cf0ZCPQ7tSeezL/0pU97+D0YajYJ6ddUcOZIzLkOSZI4cMRDc6N5dXDqdgoAAFSYT7NyZSZcuOXXXpLGa/65YN/teuWKmbDnbB/2SptEoaFhPw8Ej1tvEwSOZNA2+fz2UCXDAZIKtOzPo0TVn/EpGpszdsblKBfY6lF6jUdConpb9R3JaxiRJ5sCRDJoH33uAuU6npOytevjhx1R6ds3dHebkqCTAz4GERDM/HcywmcYeiHoovOaN9Vb1BvDz4XRLvWk0CoJt1O3+Ixm0uE/dCo+WUhOmOjk54eTkREJCAnv27GH27Nk202m12jxf6V0c+g9zY9rYGGrV1RLUQMOmVclkpss8+Xz2HSJTxsTg4+fA6+9l3z1w8ayBmCgT1YM0xESaWTk/EUmCF0dkjwBPNWYHLuXLBjFjcSBOTpnE3eqvdXJVotPZb2w5/BUnRo9OpF59NQ0bqFmxMp2MDJm+fbNPwG+NSiTAX8n48dnreuaMkchIM7Vrq4mMlPh0bgqSDK+/lnOnwfDhTvTqHcfCRan07KHj3LksNm5MZ/as3Hfn2IuRr7gw4u04GtXXENxQy+IVKaSnS7zYL3u9hr8VSxl/B6a87w7AyTMGwiPN1KutITzSxIxPk5Akmbdfz7kroFtnPZ8sTKZ8WQdq1VBz/qKRRZ+nMKif/Z6o3h7hzkujogmur6VJAx0LVySRli4zuF/2vjHkzSjK+jsw/YPsu2B+O5NJeISJ+nW0hEeYmPppApIE77zhbsnzpwPpyDJUr6rmv6tZvDctjhpV1Qzp52KrCHZB1EO21DSJy1dzBt5fC83i3EUDnu5KKpRT8/70WMIiTaxb5A/AiEFuLF6dyHvTYhnaz5UDR9PZvC2V7evLWPJ4e4QHQ0dFEVxfR9MGOhasSCAtXWJIv9J5R03RH0Bnv+eHB8nuA5c9e/YgyzI1atTg8uXL/O9//6NmzZqWN1k+bJ17OpEYb2bFvATiYsxUq6Vh3jo/S1dRZJgJxR3djkaDzOdzEgkPzULvpKRlez2T5nnj4padPsscw9WrVwkMDOTrpRWtXjf+4Sde9Hjefg9MvZ7SEx8nMWdOKjExZmoHqdmw3hOfW3URHma2ajUwGGRmf5JKaKgJR0cFHTroWLjA3eoZLQ0aaFi50oOPZ6Ywf34K5curmDLZlWeesc+7aQCe6+VEbJzER58kERWTHZD8sNHX0lV0I8xsNV4h0yAzdVYi10JNODkq6dpRx8qFXrjfUQ9zPvJg2uwkRo+PJyZOIsBPxUsDnRk/2n4DuD69nImJMzNldgKRMSbq19ay48sA/HyyDzM3wkxW9WDIlJk0K54roSacHRU80dGRtYt8cXfLaV1LSpH4cEYcNyNMeLqrePpJJ6aN80Sttt++fVEP2U6dz6Tjs2GW/8dOjgVgUB8X1izwJyLaxI2wnNbVwApqtm8ow9hJsSxcmUi5AAeWf+pH1/Y5wXrfXi7ExpmZPDuOyBgzDWpr2PllWUvdljaSrEAqwtuhi7JsaWb3z3H55ptvGD9+PDdv3sTT05Nnn32W6dOn4+aWvwN4cT/H5UGo4j0Pb6fe3EycS1jSogf2PcX9HJfSqrif41JaFfdzXITS70E9x6U0eZjPcZl9sk2Rn+PybpNfHrvnuNh9mNqnTx/69OlT0sV4oFIzz+Dt1BtnbeOSLoogCILwkEhF7CqSHtNA0+4Dl8dBiuE0AC7ahmSPl35cH+QsCILw+Cj626Efz8Dl8VxrO5Oe9Q9mKQWV0gVHdY2SLo4gCIIg2C0RuNgFMym3nufiIrqLBEEQHgtmFEWeHkcicLETKYZTADjrROAiCILwOLjdVVSU6XH0eK61HUrNPAmIFhdBEARBuBcxONdOpBrPIclZaB3KoFGVxWgOu/9CgiAIQqllhiJ199jni1AePNHiYickOZN040UAXHXNSrg0giAIwoMmuooK5/FcazuVbOkualLCJREEQRAeNPGSxcJ5PNfaTqUYTgDgomtawiURBEEQBPskxrjYkRTDSWRZQq+ujIPSG5MUW9JFEgRBEB4QGQVSEca4yOJ2aKGkmaVk0rP+BsQ4F0EQhEed6CoqnMdzre1YSmZ2d5EIXARBEAQht8emq0ihkFEq7PpF2ACkGo4BQ3DRNi328qbZ/+o/FM72/UL0h8Ys3okFgOmxvak0N71CW9JFeKxIsgJJLnx3T1GWLc0em8CltLg9QNdRUwMHpRcmKa6ESyQIgiA8COYivh26KMuWZo/nWtsxk5RAujF7nIuLVnQXCYIgCMKdROBih1IMxwBw0TUv4ZIIgiAID8rtrqKiTI8jEbjYoeTM4wC46lqUcEkEQRCEB0VCWeSpMBYvXkylSpXQ6XQ0a9aMEydO3DP9/PnzqVGjBnq9nvLlyzN69GgyMzML9d3FQQQudijFcPzW81yq4aD0KeniCIIgCI+ITZs2MWbMGCZNmsSZM2eoX78+Xbt2JTo62mb6L7/8knHjxjFp0iT++usvVq1axaZNm3j//fcfcslziMDFDpmlJNKz/gREq4sgCMKjyiwrijwV1Ny5cxk+fDhDhw4lKCiIZcuW4ejoyOrVq22m//XXX2nVqhUDBgygUqVKdOnShf79+9+3leZBEoGLnUrJ/BUAV13LEi6JIAiC8CAU1xiX5ORkq8lgMNj8PqPRyOnTp+nUqZNlnlKppFOnThw7dszmMi1btuT06dOWQOXKlSvs3LmT7t27F3Nt5J8IXOxUsiVwaVXCJREEQRAeBLmIb4aWbz05t3z58ri5uVmmmTNn2vy+2NhYzGYzfn5+VvP9/PyIjIy0ucyAAQOYOnUqrVu3Rq1WU6VKFdq1a1eiXUXiOS52KsVwAknOQutQHq2qPAbzjZIukiAIgmCHbty4gaurq+V/rbb4HiR48OBBZsyYwZIlS2jWrBmXL19m1KhRTJs2jQkTJhTb9xSECFzslCSnk2Y4g4uuGa661sSkfVXSRRIEQRCKkRkF5iK8KPH2sq6urlaBS168vb1RqVRERUVZzY+KisLf39/mMhMmTGDgwIEMGzYMgLp165KWlsYrr7zCBx98gFL58DtuRFeRHUvOPAqI7iJBEIRHkSQXdZxLwb5Po9EQHBzMvn37csogSezbt48WLWzfCJKenp4rOFGpVADIJfT6FBG42LHkzCPA7cBF/FSCIAhC0YwZM4YVK1awbt06/vrrL1577TXS0tIYOnQoAIMGDWL8+PGW9D179mTp0qV8/fXXXL16lb179zJhwgR69uxpCWAeNnE2LITN61Lo1eomratfZ2ivCP44Z3sEN4ApS2blgkSebhNG6+rXGfBEOMcOZlil+XZ9CgO6htO+dijta4fyUu8Ifj2QQarxPCYpGQeVB46a2g96tQplw9o02reIpk7VCJ7rGcv5s8Y802ZlyXw2P4WOrbLT9+wSw+ED1g8xWjg3herlI6ymru1sP1/AnqxYm0LdZuH4Vr5Bhx5RnD6b9zaRlSUza14S9Vtmp2/VKZKfD1hvE2azzEezk6jbPBy/Kjep3zKc2fOSSuwKJ7+WrUmmetMbuAVeo82T4Zy8Tz1Mn5tArRbZ6Zt0CuOnA+lWaVJSJd6ZGEe1JqG4V75Gu57hnLrH/mYvPl+TQlDTMLwCQ2n3ZCSn7lMPM+cmUbdFOF6BoTTvFMFeG9vD1NmJ1G4WhnflG9RtEc7Hdr49HD6WwVODwinX4AqqgEts2ZV632UO/ppO486h6CtepnqLa6zdlJwrzZI1iVRuchXHSpdp0T2UE2dL7kFoRVWUgbm3p4Lq27cvc+bMYeLEiTRo0IBz586xe/duy4Dd0NBQIiIiLOk//PBDxo4dy4cffkhQUBAvv/wyXbt25fPPPy+2eigouw5czGYzEyZMIDAwEL1eT5UqVZg2bVqJ7qx7t6cx/6N4ho1y54sdAVSrpeGtgdHEx9p+w+zSOYn8sDGVd6Z4sunnMjzzggvvvhLDPxdzTvB+ASreeM+DdTsCWLs9gMYtdbwzPJr//s0g5dZTdN10bR7K+hXEj9symDktmZFvO7Nlpzc1gxx4eWA8cXnUxfxPUvh6QzoTprmyc58P/V905I3hCfx5McsqXbXqDhw97WuZvvre+2GsTqF9tzWd96ck8t4YVw7v9qdOkJqnX4ghJo96mDY7iTUb0vhkmge/HQhg6EBnXhgWx/k7tol5i1NY9UUqcz7y4MRBf6a8786CpSl8vvr+B/+SsnlrKu9OieODMe4c31OGukEaeg6IJDqPepg8K4FVG1KY95EXZw+WZfhAF/q8HM25Czkn+dfGxrLvcAarF/lwel9ZOobo6d43grAI08NarQL7dmsa46ckMH6MG0f2BFAnSE3vAdF51sPUWYms3pD9W586WIaXBzrT/+VYzl/I2R7mLk5m5bpUPp3uyelDAUz9wJ35S5JZusp+t4e0dIn6QRoWzfDNV/qroVn0fDGcdq30nNlbgVHD3XllbBR7DqRZ0mzamsLYybFMGOvJqT3lqRekpVv/MKJj7Xd7uBcJRZGnwhg5ciTXr1/HYDDw22+/0axZznvxDh48yNq1ay3/Ozg4MGnSJC5fvkxGRgahoaEsXrwYd3f3Iq594dl14DJr1iyWLl3KZ599xl9//cWsWbOYPXs2ixYtKrEyfbkymd79XOjZx5nK1TWMm+GJTq9g+ze2DyC7vk9jyBtutOqgp2wFNc8NdKFlez0bV+RcSbTp5EirDnoqBKqpWFnN6+964Oio5OIZA0mZhwFwtcPAZc2KNPr0d+TZvo5Ura5m6kw3dDoF327KsJl+63cZvDrSmXYddFSo6MCAQU6EdNCxerl13akcwMdXZZk8Pe16M2XxihQGD3Dmxb7O1KyuZv7HHjjqlaz/Os1m+k3fpTH2TRe6dNQTWNGBYYOd6dxBx2efp1jSnDhloHtXPV076alY3oHePRxpH6Lj9Lm8W7RK2sLlybw0wIXB/VyoVV3DZ7O8cNQrWPdVis30X36XyrtvuvNER0cqV1TzymBXnuigZ/7nSQBkZEj8sDONGR960qa5niqBaia840GVSmqWf5H7StxefLY8hSEDnBnYz5la1dUsnOWJXq9k/Ve2jxFffZfOO2+60vXW9jB8sAtdOuhY+HnOOv52ykCPrnqeuLU9PN3DkQ4hOk7bcetTt45OTBvnzdPdnfOV/vMvkgisoGbOZB9qVdfwxkvuPNvDmfnLEy1p5n+ewLAXXBnaz42gGlqWzvbFUa9gzVf2uz0Ixc+uzwi//vorvXr14sknn6RSpUo899xzdOnSpcSe2JdllPn7gpEmrXWWeUqlgiatdVw4k9cDf2Q0d92ZptUpOH/KdvOm2Szz07Y0MjIk6jbSkpz5CwDO2mCUCsfiWZFiYDTK/HEhi5atc1ZOqVTQso2Wc6dtn1yNRhmtzvoKQaeD0yetW1yuXzXTOjiKDq2iGftmAuFhtq9U7YHRKHPudyPt2ljXQ7vWWk6etr1NGAyg1VrXg16n4PiJnPRNG2s5fCSTy/9l182FP4wcP2Ggc3sd9sholDnzu4EObfSWeUqlgvZt9PyWVz0Y5Vz1oNMp+PVWPZjMYDbnrqs709gbo1Hm7O9G2rexPka0b6PjxD32C52N7eHYHevYrLGWg0cyuXTH9nDshIEuHfQ8Ko6fyqBjG+tjXJd2jhw/nX2sNBplTv9usEqjVCro2MaRY6dLZ3dRSTw591Fg14FLy5Yt2bdvH//++y8A58+f58iRI3Tr1q1EypOYYMZsBk9v6wFJnt4q4mJsn1ybt9Xx5coUQq9mIUkyv/2SwYHd6cRGW6e//LeRkFqhtK4WyscfxDH7c18qV9dgMF0nM+s6SoUGFzt6/H9CvITZDN4+1puQt7eSmBjJ5jKtQ7SsWZHGtasmJEnm6GEDP+3KJPqOuqjfUM3Hc91YucGTKdPduHnDzIBn40hNtZ1nSYu7VQ++d20TPj4qovKoh47tdCxensJ/V7K3if2HM9m+M4PIO+phzEgXnunlSOOQSLwq3qBN1yheG+ZCn2ecHuj6FFZsfPa+4etjXQ9+3iqi8tg3OoXoWbg8icu36uHnQxls3ZlOZHR2s7+Ls5LmwVpmzk8kPNKE2Szz5Xep/HbaQGSUfQazcXnUg6+3Ms966BiiY9HyFEs97D+Uwba7toexI115rpcTjdpG4F4hlJZdInljuAt97XR7KIzIGDN+d28/Pg4kp0hkZEiWbcxWmqjoUtpVVAJjXB4Fdv0cl3HjxpGcnEzNmjVRqVSYzWamT5/OCy+8kOcyBoPB6nHHyckl24Q4drIXp37uStw/jXnpqbG4exvo+bwT27+x7kaoWFnNhl0BpKZI7N+ZzpSxsSzb5Efl6hqSMw+jUw/ETRdCUsa+PL7J/n04xZUP3k3iiXYxKBRQoaKKZ/o48t2mnAGZIXe0KNSslR3ItGsRza4dmTzfz35anIpi1lR33vpfAo1DIlEoILCiAy/0dWLDppxt4vvtGWz+Pp2Vi72oVd2BC39kMW5SIgF+Kgb0eTROVp9O8+L1d2Kp1/YmCgVUrqhmUF9n1m3K6VJZtciHEWNiqdzoBioVNKyroU9vJ87+br9dZgU1e5oHb74TT6O2EbfqwYEX+zqx/o7t4btt6Wz6Po3Vi72oVUPNhT+yeG9SAgF+Kl7ok7+uGEF4VNh14PLNN9+wceNGvvzyS2rXrs25c+d4++23KVOmDIMHD7a5zMyZM5kyZcoDKY+7hwqVilwDceNjzXj52L4tzMNLydjRk9A6lKNem30oHX/js48TKVPBuurVGgXlK6kBqFVXy5/njWxak8L4mV4kZR7C12Ugbrq2D2S9CsPDU4lKBbF3tSrExkr4+Ni+CvD0UrF0lSeGTJmEBAk/fyVzZqZQvmLem6Grm5JKgQ5cv2afV1Ret+rh7oGXMTFm/PKoB28vFV+u9iYzUyY+wUyAv4pJM5KoVCFnG5o4LZHRI114rld2sFa7loYbN03M/SzZLgMXb8/sfSP6rlaFqNjcV9G3+Xip2LzGj8xMibgEiTL+Kj6cnkDgHftGlUpqfv4+gLR0ieQUiQA/B14cEU3gPbaZkuSVRz1Ex0r3rIev1/hYbQ8TpydS6Y56+HBaImNGuvJ87+zfvk4tDaE3TcxZlPzIBC7+Prlb56JiTLi6KNHrlahUClQqbKbx87XP7eF+JHLeN1TY5R9Hdt3O9L///Y9x48bRr18/6taty8CBAxk9enSe72EAGD9+PElJSZbpxo3ie1S+WqOgZl0NJ4/m9KdKksypo5nUbZT3I5ZTDWcAKBfQFLMJDuxKJ6TLvfumJUnGaMy+eyo58xiSbESnroTWoWIxrEnRaTQKatdVc+xoTuuWJMkcO2KgQbDmnstqdQr8A1SYTLBnZyYdO+ddd2lpEjeum/D1LZnnBdyPRqOgQT0Nh45Y18OhIwaaBN/7sds6nYIyAQ6YTLBtZwbd79gm0jNkFArrg5JSpUCyzx4zNBoFjeppOXDEet84eCSDZvetByVlb9XDDzvT6NE1d8uak6OSAD8HEhLN7D2UYTONPdBoFDSsp+FgrnrIpOl99os7t4etOzPo0TVne8jIlLn7AaUqFdjx3dAF1ryxnv1HrG+H//lwOs2Ds1thNRoFwfW0VmkkSWb/kQxaBNvn2K/7kYt4R5H8mAYudh2m5vXEPukeR2+tVlus72m424BhrkwZG0utehpq19fy9epkMtJlejyffdUzaXQsvv7ZtzcDXDxrIMnrGJ1aP4WU2Yi3BkUjSTBwhJslz8WzEmjRTo9/GQfS0yT2bE3jzHEDC9dnp5HkNFINJ3HVtcJN157o1LUPbP0KYuhwJ94bk0idemrqNVCzblU6GRkyz/bJPuD+7+1E/PyVvDMu+1HU588aiYw0UytITVSkxKJ5KUgyDH8t54rx42nJdOikpUw5FdFREgvnpqBUKejRy34PTG8Md+G10XE0rKchuKGGJStSSMuQeLFv9tXxiLfiCAhQMXm8OwCnzhgIjzRTt7aGiEgzMz9NQpJkRr2e88jubp11fLowmfJlVdSsoeb3i0YWL0/hxX7219py21uvuDLs7Vga1dfQpKGWRSuSSUuXGdTPBYCX3oqhjL+Kj973BODEmUzCI83Uq60hPNLMR58mIEkw9vWcfWPvwXRkGapVUfPfVRPvT4unRlU1g/u6lMg65sfIV1wY8XYcjeprCG6oZfGKFNLTJV7sl72dD38rljL+Dkx53x2Ak7e2h+x6MDHj1vbwttX2oOeThcmUL+tArRpqzl80sujzFAbZ8faQmiZx+WrOwPtroVmcu2jA011JhXJq3p8eS1ikiXWLsh81P2KQG4tXJ/LetFiG9nPlwNF0Nm9LZfv6MpY83h7hwdBRUQTX19G0gY4FKxJIS5cY0u/+j7u3R3e+4bmwyz+O7Dpw6dmzJ9OnT6dChQrUrl2bs2fPMnfuXF566aUSK1Pnnk4kxJlZPjeRuBgz1YM0LPjC19JVFBVusroyMhpkFs7ZT6fW4KZvhG+AA1Pme+HilpMoPtbMlDGxxEabcXZRUrWmhoXrfWl2xx0aSRkHswMXfTu7CVyefEpPfLzEwk9TiYnJDkhWrffE+1ZdRISZUd6xXxkyZeZ/ksqNUBOOjgpCOuj4ZL47rnfURWSEmTEjE0lIlPD0VBLcRMPmrV54etlniwvAs70ciYs3M2NOElEx2QHJ9xt8LAM0b4abrbaJTEP2w+WuhZpwclTSpYOO5Qu9cL+jHmZ/5MH02UmMfT+BmDgJfz8lQ1905r3R9nuAfr6XM7FxElM/SSAqxkz92lq2bfSzdJHcCDPlqofJsxK4GmrC2VFB146OrF7og7tbzm+dlCwxYWYCYREmPN1V9O7uyJRxnqjV9nvAfq6XE7FxEh99kr091Kut4YeNvnfUgxnlHTtGpkFm6qxEy/bQtaOOlXdtD3M+8mDa7CRGj48nJk4iwE/FSwOdGT/aLdf324tT5zPp+GyY5f+xk2MBGNTHhTUL/ImINnEjLKcLOLCCmu0byjB2UiwLVyZSLsCB5Z/60bV9TnDWt5cLsXFmJs+OIzLGTIPaGnZ+WRY/H7s+lQnFTCHb8aMXU1JSmDBhAj/88APR0dGUKVOG/v37M3HiRDSaeze73pacnIybmxv7L5bH2aWkesZUNCr3OyqlExcjupKR9U+Bc9A5VKVumZ+RZANnb9ZHkgt++5+78tEZ0FgUfkpxkAPQKkQ9AJiwzzuUSoJe8eBaq0uL5BQzHtWvkJSUlK8XFxbqO26dl57eOxS1U/7OZbZkpRn5ofOaB1pWe2TXRy4XFxfmz5/P/PnzS7ooRWQmzXgOV10rnLWNCxW4ZJouYzDdROtQDhdtS5Iy9z+AcgqCIAgPi+gqKhy7Hpz7KEkxnALARdu40HkkZRwAwF3fvljKJAiCIAiljQhcHpJUw0kAnLVNCp1HYkZ2K4ubvkOxlEkQBEEoOSX1rqLSTgQuD0mq4SyybELrUA6NKqBQeSQbfsUsZaB1KIteXbOYSygIgiA8TLe7iooyPY5E4PKQSHIa6cY/gcK3usiygRTDUQDcRauLIAiC8BgSgctDlGLIfjmki7ZpofO43V3kru9ULGUSBEEQSoZocSkcu76r6FETl7aFjKx/SM48Vug8Em+9q8hJ0wAHpTcmKba4iicIgiA8ROKuosIRLS4PUXrWRWLTNmM03yx0HlnmKNIM51EolKK7SBAEQXjsiMClFErI+BkAd33nEi6JIAiCUFiiq6hwROBSCiVm/ASAm64NSsW9X9YoCIIg2CeZot0SbbePvX/AROBSCmVk/UOmKRSlUoerrm1JF0cQBEEoBNHiUjgicLELBd/4EtOzW108HLsUd2EEQRAEwW6JwKWEeDo+hYf+CZw09aAQDX4JGXuA7NuiFeLmMEEQhFJHtLgUzmNzxos2uZBqUpV0MSzK6Z/CRV2FyPQDeLi8RUTaz8Sk/4pRSgak+2dgukRlczxalSdZ6vbEZvx2/2Uckotc7keBj1K8DRggQ84q6SLYBWeleCOyUDLE7dCFI1pcHrLbrSPJxsuEp+3hr/j5/JvwOWqlCy3LrKGm55v5zEkiMi37YXQBTuLuIkEQBOHxIAKXh0zGBEBYyg78nTrioa2Pr2NrfPWtyTTH4qtvme+8ItKyH0bn79ge8VMKgiCULqKrqHAem64iexLo+iLuujo4OZSnpudbpBqvEJ3xK8nGf8gwRZE9WPf+415iM34jy5yMzsEHT10D4jPPPPCyC4IgCMVDlhXIRQg+irJsaSYClxLgoHQkMfMijg7+3Ezdzo2ULQAoUaNQOJDfwboyJiLTD1HepScBTp1F4CIIgiA88kTgUgKuJn+FSUohNuM3/J3aUdf7Q3z1rVEq1ESlHyI24yThabvylVdE2t5bgUsn/oibTWHuUBIEQRAevtsPkivK8o8jMTCiBJikFJSoqe7xKuVdeqNAyfnYyRwKe56YjGNU9xiBWumWr7xiMn4lS0pB7+CHh7b+Ay65IAiCUFzEGJfCEYFLCansPhijOZ5DN5/l99ipxGYcx2hOICJtL+mmm/g5tslXPpJsJDLtIABlnLs+wBILgiAIQskTgUsJcVFXJsn4N2Y58465Mm6aWkiykdSsa/nOKyIt+ym6ZZw6I35SQRCE0uH24NyiTI8jcZYrIXGZpwlw6oSzujI++hZUdhtIA5/pNPCdTnpWGImGP/KdV0z6rxjNyegcfPHSNXyApRYEQRCKS0l1FS1evJhKlSqh0+lo1qwZJ06cyDNtu3btUCgUuaYnn3yysKtdZGJwbgkJS/0RBSqaBywj1XiNNFMoKcZLXElaR7Lx3wLlJZFFZNrPVHB9hjLO3YjLPP2ASi0IgiAUl5K4HXrTpk2MGTOGZcuW0axZM+bPn0/Xrl35559/8PX1zZX++++/x2g0Wv6Pi4ujfv36PP/884Uud1GJFpcSYpYzuZ7yDT+HduF45CtcjP2Yq0kbyTTF4qNvhd6hbIHyC0vbDUCAk3h3kSAIgmDb3LlzGT58OEOHDiUoKIhly5bh6OjI6tWrbab39PTE39/fMu3duxdHR8cSDVzEGc4OuGvrUdH1Wbx1zdA6eJNivESK8Qopxkv8l7Q2X3nEZZzEYIpD6+CFt74ZMRlHH2yhBUEQhCKRi3hn0O0Wl+Rk6/fQabVatNrc7+AyGo2cPn2a8ePHW+YplUo6derEsWPH8vWdq1atol+/fjg5ORW63EUlWlwK4cf1cQxr+zfP1rrIO89c5t/z6fdMv3VNLK91+ofngi7yUqu/WflROEZD9osUXTU1qeH2Nv+eS6df3xdx1Oto0aIpR89uoLxL73yXScZM+K1BumWduxd63Qpq87oUerW6Sevq1xnaK4I/zhnyTGvKklm5IJGn24TRuvp1BjwRzrGDGVZpvl2fwoCu4bSvHUr72qG81DuCXw9k5JGj/VixNpV6zSLwr3yTTj2iOH3WmGfarCyZ2fOSadgyO33rTlH8fCDTKk29ZhF4lL2Za3rn/YQHvSpFUtz1YDbLTJ+dRP3mEQRUuUnDlhF8Mi8ZWbbv5xUtWZNE1SbXca50hZbdb3LibGaeabOyZD6aG0+N5tnpG3W8wZ791seUlFSJMRNiqdL4Oi6BV2jT8yYnz+Wdpz04fCyDpwaFU67BFVQBl9iyK/W+yxz8NZ3GnUPRV7xM9RbXWLsp94thl6xJpHKTqzhWukyL7qH3rFt7JwOyXITpVj7ly5fHzc3NMs2cOdPm98XGxmI2m/Hz87Oa7+fnR2Rk5H3Le+LECS5evMiwYcOKuOZFY/eBS6VKlWwODHrjjTdKpDy/7Ehk1YwI+r3ly7xtValUU8ekIVdJjDXZTH9oWyJfzI6k31t+LP6pOm9+XJYjPyaxfk4koKSGx+usW7OBl15+mRZ9rrNwZzUatHHm5Se/xWjMxF1bN99lC0vdCUCAUwdUCl1xrO497d2exvyP4hk2yp0vdgRQrZaGtwZGEx9r++3LS+ck8sPGVN6Z4smmn8vwzAsuvPtKDP9czDm5+QWoeOM9D9btCGDt9gAat9TxzvBo/vs37xNgSft+azofTknkvTGuHNztR50gDc++EENMHvXw0ewk1m5IZdY0d44f8GfoQCcGDovl9zvqYf9OX/4+G2CZfvjKG4DePfQPZZ0K40HUw/zFKaz+Io3ZH7nz20F/Jr/vxsKlKSxfff+TYEn5Zmsq/5scy4djPTixpxz1gjQ82T+C6DyOERNnxbNifTLzp3vz+6HyvDLIledejuTshZyLgBFjo9l3OJ21i3w5u788nUMceaJPBGERtvO0B2npEvWDNCyakXvchC1XQ7Po+WI47VrpObO3AqOGu/PK2Cj2HEizpNm0NYWxk2OZMNaTU3vKUy9IS7f+YXnW7ePixo0bJCUlWaY7W1SK06pVq6hbty5NmzZ9IPnnl90HLidPniQiIsIy7d27F6DE+te2ro6lS18POj3nSYVqOl7/qCxavZKfv423mf6vM2nUCnYk5Cl3/MppaNjGhTY93fn3fAYgoUTPju9OM+Q9f+o0daJMJS0vj23I3Pmz+fffS6Qar+S7bAmG86Rl3cRB6YSfY7viWeF7+HJlMr37udCzjzOVq2sYN8MTnV7B9m9sn1R2fZ/GkDfcaNVBT9kKap4b6ELL9no2rsi5qmrTyZFWHfRUCFRTsbKa19/1wNFRycUzebfklLQlK1IYNMCJF/o6UbO6mrkfu+OoV7Dh6zSb6b/5Lp3Rb7rSpaOeShUdeHmwM5076Pns85x68/ZS4eebM+35OZPASipatcjd/GsvHkQ9nDhlpHtXHV076alQ3oFePRxpH6Lj9Lmsh7VaBTb/80RefsGVIf1cCaqhYclsHxz1CtZ+lWIz/cZvU3jvLQ+6dXSickU1rw52o1sHR+YtSwQgI0Pi+x/TmDnBizYt9FQNVDPxHU+qVHLg83VJD3HNCqZbRyemjfPm6e7O+Ur/+RdJBFZQM2eyD7Wqa3jjJXee7eHM/OWJljTzP09g2AuuDO3nRlANLUtn++KoV7Dmq9wtM6XB7SfnFmUCcHV1tZpsdRMBeHt7o1KpiIqKspofFRWFv7//PcualpbG119/zcsvv1w8K18Edh+4+Pj4WA0M2rFjB1WqVCEkJOShlyXLKHH5YgYNWubsiEqlgvotnfn7rO3uolqNnPjvYoalOyky1MjpgykEt3MBICrlN0a+8RZtG7xCDY83qOc9mbpe4wkMrMLiJQswybYP+nkJS/0RgHLOD/ZWtSyjzN8XjDRpndOyo1QqaNJax4U8ggyjUUZz1/6k1Sk4f8p2U6/ZLPPTtjQyMiTqNrLPE7bRKHPu9yzatbGuh5DWOk6ett1KZDCATmvdr63TKTh+Iu96++b7dF7o64RCYZ/PbXhQ9dC0sYZDRwxc/i87ULnwh5HjJwx0av/gWxQLw2iUOfO7gY5tHC3zlEoFHdroOX7a9nZuMMo26+HXE9npTWYwm3PXlV6n5OiJ0ttNcrfjpzKs6g2gSztHS70ZjTKnbdRtxzaOHMujbu3dw36Oi0ajITg4mH379lnmSZLEvn37aNGixT2X3bx5MwaDgRdffLFQ61qcStXgXKPRyIYNGxgzZkyeB3CDwYDBkHPgu3vQUlEkJ5iRzODubV1t7t4OhF2xfdIJecqd5HgT4/peQZZlzCZ4YoAnfV7Pbj4NzVjPL79Vo0+5IRgzwjCo/+Pnozt4f8R21E7J9H2/RoHKGJb6I9U9RuDj2AqN0gOj9GDGRCQmmDGbwdNbZTXf01vF9f9sXw03b6vjy5UpNGymo1xFB04ezeTA7nQkyXq8wuW/jbz8dCRGg4zeScHsz32pXF3zQNajqOLiJcxm8PG2vgbw8VFyKY966NBOy5LlKbRspiGwkgOHjhjYsTMDs2R73MaPuzNISpYY0KfkBsPdz4Oqh9EjXUhJlWkaEoVKlX0C//A9V/o842gzz5IWG5+9X/j6WO8Xfj4O/HPZ9litLu0cWfB5Im2a66hSSc3+XzLYsjPNUg8uzkqaN9YyfV4CNatp8PNR8fUPqRw/nUnVQPUDX6eHJTLGjJ+NektOkcjIkEhIyt7GbKX55/K9xxkKOcaMGcPgwYNp3LgxTZs2Zf78+aSlpTF06FAABg0aRNmyZXONk1m1ahW9e/fGy8urJIptpVQFLlu2bCExMZEhQ4bkmWbmzJlMmTLl4RXqPi4cT2Xz0hhenVKG6g0cibhmYMW0CL5eFEW/N/2QZAN1njzNq29v458zBhzUSspXU1GrhZb/Lhb86jo16xqJmRdx19WhrHM3riZ/+QDWqnDGTvZk+rg4+nQIR6GAshUd6Pm8E9u/sW5VqlhZzYZdAaSmSOzfmc6UsbEs2+Rnt8FLQX081Z1R/0ugaUgUCgUEVnRgQF9HNm6y3bq24es0OrXXEeCvsvl5aZWfevhhewabv09nxWJPalZXc+EPI+9PSiLAT0V/Ow7kCmLuVG9efSeaOm1uoFBAlUpqBvdzYe3XOV1Laxf5MXx0NBUbXkelgoZ1tfTt7czZ3+23C1W4P0lWoCjCXUWFuSOpb9++xMTEMHHiRCIjI2nQoAG7d++2DNgNDQ1FqbS+APnnn384cuQIP/30U6HLWpxKVeCyatUqunXrRpkyZfJMM378eMaMGWP5Pzk5mfLlyxfL97t6qFCqyDUQNzHWhLuP7arcOC+K9r3d6dLXE4BKNXRkZkgs/iCMPm/4olQqCKioZeZXlclMl0hPNePpq2b2m6H4ly/cifpG6nbcdXUo59LzgQUu7h4qVCpyDcSNjzXj5WP7BOvhpWLOCl8MmTJJiWZ8/FR89nEiZSpY151ao6B8pewryVp1tfx53simNSmMn1nykf7dvDyVqFQQEytZzY+JkXJddd/m7aVi42pvMjNl4hMkAvyVTJ6RRKUKubeh0JsmDv5iYP1K+1v3Oz2oepg4LYm3R7rwbK/sFpbatdTcvGlm3mcpdhm4eHtm7xfRMdb7RVSMCX9f2/Xg463iu7UBZGZKxCVIlPFX8f70eCrfUQ9VKqnZ/0NZ0tIlklMkAvwcGDAiksCKj06Li7+Piigb9ebqokSvV6JSKVCpsJnGz7dUncosbt8dVJTlC2PkyJGMHDnS5mcHDx7MNa9GjRp2dSef3Y9xue369ev8/PPP970NS6vV5hqoVFzUGiVV6+g5/2vOFaEkyfx+LJWaDW03XRsyJBR31bJSmR0l370d6ByVePqqSU0yc/aXFJp2KlzZw1N3I8lZuGtr46yuUqg87ketUVCzroaTR3P6liVJ5tTRzPuOR9HqFPj6O2A2wYFd6YR0ufedMpIkYzTaz05zJ41GQYN6ag4dsa6Hw0cMNAm+d+Cp0ykoE6DCZILtOzPoZqMevtyUho+3ki4d7XNMx20Pqh4yMmSUd11UKlUgSdgljUZBo3pa9h/J6bqQJJkDRzJoHnzv31CnU1I2wAGTCX74MZWeXXMHZk6OSgL8HEhINPPTwQybaUqr5o31VvUG8PPhdEu9aTQKgm3U7f4jGbS4T90Kj5ZSE6auWbMGX1/fEn0/AkCvl7yZ/7+bVK2rp3p9PdvWxJGZLtHxOQ8A5o29gae/msH/yx6h3aSjK1tXx1I5SJ/dVXTdwMZ5UTTt4IpKlX1EPnM4BVmGspW1RFw3sPbjSMpW0dLpVp4FZZQSiE7/BX+nDpR36cVf8XOLZ+XvMmCYK1PGxlKrnoba9bV8vTqZjHSZHs9nD16eNDoWX//s25sBLp41EBNppnptNdGRZlbMS0KSYOAIN0uei2cl0KKdHv8yDqSnSezZmsaZ4wYWrnezWQZ78PpwF14fHU/DehoaNdSwdEUqaRkSL/TNPqm8+lY8AQEqJo3PXodTZwxERErUra0mPNLMrE+TkSQY9bqLVb6SJLNxUzr9nnfCwcE+B+Xe6UHUwxOddcxdmEK5sipq1VDz+8UslixP5YV+9jnGBeDtEe68NCqa4PpamjTQsXBFEmnpMoP7Za/XkDejKOvvwPQPslvRfjuTSXiEifp1tIRHmJj6aQKSBO+84W7J86cD6cgyVK+q5r+rWbw3LY4aVdUM6ediqwh2ITVN4vLVnPFN10KzOHfRgKe7kgrl1Lw/PZawSBPrFmUfK0cMcmPx6kTemxbL0H6uHDiazuZtqWxfn9PC/vYID4aOiiK4vo6mDXQsWJFAWrrEkH7Fd4H6MJXEI/8fBaUicJEkiTVr1jB48GAcHEq2yG16uJMUb+LL+VEkxJqoXEvH5DWBeHhnN9nGRGRZtbD0fcMXhQI2zI0iPioLV08HmnZ04cWxObeepaeY+WJOFLGRWbi4qWjxhCsDx/rjoC78RnkjZSv+Th0o5/wkf8cvQMb2szSKonNPJxLizCyfm0hcjJnqQRoWfOFr6SqKCjdxZ1ep0SCzbE4iYTey0Dsqadlez5T5Xri45SSKjzUzZUwssdFmnF2UVK2pYeF6X5q1sd/nlzzTy5HYeIkZc5KJjjFTt7aabzd4W7pIbt5VDwYDTJ+dxLVQE06OSjp30LFsoSdubtZNcwd/MXAzzMyLfe33JH2nB1EPsz5yZ8bsZN55P5HYODP+fiqGvOjEu6Pt90TVp5czMXFmpsxOIDLGRP3aWnZ8GYDfre7kG2EmS6srgCFTZtKseK6EmnB2VPBER0fWLvLF3S2naykpReLDGXHcjDDh6a7i6SedmDbOE3URjhEP2qnzmXR8Nszy/9jJsQAM6uPCmgX+RESbuBGW0+0eWEHN9g1lGDsploUrEykX4MDyT/3o2j6nValvLxdi48xMnh1HZIyZBrU17PyyrKVuSxsRuBSOQranjqs8/PTTT5aXQFWvXr1AyyYnJ+Pm5sbX54JwdLHvwY1KhYbq7q/i49iSX8OHYpYL/8RYBQ50rvgzWpUnv0WOJDr9MP4OpfNZB8WtmkPxB3FC6eWstM9b7UuCsvSMHnhgklPMeFS/QlJSUrEONbD6jlvnpRpfjkPlWPjtz5xu4J8BHz/QstqjUrGVdunSBVmWCxy0lDaSbKSsczfctUH46JsXKS8ZEzdTdgBQoQCvDhAEQRAEe1YqApfHSWT6QQD8nNoVOa8bKVuy83IMQaPyLHJ+giAIQvEp0nuKinhHUmkmAhc7E5m2H8gONor686RkXSYh8wJKhZpyzj2LoXSCIAhCcckOPory5NySXoOSIQIXOxOfeQajOQmtyhNPXYMi5xea8j0AFV2eKXJegiAIglDSROBiZ2TMRKUfAsDfsUOR8wtL3YVJSsdZE4iztkmR8xMEQRCKx8N+V9GjQgQudigyLfsFWAFOHYucl1lOJyx1NwA+zv2LnJ8gCIJQPORimB5HInCxQzEZxzBJGTiqy+KmqVXk/K6nbAbA0/FJVEr3IucnCIIgCCVFBC52yCxnEpNxFAD/Ymh1STL8QZLhL5QKLd5OzxY5P0EQBKHoRFdR4YjAxU5FpP4MQBmnzsWS3/Xk7FYXX+cXgMdzYxcEQbAroq+oUETgYqei0g9hlgw4awJxUVctcn43U3/ELKWgU1fGVduyGEooCIIgFElRW1tEi4tgT0xyGjEZvwIQ4NylyPmZ5Qxi034AwNdlYJHzEwRBEISSIAIXOxae9hNQfN1FMakbAHDXd0ajKnOf1IIgCMKDJJ6cWzgicLFjUWkHMUsGXDRVcFFXK3J+GVn/kpx5DIVChY/zgGIooSAIglBYYnBu4ZTOd4EXwiWjPzpD6VvdqmmnqObSCq3+WU6lritSXv4OyUSnrMVV1wIf5/6EJy1CxlBMJRVKm0TJVNJFsAuuSn1JF8FuZMjieJAhSyVdBOE+RIuLnfsn+TAANV1DiiW/hIyfMZjCUKu88HTqUSx5CoIgCIVwe4BtUabHkAhc7Nx/KcfJkjLx0JTFT1f07iIwE31rrIufy5BiyE8QBEEoDDHGpXBE4GLnsuRM/ks5DkAt1/bFkmdM6ldIUiZOmro4axsXS56CIAiC8DCIwKUU+Cv5IAA1XENQFMNPZpYSiU3Lfmu0n8vLRc5PEARBKATxALpCEYFLKXAt7RSZ5hRc1N6Uc6xbLHlGpawGwEPfFa1DhWLJUxAEQcg/cVdR4YjApRQwy1mWQbpBbkV/dxFApukyiRkHUSiU+LkMLZY8BUEQBOFBE4FLKfFn0n4Aqru0xkGhKZY8o5JXAODt1AeVwrVY8hQEQRAKQHQTFZgIXEqJsIw/SDJGolU5UcWlRbHkmWw4SrrxL1RKJ3xdXiyWPAVBEIT8EV1FhSMCl1JD5s/kfQDULqbuIoDI5OUA+LkMRYG22PIVBEEQ7kMMzi0UEbiUIn8k/gxAJafGOKo8iiXP+PTttx5I54O30zPFkqcgCIIgPCgicClFErPCCUv/E6VCRZBbh2LJU8ZEVMoqAPxdX0FsEoIgCA+Lohimx484S5UyfyTtBaCOW5diyzMm9WtM5gR06kA8HLsVW76CIAjCPYiuokIRgUshHP0ylBmdDjO+wc8s7Huc0N+T7pn+ly+uM7v7EcY3/JmPOhxi28d/k2Uw20y7f8VV/hf0E1tn/m3z83+SD5ElGfDWVcJfV73I6wIgyelEpawFoIzrGwVadvO6FHq1uknr6tcZ2iuCP87l/ZI2U5bMygWJPN0mjNbVrzPgiXCOHcywSvPt+hQGdA2nfe1Q2tcO5aXeEfx6ICOPHO3HirWp1GsWgX/lm3TqEcXps8Y802Zlycyel0zDltnpW3eK4ucDmVZpzGaZ6bOTqN88goAqN2nYMoJP5iUj2/kzvr9Ym0brFtHUqBpJ755xnLtPPSycn0pIqxhqVI2kW5dYDh2w3n7mz00hsHyk1dSxXcyDXo0iOXwsg6cGhVOuwRVUAZfYsiv1vssc/DWdxp1D0Ve8TPUW11i7KTlXmiVrEqnc5CqOlS7TonsoJ85m2sjJvny+JoWgpmF4BYbS7slITp3N+/iQlSUzc24SdVuE4xUYSvNOEey9a983m2Wmzk6kdrMwvCvfoG6LcD6el2T3+4W9Wbx4MZUqVUKn09GsWTNOnDhxz/SJiYm88cYbBAQEoNVqqV69Ojt37nxIpc3N7gOXsLAwXnzxRby8vNDr9dStW5dTp06VWHnO7Ypk+6x/6Px6Fd7+tjllarqw8pXTpMbZ3iHP7ohg59xLdH69Cv/b0Yrnp9Xm/K4ods2/nCvtjQtJHP/mBgE1nPP8foOUxqWUowDUce9aPCsFRKWuxSyl4agJwk2Xv1cL7N2exvyP4hk2yp0vdgRQrZaGtwZGEx9rOyhbOieRHzam8s4UTzb9XIZnXnDh3Vdi+OdizsnNL0DFG+95sG5HAGu3B9C4pY53hkfz3795nwBL2vdb0/lwSiLvjXHl4G4/6gRpePaFGGLyqIePZiexdkMqs6a5c/yAP0MHOjFwWCy/31EP8xensPqLNGZ/5M5vB/2Z/L4bC5emsHz1/U+CJWXHtgymT0th1NvO7NjpTa0gBwYPTCA2j3r49JNUvtyQzuRpruzd580LLzoyYngCf1zMskpXvboDJ077WKbN33s9jNUptLR0ifpBGhbN8M1X+quhWfR8MZx2rfSc2VuBUcPdeWVsFHsOpFnSbNqawtjJsUwY68mpPeWpF6SlW/8womPt9w3f325NY/yUBMaPcePIngDqBKnpPSCa6Dy2h6mzElm9IZU5H3lw6mAZXh7oTP+XYzl/IWe/mLs4mZXrUvl0uienDwUw9QN35i9JZukq+90v7qkEWlw2bdrEmDFjmDRpEmfOnKF+/fp07dqV6Ohom+mNRiOdO3fm2rVrfPvtt/zzzz+sWLGCsmXLFvzLi4ldBy4JCQm0atUKtVrNrl27+PPPP/n000/x8CiegamFcXjtNZo9X44mz5TFr6ozz0wKQq1TceL7cJvpr51LpFJDdxr2CMCzrJ4arbxp0N2fGxesW2kMaSa+fPcCz02pjd5Vfc8yXEjcDWS/u8hBUTx3ApmlJGJSNwJQxu3NfC3z5cpkevdzoWcfZypX1zBuhic6vYLt39g+iOz6Po0hb7jRqoOeshXUPDfQhZbt9WxckXN12aaTI6066KkQqKZiZTWvv+uBo6OSi2fyvlIraUtWpDBogBMv9HWiZnU1cz92x1GvYMPXaTbTf/NdOqPfdKVLRz2VKjrw8mBnOnfQ89nnOfV24pSR7l11dO2kp0J5B3r1cKR9iI7T57Js5mkPVq5Ip29/R57v60i16g5Mn+mKXqdg8ybbLWY/fJfB6yOdaN9BS4WKDrw4yJH2HbSsWG5dbyoH8PFVWSZPT7s+bNGtoxPTxnnzdPe8L0Du9PkXSQRWUDNnsg+1qmt44yV3nu3hzPzliZY08z9PYNgLrgzt50ZQDS1LZ/viqFew5qvcLTP24rPlKQwZ4MzAfs7Uqq5m4SxP9Hol67+yfXz46rt03nnTla4d9QRWdGD4YBe6dNCx8POcdfztlIEeXfU80UlPxfIOPN3DkQ4hOk7fo6XXrpXA26Hnzp3L8OHDGTp0KEFBQSxbtgxHR0dWr15tM/3q1auJj49ny5YttGrVikqVKhESEkL9+vWLuvaFZtdHgFmzZlG+fHnWrFlD06ZNCQwMpEuXLlSpUqVEymMySoT9mUK15jlXfEqlgmotPLl+LtHmMpUauHPzz2RLd1LcjXT+/iWWmm28rdL98NFf1ArxpnrL+19N3kj/nURjOFqVE9Vd2xR+he4SmbwCSTbgrG2Ei7blPdNmGWX+vmCkSWudZZ5SqaBJax0X8ggyjEYZzV1xllan4Pwp203eZrPMT9vSyMiQqNvIPm/VNhplzv2eRbs21vUQ0lrHydO2W4kMBtBprQ84Op2C4ydy6q1pYw2Hjhi4/F92oHLhDyPHTxjo1F6HPTIaZS5eyKJ165yHIyqVClq10XDmtO1gy2iU0eqs60GrU3DqpHW9XbtqpllwNG1bxfD2m4mEhdm+Yi+tjp/KoGMbR6t5Xdo5cvx09n5hNMqc/t1glUapVNCxjSPHTttnd5HRKHP2dyPt79ov2rfRcSKP/cJolHPtF3qdgmN37BfNGms5eCSTS3fsF8dOGOjSQf8A1qL0SE5OtpoMhryOwUZOnz5Np06dLPOUSiWdOnXi2LFjNpfZtm0bLVq04I033sDPz486deowY8YMzOaS2w/tOnDZtm0bjRs35vnnn8fX15eGDRuyYsWKey5jMBhy/YjFJS3RiGSWcfa2fnKts5eWlFjbG0rDHgF0HVmFJS+e4L16e/m46xEqN/Gg44jKljTndkYQ9mcK3UZXy2dJZC4k7gGgnnvxDabNkmKISf0SgDJuo+6ZNjHBjNkMnt4qq/me3iriYmxv0M3b6vhyZQqhV7OQJJnffsngwO50YqOt01/+20hIrVBaVwvl4w/imP25L5WrF8/TgotbXLyE2Qw+3ta7ko+Pkug86qFDOy1Llqfw35XsejhwOJMdOzOIuqMeRo904ZlejjQNicKn4k1Cukbz6jBn+jzjaDPPkpZwqx68fazrwdtbRUyMZHOZtiFaVq1I5+pVE5Ik88thA3t2ZRITnZO+QUMNn8x1Y+0GD6ZNd+XGDTN9no0jNdV2nqVRZIwZPx/r/cjPx4HkFImMDInY+Ox9zVaaqGj77CqKu1Vm37vK7OutJCqP/aJjiI5Fy1O4fGu/2H8og207M4i8Y78YO9KV53o50ahtBO4VQmnZJZI3hrvQ9xmnB7o+D4osF30CKF++PG5ubpZp5syZNr8vNjYWs9mMn5+f1Xw/Pz8iIyNtLnPlyhW+/fZbzGYzO3fuZMKECXz66ad89NFHxVoXBWHXgcuVK1dYunQp1apVY8+ePbz22mu89dZbrFu3Ls9lZs6cafUDli9f/iGWOLf/TsRT2dSVU38d5sNt3Ri0sD5/H4pl79L/AEiMyGTrzH/oP7suaq3qPrnluJj0E5JsppxjHbw0xfeSxIjkz5FkA666Zrhoi+cJvbeNnexJ+UAH+nQIp1XVUD6ZGE/P551QKqyvsipWVrNhVwCrt/rz7IsuTBkbyxU7HuNSUB9PdadyoANNQ6LwrRTGux8kMqCvI8o79sYftmew+ft0Viz25OBuP5bM9+CzZal89Y3t7qfSaOIUVypVUtGpXSzVK0cxaUIyz/Vx5M7NoV17LU/20FGrlpqQdlrWrPMgJVnmxx322dIgFN7saR5UDXSgUdsIPCreYOwHCbzY1wmlMmeD+G5bOpu+T2P1Yi+O7PFn+QIvFi5LYWMe3dN2r5jGuNy4cYOkpCTLNH78+GIroiRJ+Pr6snz5coKDg+nbty8ffPABy5YtK7bvKCiHwiy0e/dunJ2dad26NZA9QnnFihUEBQWxePHiYhuDIkkSjRs3ZsaMGQA0bNiQixcvsmzZMgYPHmxzmfHjxzNmzBjL/8nJycUWvDi5a1CqFKTGWp9EU+MMuHjb7srYs/Ayu75bTY1KdYlwbI9Lpb0Y0818N/lPOo6ozM0/kkmNM7LgueOWZSSzzNVTCfz65Q1mnuuEUpW7HzPNFM9/qcep5tKKeh7dORBVPBtRljmSmNSv8XMZTFm30fwdbbv50N1DhUpFroG48bFmvHxsB2AeXirmrPDFkCmTlGjGx0/FZx8nUqaC9Wao1igoXyl7nE+tulr+PG9k05oUxs+0v0GZXp5KVCqIibVuAYiJkXJdbd7m7aVi42pvMjNl4hMkAvyVTJ6RRKU76mHitCTeHunCs72yW1hq11Jz86aZeZ+l0L+P/V1detyqh9i7WldiY834+Ni+PvLyUrJ8lQeGTJmEBAk/fyWzZqZSoWLehyVXNyWBgSquX3t0uov8fVS5WiGiYky4uijR65WoVApUKmym8fMt1CH8gfPyzD4+3N3qGB0r5Wo5us3HS8XXa3xu7RdmAvxVTJyeaLVffDgtkTEjXXm+d/Y+UKeWhtCbJuYsSuaFPvkbU/QocnV1xdX1/u+b8/b2RqVSERUVZTU/KioKf39/m8sEBASgVqtRqXJ+t1q1ahEZGYnRaESjefit4YVqcfnf//5n6YK5cOECY8eOpXv37ly9etUqaCiqgIAAgoKCrObVqlWL0NDQPJfRarWWHzG/P2Z+OWiUlA1y4fLxOMs8SZK5fDyeig3cbS5jzDTz6/nsJ95WcW4OkBOIyFC1hSdjt7Zg9PfNLVO5Oq407BHA6O+b2wxabjufkH07Wm23TsX24kWAiOQlSLIBF11TXLWtbKZRaxTUrKvh5NGcK19Jkjl1NPO+41G0OgW+/g6YTXBgVzohXe7dPy1JMkajfd7uqNEoaFBPzaEj1vVw+IiBJsH3/k10OgVlAlSYTLB9Zwbd7qiHjAwZ5V0/vVIFkp32kGg0CurUVXP0aE5QL0kyvx4x0ij43oPNtToF/rfqYffOTDp3znv7SUuTuH7djI+vXTcWF0jzxnr2H0m3mvfz4XSaB2ePD9FoFATX01qlkSSZ/UcyaBFsn2OeNBoFDetpOHjXfnHwSCZN87VfOGAywdadGfToesd+kSlbtUwCqFQ5XSalzkMenKvRaAgODmbfvn2WeZIksW/fPlq0sN3C3qpVKy5fvox0x8Hn33//JSAgoEBBi9Fo5J9//sFkKnr3ZqH2/qtXr1oCiu+++44ePXowY8YMFi9ezK5du4pcqNtatWrFP//8YzXv33//pWLFisX2HQXVdkglfvs2jFNbwoj6L5Xvp/yFMcNMk6fLAPDVuAvsnHvJkj6onQ+fz84eN1LJKZirv6WyZ+Flgtr5oFQp0Dk54F/NxWrS6FU4uqvxr+Zyz7JcSztNkjESncqFGq4hxbaOWeYoy1iXsu55B6IDhrmy9esUdnybytVLWcz6IJ6MdJkez2df+UwaHcviWQmW9BfPGjiwK52w0CzOnsjkrUHRSBIMHOFmSbN4VgJnfssk/IaJy38bs/8/buCJ3vbXynDb68Nd+OLLNL76Jo1/LmUxZlwiaRkSL/TNLvOrb8UzZWbOXWSnzhjYvjODa9dN/PqbgedeiEWSYNTrOb/3E511zF2Ywp6fMwi9YWLHrgyWLE/lyW72eaICGDbcka+/Sue7zRlcvmTiw/eTSc+Qea5P9olnzNuJzP44xZL+7Fkju3dlEnrdxInfjAwZmIAkw4jXcn7r6dOSOX7MyM0bJk6fMjJieCIqFTzVy34HY6amSZy7aODcxexxb9dCszh30UDozewBpe9Pj2XwmznjCUYMcuPK9SzemxbL35eMLF2byOZtqbz9irslzdsjPFi5MZl13yTz179GXn8vmrR0iSH97Pet7iNfcWHtl6ls/CaVvy9lMWpcAunpEi/2yz4+DH8rlkkzEi3pT54xsHVnOlevmzj6Wya9X4hGkmTefj1nHbt11vPJwmR2/5zB9Rsmtu1KZ9HnKfR8wn63h3tRyEWfCmrMmDGsWLGCdevW8ddff/Haa6+RlpbG0KFDARg0aJBVV9Nrr71GfHw8o0aN4t9//+XHH39kxowZvPFG/p75lZ6ezssvv4yjoyO1a9e2NDy8+eabfPzxxwVfAQrZVaTRaEhPz47+f/75ZwYNGgSAp6dnsQ6GHT16NC1btmTGjBn06dOHEydOsHz5cpYvX15s31FQDbr5kxZvZM+i/0iJNVCmpgvDPm9k6SpKjMhEccelcsdXK7Pv86uEhd+kbJlyxO3zo3prb7qNqloMpZE5n/gjbX1fpoFHT8tTdYtDRNISfJz646wNxk3XjqTMg7nSdO7pREKcmeVzE4mLMVM9SMOCL3wtXUVR4SarqyOjQWbZnETCbmShd1TSsr2eKfO9cHHLSRQfa2bKmFhio804uyipWlPDwvW+NGtjvwemZ3o5EhsvMWNOMtExZurWVvPtBm9LV9HNu+rBYIDps5O4FmrCyVFJ5w46li30xO2Oepj1kTszZifzzvuJxMaZ8fdTMeRFJ94dbb8nqh5P6YmLl5j7aQqxMRK1gtSsXe+Bz616CA8zW7UiGTLh009SCA014+SooF0HLXPnu+F6Rz1ERkiMGplIYqKEp6eSxk00fL/VCy8v+21xOXU+k47Phln+Hzs5FoBBfVxYs8CfiGgTN8JyrjoDK6jZvqEMYyfFsnBlIuUCHFj+qR9d2+cEcH17uRAbZ2by7DgiY8w0qK1h55dl8fOxz64igOd6OREbJ/HRJ0lExZipV1vDDxt9LV1FN8LMVuNXMg0yU2clWvaLrh11rFzohfsd28OcjzyYNjuJ0ePjiYmTCPBT8dJAZ8aPdsv1/aVCUZ9+W4hl+/btS0xMDBMnTiQyMpIGDRqwe/duy4Dd0NBQlHccsMqXL8+ePXsYPXo09erVo2zZsowaNYr33nsvX983fvx4zp8/z8GDB3niiScs8zt16sTkyZMZN25cgddBIRfikYNPPfUURqORVq1aMW3aNK5evUrZsmX56aefGDlyJP/++2+BC5KXHTt2MH78eC5dukRgYCBjxoxh+PDh+V4+OTkZNzc3pp3ogM655HbyDn6v08izF78n7OKnyPnFlq+jyo1Xqm7AQalhw9U3iczMu+5DnP7J8zNbyrmPJ8B1BGnGC/wZ+RSPyvOlqzk8OuMjiiJRss87Uh62Cg73btl8nGTIpfR5KMUoOUWiTI2bJCUlFetQA6vvuHVeKj9/Kkp94VtRpYxMbrw98YGWtagqVqzIpk2baN68OS4uLpw/f57KlStz+fJlGjVqVKjGjkJdtnz22Wc4ODjw7bffsnTpUssT9Hbt2mUVURWHHj16cOHCBTIzM/nrr78KFLTYk8sp2YNcq7g0R1GMN3Olm5P4N+UXABp49Cy2fAEik5dhllJx0tTFQy/eYSQIglCsSuABdA9bTEwMvr65nyKdlpaGQlG48hfqDFqhQgV27NjB+fPnefnlly3z582bx8KFCwtVkEfdzfTfyTSn4OTgQRl90P0XKICzCdsBqOnaDr2q+JpMTVICkSkrASjn/g6KwvUsCoIgCLY8Bi9ZbNy4MT/++KPl/9vBysqVK/McEHw/hQpcVCqVzfcaxMXFWd0yJeSQMPNfSvYtz9VcbN+pU1gRGX8RmfEPDkpNsT6QDiAyeSVZ5lh06sp4O/cp1rwFQRCER9uMGTN4//33ee211zCZTCxYsIAuXbqwZs0apk+fXqg8CxW45DUsxmAwlMg93aXFv7dejljdtXgDF4Az8VsBaODRAyXFFzxKcirhSZ8BUMbtbZQK+x0kKwiCUKo8Bi0urVu35vz585hMJurWrctPP/2Er68vx44dIzg4uFB5Fqjt/3Y3kEKhYOXKlTg75zzwx2w2c/jwYWrWrFmogjwOrqedxihl4Kr2w19X/Z4DaQvqn5TDhJiG4aL2oZpra/5JPlRsecekfomf60voHCrg5/IyEcmfFVvegiAIj60SuKvoYcrKymLEiBFMmDDhvq/rKYgCBS7z5s0Dsltcli1bZtUtpNFoqFSpUok+BtjemWQjV1JPUNM1hOqubYo1cDHLWZxL2EErn0E09nymWAMXGSNhiXOo4r2QANdXiUn9GpMUW2z5C4IgCI8etVrNd999x4QJE4o13wJ1FV29epWrV68SEhLC+fPnLf9fvXqVf/75hz179tCsWbNiLeCj5p/kwwDUcGlb7HmfT9iBSTISoK9Z7AOA49O3k2o4h0rpTFm3t4s1b0EQhMfSY3BXUe/evdmyZUux5lmo20QOHDhQrIV4nFxNPUmWlImbxr/Yu4vSzUn8mbyPeu7daOz5LNvC/iy2vEHmRuIMavl9g49zf6JS15GZden+iwmCIAg2Ffbpt3cub++qVavG1KlTOXr0KMHBwTg5WT8F/a233ipwnoW+v/XmzZts27aN0NBQjEbrlw7OnTu3sNk+8kyygf9SjlPTrR01XEOKNXABOB33A/Xcu1HNpSXu6jIkZoUXW96phhMkpO/Gw/EJKrhP4N+YQcWWtyAIgvDoWbVqFe7u7pw+fZrTp09bfaZQKB5e4LJv3z6eeuopKleuzN9//02dOnW4du0asizTqFGjwmT5WPk7+aAlcDkUvZLiHGEVZ7zOldTfqOzcjMZez/Jz5KJiyxvgRuIM3PTtcdO3xU3XgaTM/cWavyAIwmPjER+cC9lDTIpboW6HHj9+PO+88w4XLlxAp9Px3XffcePGDUJCQnj++eeLu4yPnKtppzCY/8/eeYdHVXRx+N2W3WTTe++EkEASeu9FRIrYQBAVBQsqKvqpWBBQQRF7QUURBZEmRZGidBCkJEDopJLeN9nU7d8fkYSQ0FI3cN/nuY9yd+7MuZPZvb87c+acUmxlLnhZhjd6/Yfz1wAQbjcUq0YMSAeg0aeQXfwjAD4ObyDi2pl/BQQEBAQEoHJjTz2yDNWiXsLl7NmzVYkVpVIp5eXlWFtbM3fuXD744IMGG3WrYzDpiPsvpks7uwGNXn9a2Ukyy88hE8vp6Dim0evPKPoSnSEXS1kQbjaPNnr9AgICArcDIhqYHbqlb+AG+fnnn+nQoQOWlpZYWloSERHBsmXL6l1fvYSLUqms8mvx8PAgISGh6rO8PGGb7I1wVl3p4Bxi069RA8Zd4nD+agA6OozGQmzVqHUbTSWkFS4AwNPueWRil0atX0BAQEDg1uDjjz/m6aefZsSIEaxevZrVq1czfPhwnnrqqaoQKzdLvXxcevTowf79+2nXrh0jRozgpZde4uTJk6xbt44ePXrUy5CmRq23RKM3n2WNU0UXGK5TYSNzwMWyNxeKjzZq/dGq4/RyTsNF4U2I7d38k7eBXIP19S+8QXLVW3FQTsJeEYGL/SxO5M5stLqbGi9JQUubYBYoxY2X7LM1ozHpWtoEs6HCJGRO15iMzddYQ7c0t4Lt0F988QWLFi2qWqUBGD16NOHh4cyePZsXX3zxpuus1y/Xxx9/XBWvZc6cOQwePJhVq1bh7+/PDz/8UJ8qbzuMGDlZtB+AKPvGj+liwsTe3HUA9HYejVTU2KkYTJzOn4fJZMTLehQOivqFbhYQEBC4bbkNQv5nZmbSq1evWud79epFZmZmveqsl3AJDAwkIiICqFw2+uabb4iNjeW3337Dz8+vXobcjpxQ7QYg1LYb8kZezgGILdyLSpuNjcyBLo5DG73+Iu0pUovXAtDe6U0he7SAgICAQA2Cg4NZvXp1rfOrVq2iTZs29aqz3k+awsJC1q5dS0JCAv/73/9wdHQkJiYGNzc3vLy86lvtbUVGRSI5FSm4KnwJt+tJjGpHo9ZvxMDe3HWM8Xqavi5jOZD+NUaT9voX3gTnVZ/iphyCjUUb/O0mkVT0Y6PWLyAgIHDLchtsh54zZw7jxo1j79699O5dmWD4n3/+YceOHXUKmhuhXjMusbGxhISE8MEHH7Bw4UIKCwsBWLduHTNnth5fB3Pg+H+zLh0dBjZJ/cdUOynS5mErc8Lbemyj168zqjlX8BEAbeyfxlLq2ehtCAgICNyKNGhHUQOj7jYX9957L4cOHcLZ2ZkNGzawYcMGnJ2dOXz4MGPH1u+ZVC/hMmPGDB599FHi4uJQKBRV50eMGMHevXvrZcjtyonCvRhNBvyV4ThauDd6/QaTnn15lb4uQfZTETdB3JX0ko3klx9BKrYi3OnNRq9fQEBAQKD10rlzZ5YvX14VPXf58uV07Nix3vXVS7gcOXKEJ598stZ5Ly8vsrKy6m3M7Yhan09CyQmg6WZdogu2U6TLw1Lqjo/NvU3Sxqn8uRhMWlyt+uGhHN4kbQgICAjcUtwGzrmbN29m27Zttc5v27aNLVu21KvOegkXuVyOWq2udf7ChQu4uAgxPW6WS74tUfYDEdXvT3JN9CYde3N+A/6bdRHJG72NUl0SCYXfARDmNBOZ2LbR2xAQEBC4pbgNhMtrr72GwVB7m73JZOK1116rV531ekqOHj2auXPnotNVxj8QiUSkpKTw6quvcu+9TfNGfytzVn2YMn0x9hYuBFlHNEkb0artlOszUUjd8LV5oEnaSCz8gWJtAnKJE6GO/2uSNgQEBAQEWg9xcXGEhYXVOh8aGkp8fHy96qyXcPnoo48oKSnB1dWV8vJy+vfvT3BwMDY2Nrz33nv1MuR2xmDSc6JwDwCdm2Db8qU24lSLgMpZF4mo8bdfG9FxKm82JpMRH5uxOFvW3rsvICAgIFDJ7eCca2dnR2JiYq3z8fHxKJXKetVZL+FiZ2fH33//zaZNm/j888959tln2bx5M3v27Km3Ibc70artAITadEXZyIkRL5FespFSXTJyiSMBdpOapA2V5hjJ6hUAdHCe3SQCSUBAQOCW4FLk3IYcZs6YMWN44YUXaqQGio+P56WXXmL06NH1qvOGhYujo2NVHqLHHnuM4uJievfuzbRp03jllVcYMmRIvQwQqCS74iKpZReQimV0chjUJG2YMHBB9SUAAXaTkYntm6SdC6rPKNOlYin1pJ3jy03ShoCAgECr5zbwcVmwYAFKpZLQ0FACAgIICAggNDQUJycnFi5cWK86b1i4aLXaKofcn376iYqKino1KHB1jhb8BUAXx2GImijvZ2bpNoo0Z5CJrQm2f6JJ2jCYyonNmwWAr+0DwpKRgICAwG2KnZ0dBw4c4M8//2TatGm89NJL7Nq1i507d2Jvb1+vOm9YuPTs2ZO7776byZMnYzKZmD59Oo899lidx63O0ZWJfDF8G/O7/M6SCXtIP6m6ZvlDy+L5etR23u/6O58N3cZfC06i11R7Wf/z/QV+eHA3j3V8g8KiQhzl7riU1C8U8vUxcV71KQB+tg9iKW1YlONNP+czue8F7g49w4tjEzl/ogyAgoojJBf9AkAH57lIxTbodSZWfJ7D4wMqyz87Ip6je4pvuE5zZunSUrr3yCEwKJORI/M4duzqEYp1OhOffFJMr96V5YcMzWXXrtovApmZBp57TkV4+yyCgjIZPDiXEycaN/JxY/PD0lI6d8/GJzCD4SNziblOPyz8pJiuvSrLDxiSw84r+qFz92xcvTJqHa++XtjEd9IwvvlRTWi3VBwCkul3VwZHjmmuWlanMzHv40LCe6bhEJBM9yHp/LWr5pgvLjHyv1n5tO2aimPgRQaOyuTo8avXaS78sLSEjt2z8ApMZ9jInOuOhw8/UdOlV2X5/kOy2XHFeOjYPQtnr/RaxytmPh6uxq3s43Lw4EE2bdoEVG7gGTZsGK6urixcuJB7772XJ554Ao2mfmP4hoXL8uXLGTFiBCUlJYhEIoqKilCpVHUejcXs2bMRiUQ1jtDQ0Earvz6c3prG3x+eou9ToUxZNQC3trb8+tQBSvPr/gOc+jOVnZ+dod9TbXlqw2BGzunImW3p7Pr8TFWZi0fz6DI+gHHfdSE6ZycA/oW90Zbpm+Qe8soPkFt+ALFIRluHF+pdz95NRSyel82E6S58/kcgAe0UvPXIRQrzKu0+r/qUUt1FLKXuhDu9zs8fZbP1VxVPve3Bor+CuXOCI+89lUrC6fIbrtMc2fh7OXPmqpnxojVbtzgTFiZl4kMF5OXVnWl3wYJili8v4525tuza6cKkSVZMmaLi1KnqLMWFhUbuHpuPVCZi+TJHdu1yYdYsW+zszDej84aN5bw9p4iXZ9iwfasL4WEyxk3MJ/cq/TB/QTE/Ly9l/jt27NvlyiOTlDw6pYCTl/XDts3OnDzmVnWs+dUJgNEjLZvlnurD2o2lvDangNdn2HNgmycdwiwYMyGbnKv0w5wPVPywvJiP3nUkZrcXj0+yYfzjuRw/Wf2bMu2lPHbureCHL1w4ssOTwf0VjByXRXqm+X4v1m8s4605Rfxvhg07t7oSHibj/ol5Vx0P8xao+Wl5KfPfseefXW48MknJI1PyiT1VLXb+3uzC6WPuVcdvrWA8XJNbeKlo7ty5nD59uurfJ0+eZOrUqQwdOpTXXnuNP/74g/nz59erbpHJZLrpWw8ICODo0aM4OTnVq9EbZfbs2axdu5bt27dXnZNKpTg7O99wHWq1Gjs7O/534C7k1g2PGrtkwh4829sz/PVIAExGE58P20aXBwPp/XhIrfJb550gL7GYh77vU3Xu74UnST+p4tGfameFdpF7Mz3kCwwGAy//9gDW7RovxXpP67iq/7exaEsfzzWIRGIOZEygUBN70/W9ODaRkAhLnp7jAYDRaOLR3hcY+bAjDzxdGc/HXh5JT4+fEYkkPP7EBOReuxj5cPW4ee/pFCwUYv73ifcN19lQoiwKGqWeS4wcmUdkpIz33qt0qjYaTXTtmsPkyUqefda6VvlOnbOZ/pw1jz5a7cg+daoKhQK++MIBgHnz1Bw5qmX9uhsf6zeLTNS4y5HDR+YSFSnj/ffsgcp+iOqazZTJSqY/a1OrfIdOWbww3YbHL+uHyVMLUChELPqvH67kzVlF/LWjgkP7XRE1kv3WjZw5vd9dGXSOlPPJvMpxbjSaaNMljacn2/Dyc/a1ygd2TOWV6XY8Nbk69tGDU3KwVIhY8qUL5eVGXENSWP2jK3cOqXZ273VHBsMGWTL71br7qj6UmXTXL3SDDBuZQ8dICz64bDxEdM1i6mRrnq9jPIR3ymTGdBsef7T6O/Po1HwUChHffOFYZxtvzCrkrx0VHN7v1mjjobjYSEBoJkVFRdjaNk08qkvPpcBZ8xBfFn3+ZjFWVJA49/UmtbW+eHh48Mcff9ClSxcA3njjDfbs2cP+/fsBWLNmDW+//TZnzpy5VjV1Uq/Xt6SkJI4fP87rr7/OlClTaiwTPf744/Wp8qpIpVLc3d2rjpsRLY2NQWck82whAT2qH6AisQj/7i6kn6j7Yegd6Ujm2cKq5SRVWinx+7IJ7uNWZ/lcTRrn844hkUgYFtl0MXGKtedJK9kIQDvHV276ep3WSPypcqJ6Vz90xGIRUb2VnDtWPYNSqDlB/H+B6RYu+Apn55pLUxYKMWeOlt1UneaEVmsi9qSOvn2rg/qJxSL69JUTHVP3tLhGY0Iur/kjq1DA4SPVD42//tYQEWHBE0+qiIjMZtgdufzyi/kumWm1Jk7E6uh3RT/06yPnaHTdD0OtxoTiiliICoWIw4fr7jet1sTadeVMGGfVaA+pxkarNXEsVsvAvtUPI7FYxKC+Cg5F1z0rq9WaUFwxHiwVIg4crlwm0RvAYKDOMgcPm6ev4aXx0P+K8dC/j5wj0Vf5+9b5vRBx6BrjYc26ciaMU5rteLguDV0mMuMZF5VKhZtb9XNuz5493HnnnVX/7tq1K6mpqfWqu17CZe7cuQwbNowdO3aQl5dXY5mooKBx32bj4uLw9PQkMDCQiRMnkpKScs3yGo0GtVpd42gsylQaTAYTSqeaCtnaSU5JXt0/Su3v8qH/tHb89Mhe5nXayFcj/savizN9prats7zJaOKzTz8HoF/QXUhFjZ9b6BIXVJ+jN5bhoIi66TD9apUBowHsnWsmGLd3lqLKrTl9HV/4LYWakzjYO3BHpw9JT9JiNJo4tq+Eg9vUFPxX/mbqNBcKCowYDODsUvOr5OIsJjen7tmyAf3lfLe4lMREPUajib17NWzeUkFOTvUUekqKnmXLSgkIkLDiF0cenqRk1qwiVq8xT/FyqR9cnCU1zru4iMnJrXtpYOAABd98V90Pu/dWsHlzBdk5dZffsrWCIrWR8Q+Y7xb7vAIDBgO4udTsB1dnCdlX6Ych/S354js18Yk6jEYTO/aUs3FzGVn/9YONtZjuneW8/2khGVl6DAYTv/5WwqFoDVnZddfZ0uRXjYcrvhcukmuOh0XflZBw2Xj48xrjYfPWcrMfD9flFl4qcnNzIykpCajc3BMTE0OPHj2qPi8uLkYmq9/zrV7CZdGiRSxdupRDhw6xYcMG1q9fX+NoLLp3787SpUvZunUrixYtIikpib59+1JcXNuh8xLz58/Hzs6u6vDx8Wk0e+pD8pFc/vn+Ane+EcmUlQO475NuxO/LZt+35+osv+W9E6z6eS2q8hyUUjs62PWps1xjoDHkklj0IwBtHV5sklQAACb0nMh5Db2hjN49BxK3dQxj2p5h0exMhtxnj7iVvizVl7lzbQkIkNB/QC7+AVm88WYR48ZZ1egHoxHat5cx8zVb2reX8dBDVkyYYMWyZeYpXOrDu3NtCQiQ0qt/Dl7+mcx8o4jx4ywRX+VX6ZeVZQweKMfdXVJ3gVbKh+84EhQgJapfOnZ+F5nxRj6TxlkjvmxA/PCFMyYTBHdKw97/Il//oOaBu5U1yrR25s21IzBASs/+2Xj4Z/DqG0U8OM7qOuNBgcctNh6ag6+++gp/f38UCgXdu3fn8OHDVy27dOnSWr6mihtY3hoxYgSvvfYa+/btY+bMmVhZWdG3b9+qz2NjYwkKCqqX/fUSLlqtll69mn6L65133sn9999PREQEd9xxB5s3b6awsJDVq1df9ZqZM2dSVFRUddR3KqourBzkiCQiSvNrTs+W5Guwdq77ob/ny3N0GOlDx3v9cQ2xI3SwJwOnh/HPD3GYjDXl8tZ5J4jbm82D3/bkSOFWAHo6j2w0++sisehHyvVZWMm8CLSbfMPX2TpIEEuo5TRbmKfHwUVaq3yp/iJnCj4A4P0P5vF7zL18uz0YhZUYd1+LetVpDjg6ipFIIC+35uxKbp4RF9e6v15OThKW/OBI3AV3Dv3ryt49LiitRPj6Vd+jq6uEkDY17zm4jZSMdPN8w77UD1c6XubmGnF1qfvB4uwk4ecljiTHeRBzyI0De11RKsX4+db+W6em6dm7T8PECeb9du3sKEEiodbsSk6eodYszCVcnCSs/tGNvHhfzh325vg+L6yVIgIu64dAfxl/rfMgN96XC0e92bfZE53OhL+feX4vnKrGwxXfi1zDNcfDsiVOpMR5cvyQO//udUWpFF11POzZp+EhMx8P16UFZlxWrVrFjBkzePvtt4mJiSEyMpI77riDnJycq15ja2tLZmZm1XHx4sXrtvPOO+8glUrp378/ixcvZvHixVhYVPuTLVmyhGHDht38DVBP4TJlyhRWrFhRrwYbgr29PSEhIdfMbyCXy7G1ta1xNBYSmRiPdvYkHcqtOmcymkg+lItXZN3OY7oKPaIr3oou/fuSW7TJZGLrvBOc35nJpO974+Ct5Kjqb7RGDR6WgfgrwxvtHq7EaKrgXEFlEKAgu8dRSNxv6DqZhZjg9pYcP1BaXZfRxPEDpYR2rNvDP63kNzJLtiIWyRjQ7hNERmsObCumxxCbetfZ0lhYiIjoIGP//uqlQqPRxP79Gjp3urbTp0IhwsNDgl4PmzdXMGxYtfjt2kVGQmJNAZeYaMDL2zzfLi0sRERGyNi3v9ofwWg0sW+/hi6drz0dfHk/bNpczvBhtd/mfl1VhrOzmKGD6+/I2BxYWIjoGGHB7v3VLzdGo4ld+yvo3vnaM5oKhRgvDyl6PWzYXMZdd9R+KCutxHi4SVEVGti+p5yRdZQxBy6Nh71XfC/27tfQtfONfy82bS7nzjrGw4r/xsMwMx8P16MltkN//PHHTJ06lcmTJxMWFsY333yDlZUVS5YsubqdIlENX9PLfVeuhrOzM3v37q1yIxk7dmyNzy8559aHesn1iooKvvvuO7Zv305EREStdaqPP/64XsZcj5KSEhISEpg0qWnC1d8I3R8O4vc3Y/AIc8CrgwOHliegKzcQebcvABtfj8bGTcGg5yvFRpv+7hxaloB7qB2eHRxQpZay56uzhPR3RyypFDBb34vl1JZUHvisBxZKKSV5FZRQQYzzTnq43kkv59Ekl56+qk0NJbN0K77l43Cy7Eo7p/9xLOelG7pu7ONOfPxyOm06WBISacnGH/OpKDMy9L7KXQ4fvZSGk5uMR1+pHOTnjpcRXfAyL0xsj43CB0nyKxiND3Lvk843XKc5MvUJJS++WEhEpIyOUTIWf19GebmJceMqxdb05wvxcBczc2aliI6J0ZKVZSA8XEZWlpGPPi7GaIJpT1fvppg6VcmYu/P5/IsSRo1UcPy4jl9+KWPBB3Ytco83wlNTrXnuRRWRETI6dZTx7eJSyspNjB9X+XB9ZroKDw8Jb/7XD9ExWjKzDLQPl5GVZeDDj4oxGuHZaTV3YhmNJlauKmfc/VZIpea/NDL9CTumvpBLp0g5XTpa8OViNWVlJiaNrxToU6bn4ukuZe7rlWP6cIyGjCw9keEWZGQZeO+jQoxGmDGt+qXr793lmEwmQoJkJCTpef2dAkKCZTw8rvauNXPh6anWPPuiiqgIGZ06WvDN4hLKyk08+N94mDa9AA8PCW/NrBzTl4+HzCwDC/4bD89Nq7kDyWg08euqMsa3kvHQHFzpyymXy5HLawtlrVZLdHQ0M2fOrDonFosZMmQIBw8evGr9JSUl+Pn5YTQa6dSpE/PmzSM8/MZeqO3s6v7NcnSs+2X/RqiXcImNjSUqKgqAU6dO1fisMb27X375ZUaNGoWfnx8ZGRm8/fbbSCQSHnzwwUZr42YJH+5NmUrLnq/PUpqnwa2tHQ8u6on1fw67RVlliC6bx+r7RFtEIhG7vzxLcU45Vg5y2vR3Z+Bz7arKRK+udGBa9tj+Gm1VfKWgx7Q7aWvTBWcLT/K0GU12X2fy59PbazUeyjtItfyNvPID172m30g7igr0LP8kB1WensB2CuYu9ata1snN0NWYbdJpTCx+P55tS+9n18693DHkXjbueZ181t5wnebImNGWFOQbWbiwhNxcA+FhMpYvc8TlvynxjHRDjXV6jcbEgg9LSEnRY2UlYtAgBZ9/Zl8jRktUlAXff+/A+/OL+fTTYnx8JMyZbcs995jnzBPA3WMsyS8wsmBhMTm5lQ+glcudqpYG0jNq98P7C4q5mKJHaSVm8CA5X33uUCtWzZ59GtLSDUwYZ56zC1dy3xglufkG3vlQRXaugYhwCzb84la1VJSarq/VD3M/KCQpRYe1lZg7Blvy/efO2NtVz66p1UZmzVeRnqnHwV7C3SOsmP2aAzKZ+T64x46xIr/AyPuXjYfVy52rxkNahqGGj06FxsS8Beqq8TBkkJyvP3dp9eOhObjSl/Ptt99m9uzZtcrl5eVhMBhqzZi4ublx7lzdfpdt27ZlyZIlREREUFRUxMKFC+nVqxenT5/G29u70e7hZqhXHJfmYvz48ezdu5f8/HxcXFzo06cP77333k059DR2HJfmZoLfTNrZduNI/jZ+z/imQXVdHselLto5vkKA3cOU6pLZlzYWI40X0+FKAmwfoZ3T/zCYtBzMeAi19ub38teXxo7j0lpp7DgurZXGjuPSmmnMOC6tleaM4xI0cx6SBsRxMVRUkDD/dVJTU2vYerUZl4yMDLy8vDhw4AA9e/asOv/KK6+wZ88eDh06dN02dTod7dq148EHH+Sdd96pt+0NwXzDcAIrV64kIyMDjUZDWloaK1eurLcXcmvln9wNAEQ5DGyyrNGXiFN9TYU+F6XMn0D7pk3dkKT+iezSXUhEFnRy/Qip2LyCJwkICAg0NY3l43KlX2ddogUq/U4kEgnZ2dk1zmdnZ+PufoP+jTIZHTt2vKavaVNj1sJFAC6WnSW17DwysQU9nO9q0rb0phLOFXwIQJDdE1hJfZu0vRN5b1CmS8VK5kOUy/vQRIklBQQEBATAwsKCzp07s2PHjqpzRqORHTt21JiBuRYGg4GTJ0/i4eHRVGZeF0G4tAL2/zfr0t1pBHJx0/o4ZJRuJrfsHyRiOe2dZzVpW3qjmpicFzEYK3C16kcb+6ebtD0BAQEBs6OZg8/NmDGDxYsX89NPP3H27FmefvppSktLmTy5MhzGww8/XMN5d+7cufz1118kJiYSExPDQw89xMWLF5kyZUr9DGgEBOHSCjirPkRuRRqWEiVdHe9o8vZO57+LwViBs2UPvKxHN2lbau05TuXPBaCNwzRcLGvnbxIQEBC4JWmBOC7jxo1j4cKFzJo1i6ioKI4fP87WrVurHHZTUlLIzMysKq9SqZg6dSrt2rVjxIgRqNVqDhw4QFhYWH3vusGYtXNuY9DanXMvEWU/kHt9plOiK+Tj80+iM109PfzVuJ5z7uUE2j1OqOOLaA0q9qaNRmtU3XR7N0O405v42Y5HZyzmQMYESnVJTdaW4JxbieCcW4ngnFuN4JzbvM65wa/OQyJvgHOupoL4D8wzyWJTIsy4tBJiC/ei0mZjLbOns2P9og3eDElFP6HWnMNC4kCY08zrX9BAzuS/T0FFNDKxDZ1dP0cqrp09VkBAQOBWoiUC0N0KCMKllWDEwN6c3wDo63J3kyZfhMr8QrF5szCa9Hhaj8DNalCTtxeT/SLl+kysLQKIclmAMDwFBARuaVpgqehWQHgytCKOFe6iSJuHrcyJTg6Dm7w9tfYMSUVLAWjvNAuZuGm3Y2uNBURnP4fBWI6rVV9CHWc0aXsCAgICAq0PQbi0IgwmPXtzK2dd+rne2+SzLgBxhV9TrE1ALnUm3OmNJm9PrT3Hibw3AQi0exQfm/uavE0BAQGBlkBYKqofgnBpZUSrtlOkzcNO5kyXZvB1MZq0xOa+UbVk5G7V9G1mlW7jguoLoNJp10nRo8nbFBAQEGh2hKWieiEIl1aGwaRnd+4aAPq53ItMdO2Ms41BkfYUCYXfA9De+S3kEufrXNFw4gu/Jb3kD8QiKZ1cP8ZaFtjkbQoICAgImD+CcGmFHFPtpECbhY3Mocmj6V4ivvAbijRnsZA40MG5efJTnMydVbnTSGJLV/dvkEtcmqVdAQEBgWZBmHGpF4JwaYUYTHp2Zq8EoK/LWBRiZZO3aULPidxX/4ty2xc/m6bP0G1ER3T2dEp1yVhKPeni9jVSUdPfq4CAgEBzIPi41A9pSxvQXCSXOyET3zqBppLKztDdKQ0fK286OExgVer6617T0Sq5QW1WaFI5mf8ZUS6vEur4EhllMRTrEhtU53XbNJaxP+M5+nstxU7ejkjXzziQ+Rwm9PWuM91w64yDhuAlufkghrciJQj9cAmZ8C6LuDlzpjV01uQ2FS7CKG2lmDBViZU73AbjILNvlnYT1SvJKvsHiVhBV7f5iJsh6mipPo0DWdPRG8tws+pBZ9c5CAkZBQQEBG5PBOHSijlWGMs5dRxyiZz7vMc0W7vROW9Toc/HXh5CB6fmibVSqDnDv1kvYzTp8LUZQYTTy83SroCAgECTIfi41AtBuLRyfk1dC0A/l174WHo1S5saQz7ROZWZo4PsxuGpbPpgeAA55QeJznkbgGD7CYQ6PNEs7QoICAg0BYKPS/0QhEsrJ74kkYP5hxGLxEz0e6DZ2s0uP8B51Y8AdHJ5G6XUu1naTS3Zwom8BQCEOT5NkF3TOwkLCAgICJgPgnC5BViVuh6dUUcHuzA62kc0W7tnCr4mv+IEFhIbursvaBZ/F4CEol85U7AIgEjnV/Czab5lMgEBAYFGQ1gqqheCcLkFyNXksSXrbwAe8nsAqah5NouZ0HM461U0BhX28nZEOv2vWdoFOKf6jrjCZQB0cpmFt/XwZmtbQEBAoDEQlorqhyBcbhE2pm9GpS3EXeHGHe5Nm8n5csoN2RzJfgOTyUiA3X342oxqtrZP5n9MYtFaRCIxXVzfaTZfGwEBAQGBlkMQLrcIFUYNq//bHj3Wa1SzbY+GSqfZs6pvAejo/Ab28rBma/t43jwuqjciFknp5jYfT+XAZmtbQEBAoEEIS0X1QhAutxD78g4SV5yApUTBBN/7m7Xtc6rFZJbuQSKW08P9I+QSh2Zq2UR07lxSijchFsno5vYBnsrmm3ESEBAQqDeCcKkXgnC5hTBhYmnyCowmI72cuxFm27ZZWz+S8ybF2iSspO50c/sQUbMFZjZyNOdtUoo3XyZehjRT2wICAgICzYkgXG4xkstS2J69G4BH/Sc2m6MugN5YwsGsGeiMJbhYdibS+dVma7tSvLz138xL5bKR4LArICBgzoga4bgdEYTLLciatI0U6dR4WXow0uOOZm27RJfMkezXMZmMBNrdR6Dt+GZsvXLm5ZLPS1fX94St0gICAuaLsFRUL26bJIuNzYW1Zzi7PJbygnIcgh3p/FJPnMNd6yy7/elN5BzLqnXes5cPAz6uFBYrenxf57VRz3Yj7KGbi81SZihj+cVVPBM8lTFed3Ew/wjZmpybquNG2bIsl43f51CYq8e/nSWPz/KCyH2cyv+UDs4ziHR+mVJdCtnlBwDY9GMO21bkk5ehxcZBSs/h9kz8nwcW8koNXV5i4NdPMzn0VxHqfD0BYZY89pY3wRFWN2iRkejcORhMOgLt7qOz62ykYisSin5tkvu/xJqfiln+XRH5uQbatLPg5TmOhEfJ6yyr15lY+nURf64tJTdbj2+gjOdec6DnAMuqMmuXFbNueTGZaZXJJAPayJjyvD29BlrWWae5sHRpKYu+KSU310BYOxnvvGNLx451x/fR6Ux8+WUJa9aWk5VlIDBQyhuv2zBwoKJGucxMA/Pmqdm5S0NFuQl/fykff2xHZKT5Jsv8YWkpXy8qISfXQHiYjHnv2NHpGv3w2ZclrFpTRlaWgaBAKbPesGXQZf3QuXs2qWmGWtdOfsSKD+bZN9VtNJjFS0v4YlExObkG2ofJ+OAdBzpfox8++bKYX9eUkpllIDhQxuw37BhyWT9EdM+ssx8ef0TJwnnN5VfXeDR0S7OwHboV8P777yMSiXjhhRda1I6LfycQ89m/tJ/SiTt/uhv7No7semErFQXldZbv+/4Qxv45oeoYseJeRBIRvoMCqspc/vnYPyfQ/c1+IALfgf71svFA/mFiC09jIZYxJXASoiaYVPznTxVL52XwwHPufLixLX6hlrwzOZGifB1xRctIVm9AJJLQze19bGSB7PtdxfIPM3ngOXc+2xbKtPk+/LNZxS8LM6vq/Pr1VE7sL2H6Qj8+/jOUyD42zHk4nvysm8nga+J43ntcKPwZqAxSF+owtZHvvpq//yjl03cLmPK8PT9v8qBNOwumT8qhIK/2DyzAooWFrP+lhJfnOLJquyf3TLThlSdyOX+q+h7dPCQ886oDP23yYOkfHnTppeDlqTkkXDDfTMYbfy9nzlw1M160ZusWZ8LCpEx8qIC8q/TDggXFLF9exjtzbdm104VJk6yYMkXFqVO6qjKFhUbuHpuPVCZi+TJHdu1yYdYsW+zszPena8PGct6eU8TLM2zYvtWF8DAZ4ybmk3uVfpi/oJifl5cy/x079u1y5ZFJSh6dUsDJy/ph22ZnTh5zqzrW/OoEwOiR5itk120s4805hbw6w5bdW91oH2bBvRNzr9oP7y4oYunyEj54x55/d7kzeZKSSVPyiL3se7FzsyvnjnlUHet/dQbgbjPuB4HGx3y//Vdw5MgRvv32WyIimi8y7NU49+spgsaEEjQyBLsAB7q92gepQkrCpgt1lpfbKbB0sqo6sg6nI5FL8R1cLVwu/9zSyYr0vRdx6+yJtZdtve1ckrycCoOGMNtQBrr2rXc9V+OPJbkMGefEoPuc8Gmj4Ml3vJFbitmxpgCAY7nvkVceg0xiQ2+PL8lJtCa0s5K+ox1w9ZYT1deWPiMdiI8tA0BTYeTfbYU8/KoH4d2s8fCXM+55D9z95GxbkX/T9p3K/6Qqwm6Y47T/EjM2voBb8b2au8fbMOoBawJDLHhtniMKSxF/rC6ps/yWdaU8+owdvQdZ4uUr475JNvQaaMkvi9VVZfoOsaL3IEt8A2T4BcqY9ooDVlZiTsVoGt3+xmLxd6VMeNCKceOsCAmR8f77dlgqRKxcWbeg/21dOc89Z83gwQr8/KQ88rCSQYMUfPttdb99/XUJnp5iPvnYno4dLfD1ldK/vxx/f/OdLP5mcQkPTbDiwXFWtA2R8eH7dlhaivh1ZVmd5df8Vsbzz9kwZLACfz8pkx9RMniQgq8v6wdnJwlurtXH39sr8PeX0Kun+c46fb24mIcnKJk4TkloiIyP37fHylLE8pWldZZf/VsZLz5ny7DBlvj7SXn8EWuGDrLky2v0w7btFQT4S+jds+7ZTbNHWCqqF61CuJSUlDBx4kQWL16Mg0PLTgcadAYKzufh3tWz6pxILMK9qxd5J7NvqI6EP87jNzQQqaWszs/L88tI/yeFoFEhDbI1V5NXFdtlgu99WErdG1Tf5ei0RhJOlRHR27rqnFgsIqKXNReOVf4wmdDzb9aMyp1GMg8+eGsV2cli4k5Ufp6VoiFmj5pO/SvFmVFvwmgAmbzmsLRQiDl3tG4RcD3Oqb6rym0UbD+Rrq7vIaLufq8POq2Jcye1dO1TPZ0tFovo2kfByauIDK3WhMUVv7NyhYgTRyvqLG8wmPjr91LKy4106GSeP9BarYnYkzr69q22TywW0aevnOiYumeJNBoTcnlNIalQwOEj1TMNf/2tISLCgieeVBERmc2wO3L55Ze6BYA5oNWaOBGro98V/dCvj5yj0bq6r9GYUFzxZ1UoRBw+XHe/abUm1q4rZ8I4K0Qi83TP1GpNHI/VMaBvze9F/z4KjkRfbTyAotZ4EPHv4at/j1avK2PiOKXZ9sMNIYiWm6ZVCJdnnnmGu+66iyFDrr/FVaPRoFaraxyNiaawApPBhMKx5tSkwkFBRX7db5ZA1VJN3ukcihJUBI2++lblpM1xyJQW+Azwb7C9f2Xv5EJxPJYSSzq6vNng+i5RrDJgNIC9U00RYOcsozBPX/VvrbGIfzKfo0Kfj7drONv3bGT2Q8k8EHqcZwadJby7NfdOcwPA0lpC245WrP0yi4JsHQaDiT0bCrhwrBRVrp76klD0K0eyX8do0uFjcydtXH5ALFLWu77LKVQZMBjA0VlS47yjs4T83LqnxHv0U7Di+2JSknQYjSYO7Stn19Yy8nJqlo8/p6V/uxT6tEnh/TfyWfCtK4Eh5vmGXVBgxGAAZ5eaPykuzmJyc4x1XjOgv5zvFpeSmKjHaDSxd6+GzVsqyLmsH1JS9CxbVkpAgIQVvzjy8CQls2YVsXqNeYqXS/3gcsV4cHERk3OV8TBwgIJvvqvuh917K9i8uYLsnLrLb9laQZHayPgHbtTvq/nJr+qHK8bDNfph0AA5X39XTEJi5fdi194KNm0uv2o//Lm1nCK1kQkPNM53WaD1YPbCZeXKlcTExDB//vwbKj9//nzs7OyqDh8fnya28PoMdu3Px5Hv4WvlTeIfF7APcriqIy9A4qYL+A8LQiJv+HS4CRPfJf6E1qjD3ao3fjZ3N7jOm6VMn87BrOno9OV0aDOAXf+u4MONobzytT8xu9Ss+bLacXn6Qj9MJpja+zTjw06w+ec8+ox0QNTAkZpasoUDmc+jN5ZhZ9mPULdVyMQuDbyz+vHSbEd8AqQ8MCiD3sEpfDirgFH3KxFf8dboFyhj+RYPlmx0596HbJjzUh6JZuzjcrPMnWtLQICE/gNy8Q/I4o03ixg3zgrxZd1gNEL79jJmvmZL+/YyHnrIigkTrFi2zDyFS314d64tAQFSevXPwcs/k5lvFDF+nCXiq4z5X1aWMXigHHd3Sd0FWinvz7UnMEBKt/7ZuPqn88obhUwYZ3XVfli+spQhAxV4tOJ+EHIV1Q+zFi6pqak8//zz/PLLLygUiutfAMycOZOioqKqIzU1tVFtktsrEElEtRxxK1QVKJzqdhALs22Lq8KFO12GcvHvBAKvMduSczwL9cUigsY0XvC4zIos1qZtACDC+WWspJ7XvuAGsHGQIJZAYX7N6e+iPB32zrUFl0pzhudefgiDQU+PiPsY2et1ug+zZ8JLHqz7JhujsfIb6O4n551f2/BLbAe+2xfOB+tC0OtNuPk0fIkkp/wg+zKmojPkobRoTzv39ShkbRpUp72DBImEWo64BXkGnFzq/kF1cJKwcLEre876svGAF2t2emKpFOPpW7PfZBYifPxltOsg55lXHWjTzoJVPxY3yN6mwtFRjEQCebk1Z1dy84y4uNb9M+PkJGHJD47EXXDn0L+u7N3jgtJKhK9fdT+4ukoIaVOzX4LbSMlIr/stvKW51A9XOqDm5hpxvcp4cHaS8PMSR5LjPIg55MaBva4olWL8fGt/j1LT9Ozdp2HiBPOdbQFwquqHK8bDdfrhlyXOpMd5EXvIg8N73VAqRfjX0Q8paXp279Pw8IRWPtsi+LjUC7MWLtHR0eTk5NCpUyekUilSqZQ9e/bw+eefI5VKMRhq/3jJ5XJsbW1rHI2JRCbBsa0z2Ucyqs6ZjCayjqTj3MGtzms2ZW4DoJdLNzzcPAkYHnzV+hN+P49jqDMObZwa1e7NmX9XOsqKlXRxfYeG/ullFmKC2ltx8kC174nRaCL2QAkhHev+Mfl7+xa+/PkFANrYTyLEfjJiSeXrtemKL6DCSoKDq4ySIj3H96npOqRx/o4qzRnOZt9DuS4BudSbdm6/YSPvVe/6ZBYiQjtYcOSfav8Uo9HE0X8qruuPIleIcHWXYtDDri1l9B927Z0RRqMJrdY8f6ksLEREdJCxf3+1P4LRaGL/fg2dO117eUuhEOHhIUGvh82bKxg2rLrfunaRkZBYc5kwMdGAl7d5vmVbWIiIjJCxb3/1zJjRaGLffg1dOl/bt+ryfti0uZzhw2q/rP26qgxnZzFDB9/Yi1xLYWEhIipCxp79Nb8Xe/dr6Nr5+uPB879++GNzOXfW8b1YsaoUF2cxw8y8HwSaBrMWLoMHD+bkyZMcP3686ujSpQsTJ07k+PHjSCQt8+MV+mB74n8/T+KfFyhKUnFkwT/oK/QE3lX59n5gzm6Of32kqnxS6UXOqM8hlUh564O3kNvV/WXTlWpJ2Zl0Tf+X+mLCxNGcWeiMpThbdiLE/uEG1znqMRe2r8pn17oC0uIr+G5WGppyI4PucwTg85cvsvzDaoHXZZAtM59bxMa97wDQ3mk6Fjkj6TLIDsl/AubYXjXH9qjJTtVwYn8xbz8Uj1eggkH3Np6Q0+hTOJt9L8UVh5GKbQlx/Qln5bh61zdhii0bVxazaW0JSXE6PnijgPIyEyPvr3RcfvvFPL76QFVV/tQxDbu2lJGeouPY4QqmP5yD0QiTnrSrKvPVBypiDlWQkaon/py28t//ahh+t/m+YU59QsmKX8tYvaaMuDgdr81UU15uYty4ygfP9OcLmT+/2ucsJkbL5s3lXLyo59AhLRMfKsBogmlPVzt8T52qJCZGx+dflJCUpGf9+nJ++aWMRx8x3354aqo1y1eUsnJ1GRfidPzvtSLKyk2MH1c5S/LMdBXvXtYP0TFaNm0uJ/minn8PaRg/MR+jEZ6dZl2jXqPRxMpV5Yy73wqp1PydUadNteHnFaX8urqU83E6ZrxWSGm5kYnjKv92T00vYM78oqryR2M0/PFfPxw4pOG+iXkYjfD8NJsa9RqNJn5ZVcb4+5Wtoh+uhbBUVD/Md08hYGNjQ/v27WucUyqVODk51TrfnPgNDaKisILYxTFU5Jfh0MaJgZ8Mx9Kp8oepLKuklpf7quO/MaffG0wcM5Ejsaco0dfeJXPx70QwmfAbFtQkdpfp04nNW0hn17cJc5xGTtkhCrVn611f77scKMrXs/LTTApzK4PFvbkkEHvnyjfLvAxtDd+U+55xRyQS8dSkdzk7TcJrr77O/Hc/50CKDTmGrZU2Fhv4ZWEm+Vk6rO0l9LijcjlJKmvcHyiDsZDzOZMIcFqAk3IMAU4fYCkLIbVwHnBzyxBDRylR5Rv47uNC8nMNhIRZ8NnPrlVLRdkZ+hrr9FqNiW8WFpKeqsPSSkyvgZbM+dQJm8tikxTkGZgzI4+8HAPWNmKCQy34fJkr3fuab7yKMaMtKcg3snBhCbn/BV5bvswRl//6ISPdUKMfNBoTCz4sISVFj5WViEGDFHz+mX2NGC1RURZ8/70D788v5tNPi/HxkTBnti333GO+/XD3GEvyC4wsWPhf4LVwGSuXO1UtkaRn1O6H9xcUczFFj9JKzOBBcr763KFWrJo9+zSkpRuYMM68l4kucc8YK/IKjMxbqCYn10CHcBlrlztX9UPaFd8LjQbeW1BE8n/9MHSQgm8+d6zVD7v/64eHWkk/XJOGLvfU89qvvvqKDz/8kKysLCIjI/niiy/o1q3bda9buXIlDz74IGPGjGHDhg31a7wREJlMV07SmzcDBgwgKiqKTz/99IbKq9Vq7OzsuH/Hw8iULbsj453wNwi09md9+ibWpm1s9vbvdT4KQHe3hXhZD6ZYe5GdaQ9iMF19N1RTEun8KkF24zGZDBzOnkl66d/N0q6PTFXj35620/GynwFAYfluEvOew2AyT1+SxsRLcus4+jYEWWveStvIyMx7Er5ZUBcb8QvNoKioqNFdDara+O+51OHxeUgs6r/cZdBWcPKH12/K1lWrVvHwww/zzTff0L17dz799FPWrFnD+fPncXW9+qaR5ORk+vTpQ2BgII6Oji0qXFrdKN29e/cNixZzY2PGZgCGuQ3CUtJyb4wxuXMp02dhY+FHlMvMFrPjRN4CktTrEIkkdHV7Dw+rAS1iR4b6c+Jzp2EwlmNvOYB27uuQSwOuf6GAgIBAA2iJpaKPP/6YqVOnMnnyZMLCwvjmm2+wsrJiyZIlV73GYDAwceJE5syZQ2BgYAPuuHFodcKlNROtOk5qWTpKqRXD3Qe3mB06o5oj2W9gMhnwsxmFn83oFrLExLHc9/7L6Cyju/uCFhMvqvLNnMu+H60+E0tZG8LcN2KnGNgitggICNwmNNKuoitjl2k0VwvapyU6OrpGTDSxWMyQIUM4ePDgVc2cO3curq6uPP744w263cZCEC7NiAkTG9I3AXCn+1CsWnDWJb8ipiocfqTza9haNI1fzfUxEp0zm9TiLVXixVM5qEUsKdOd4nTW6Cqn3TYuP+Bh+yy3b/J4AQGBJqWRhIuPj0+N+GVXi3uWl5eHwWDAza3mDlg3NzeysmonAgbYv38/P/zwA4sXL27QrTYmgnBpZg4VRF8263L9SMBNyfnCJWSXHUAqtqSb2wKkopZxdjNh4GjOW6QUb0YsktHN7QO8lC3TN3pjLudzJpJd/DMikRhv+5cJdv4Oiahp1roFBAQEGkpqamqN+GUzZzaOC0BxcTGTJk1i8eLFODs7N0qdjYEgXJoZEybWpf8BwJ3uQ7CWtuS2ThNHst+kXJ+DrUUgnVxnt6AlleLlYvEmxCIp3dzex8d6RAvZoiNFNYuk/P9hNGlwsBpKmMcmrGThLWKPgIDArUlj+bhcGbtMLq87hpSzszMSiYTs7Jp59bKzs3F3r53LLiEhgeTkZEaNGlUVS+3nn3/m999/RyqVkpCQ0Oh9ciMIwqUFOFIQQ3JpClZSK0Z53NmitmiNKg5l/Q+jSYe39VBC7B9tQWuMROe8TbJ6AyKRhC6u7xBge3+LWZNXuoazWfei0aeikPrSzn0dLsoHW8weAQGBW4xmjpxrYWFB586d2bFjR9U5o9HIjh076NmzZ63yoaGhtWKpjR49moEDB3L8+PEWS6kjCJcWwISpKmvzMPeBOMjsW9SeAk1sVQblcMdncbXs3oLWGInJnUtC0UpEIjEdXV4nxH5yi1lTpjvF6cy7KCzfjlgkx99pPoFOnyMWWV//YgEBAQEzY8aMGSxevJiffvqJs2fP8vTTT1NaWsrkyZW/sw8//HDVUpNCoaB9+/Y1Dnt7+6oYaxYWLRNiRBAuLcSJolOcU1/AQmzBvd6jWtocktRrq2Y6urq9j5XUqwWtMXEi7wPOqSqdwdo7Tae94/MtZo3BpCYudyqpqvcwmfQ4KUcT7v4HVrKWC4IoICDQ+hGZTA0+bpZx48axcOFCZs2aRVRUFMePH2fr1q1VDrspKSlkZmY29q02Kq0uAN3NYk4B6K6kjXUQs8Nfw2gyMvPkHNLKM65/UQO4FIDuaohFFvTz/AFHRXvU2gR2pz2C3lTapDZdjzZ2k+jgXBkc7mLxJmJy5mBCf52rrs2VAehuBmuLTgQ6f4Fc6oXRpCW98COyir+jNWY7EwLQVSIEoKtGCEDXvAHooh56r8EB6I4vf6NJbTVHhFHagsSVJHAo/yhikZgJvve1tDkYTVr+zZrxn7NuEN3c3qelh0hc0TKO5szCaNLjZzOSXh6fIhG13DbyEm0Mp7NGUFC2BbHIAh+HmYS4LkMmqTvBpoCAgIBA4yIIlxZmVeo69EY9kfYd6GDX8rtWKgy5HMx6Eb2xHHdlHyKcZrS0SaQU/1Flk5tVb/p5fo9c0rjZs28Gg7GIhLynScp/FYOxDDtFH8Ldt+BgObzFbBIQEGh9CEkW64cgXFqYbE0uf2XvAuAh3weQiFom4/XlFGrOcDRnFgDB9hMJtB3fwhZBdtl+9mVMRWNQ4aAIY6DXshYMmldJXukqzmSNpFR7EpnEkWCXbwhw+giJyOb6FwsICAg0866iWwVBuJgB69P/QK0rxtvKkyGu/VvaHAAySrdzKv9zACKd/4ensuXD36s0p9md9gjF2mSsZB7091qKq2XtLXzNSYU+kbNZ95BR9CUmkwFn5b2Ee2zFRt6rRe0SEBAQuFWRtrQBzcXhRD/EVvV3gmpq3jfsY173EYzxvJsvorPJ15Q1ehv+lvk3VT66dDdjCKWb0zA6u87nROJsUsrON7pdN8uRkllM8HuFQOv29PT4gj8zfuBQ/tYbvv681KPxjSrZjFdBEqO8XsLBwotQtxVEF2xiV/YSdKaKxm+vEXCR3voZsG+ErorkljZBwIwoaZjv/03R0OUeYalIoEVZnXiCUwVZ2FlY8mpUy89uXOKP9O84pz6CTCxnkv/ruMi9W9okyg0lLE2aS0zBTiQiCaO9nmC05xOIadlltvTys/yQ8CwxBZX5qDo7jmRK0Nf4KSNb1C4BAQEzRVgqqheCcDETjCYTbx/dBsB9QZF0dWmZiIRXYsTIyosfk1J6ASupDY8GzMJe5tLSZmEw6fkt7Uu2ZS7DaDLS3Xk4kwPfxkrSslsCdaYKtmV9za8XX6dQm429hTsT/OYzwuN5FGIhaJ2AgEA1gnNu/RCEixlxLC+dFXHHAHin63BkYvP48+hMGn5OfpecilTsLZyZHPg2SqldS5sFwN7c9SxPnk+FoYxA6/ZMa7MAD0VAS5tFculxfkicRnRBZV6qSIc7mBr0DW1terewZQICAgKtG/N4MgpU8eGJXeRVlBJi78LU0B4tbU4V5YYSfkyai0qbg7Pck8kBb2MpMY8ZhPPF0XwT/xp5mgwcLFx5MngeUfYDWtostMZy/spaxM9JL5OnScFa5sg9Pm9wn88sbKUtP2slICDQwghLRfVCEC5mRpG2gnkxlQmwnuvQhwAbxxa2qBq1Lp8fE+dQrFPhYenPowFvIRdbtbRZAORq0lgU/yrn1dHIxHLu953OaK8nkIha3v88vfwMSxKf45/cXzGY9LSx6cHU4G/o5jgWkfAVFBC4rRGWiW4e4VfTDNmQfIq9mYnIJVLmdx+BOQUkz9dmsiRxDqV6Nd5WbXgk4E0sxOaxW6vCUMqy5HnsyFpZ6ffiNJwngubhIHNtadMwmHTszV3GksRnSS07hYXYksHuU5kc+DlelmEtbZ6AgIBAq0EQLmbK64c2U6LT0M3Vl4dDurS0OTXI0aTwY+IcyvUl+ClDeSTgLbMRLyZM7MxZzbLk9yjTF+NtFcwzbRbSzrZbS5sGQJ4mheXJr/JnxqeU69W4KQJ5OGAhd3m+iJXEvqXNExAQaE5MpoYftyGCcDFTMsrULDheGVH3laiBZrVkBJBZkcSSpNmU60vwV7bj0YBZZrNsBHCh+Bhfxr1ESul5LKXWPOT/Gnd5Po5UJGtp0wATsYV/8W3CExxXVe4ki7AfypPBi+nqOBbx7RNeSUDgtkbYVVQ/BOFixvwSF8M/WUlYSmV82HMkEjPLYptRnsiSpNmU6YvxU4byWKD5OOwCFOnyWJzwJvtyNwDQy/kung7+ACcL89hqXm5QsyXzM35KepHM8jgUEiVD3KcyJegrApWdW9o8AQEBAbNEEC5mjAl45d9NFGsr6OTszZPtWja8fV1klCeyJHF2lc/L44FzUUrMY6s0gBEDWzN/5qekdyjRF+Fu6c/kwM/p6DCipU2rIqP8PD8lvcjmjM8o1RfiJPdhnN873O8zG0eLlg/4JyAg0EQIu4rqhSBczJzMsmJmR/8FwPMRfYlwaoJw9Q0ksyKJ7xNmVe02mhr8LnYy55Y2qwYXio/xxYUXiSs+hkwsZ7jHs9zvMxulxKGlTQPAhJEThdv4Nn4qh/PXYzDpCbbpxtSgRQxzfxrLFg6sJyAg0PiIjA0/bkcE4dIKWJ90ik0XzyATS/is191YSy1a2qRa5GhSWJzwJiptLi5yL54ImmcW6QEup0RfyE9J77I96zv0Ri3BNt2YEvQ1ITbmkxBRYyxlR/Zivk94mrjifxGLJHR2HMVTwT/Q0+kBpCJ5S5soICAg0KIIXoD1QP3XvxT9uQ9DUQkWvu44PTISedDV/SYMpeWoVv9N2dHTGErKkTrb4zTpLqyi2lbWt/0Q6u2H0OcWAmDh7Yr92IFVnwO8cXgLUU6e+Nk48E634bx44Pcmvccb5ejKRA79FEdJXgVuIXakzcnhtRGf4Krw5omg91iWPK9GYsbDy+OJWZ2EOqsMS3s5oUM9GTg9HKm8Ms/QgR/Oc35HBvlJJUjlYryjnBj4QjhO/jaNYq8JE0cKNpBUeoxRni/jbhnEvT5vcrJwB9uzvqXCWFKveg+uuMi+H5MoydPg3taGUa+H4RNhf9Xy//ycxKFVqRRmlqN0sKD9UHeGvRiC7L9+KNCmszZ1Lr5WEXSXTiLYO5wBbo/SyXEk+3KXcbJwBybM73Vr1y8ZbPshnaJcLT6hSh58K4iAiKv/7bYvTWf3r1kUZGqwdpDS+Q5n7nnJH5m8+p1Kla3htw+TObVPhbbciKufgkfntcG/Q+OMiaZg5U8l/PRdMfm5BkLayXh1jgMdoup+4dDpTCz5upg/1paSk23AP1DG86/Z0XtA9U691ctKWLO8lIy0ygyAQW1kPPG8DX0GWjbL/dQXoR+uQ0OXe4SlIvNj0aJFREREYGtri62tLT179mTLli0talPJwVjyf9mM/T2D8Hz3GSx83cl6fymGorofeCa9nqz3f0Sfp8J1+gS8F76I85SxSByqp/6ljrY4jr8Dr/em4fXuNBThgWR//AvatOyqMsU6DS8c2IjeaGSMf3vuC4xo8nu9Hme2prFj4Un6PBnKYysH4trWjkWPbuTTIy+TUnoeK6kNkwNnE2rbFYDTm1PZ9dlp+j4VyhPrh3DX7I6c3ZbO7s9PV9WZcjSPzuMCeWRZfx78tg8GvZFfn/oHbVnjpmzN01zkp6QXOZC3CqPJQAf7wUwJWkSw9c1vm47dksnmBWcZPC2YZ9b0wqOtLT8+eYSSfE2d5Y9vymDbJxcY9HQwL/7Rl3vmtid2ayZ/fXqhVtkDh/bSvWc3nnl5Cpm5adjKnLnL80WzmykCOLI5l9Xzkxj1jC9vre+Id6iSTx8/hTpfW2f5Q3/k8NtHyYx61oe5mzvxyHttOLI5j3UfJ1eVKS3S88GDsUhkIp5fHM6cPztx/6sBWNmZ7zvXtj/K+OjdQp583pZfN7kR0s6CaZNyKcgz1Fn+q4VFrP2lhFfn2LNuuzv3TVQy44k8zp2q7jc3DwnTX7VlxSZXVvzhStdecl6Ymk/8BV1z3dZNI/TD9RF2FdUPsxYu3t7evP/++0RHR3P06FEGDRrEmDFjOH369PUvbiLUW/7BZmAXbPp3xsLbFafHxiCSyyjeE11n+eLd0RhLynF78SEUbf2QuThg2S4AuV+1r4pVp3ZYRbVF5u6MzMMZxweGIVZYoIlPrVFXTF46n8buBWBOlzsItW/ZsPGHl8UTdY8/kXf74RJky51vRiFVSDi49iRLEmdzTn0UC7GciX6v0MPpTtKOF+Ad5UT4CB/svZQE9nIjbLg3GadUVXWOX9SbiDF+uATb4tbWjpFzO6POLCfrbGGj229Ez56cn1iW/DL5mlRsZE7c7zub0V7/uymfkv0/JdH1Ph86j/XGLdiGMW+HY6GQEL0urc7yKcdV+HZ0IGqkJw5eVrTp7ULkCA/SThbVKKcp1bPq1RPcPTucLXvXM+HVwezIWky5Xo2z3Jd7fd7kkYBPCFB2bFA/NBZ//5hO3wfc6X2vG57BVjw0JxgLhYR/fsuus3zCsWKCO9nSfZQrzt4Kwvs40G2kM8mx1S8BWxen4eAuZ/L8EAIibHDxqSzn6mu+b9jLvi/mnvFK7n5ASVCIjDfn2aOwFLFhdWmd5f9cV8bjz9jSd5Al3r5SHphkTZ+Blvy8uLof+g+xpO8gS/wCZPgFynjuFTusrEScjKlbFJoDQj/cAEIcl3ph1sJl1KhRjBgxgjZt2hASEsJ7772HtbU1//77b4vYY9Lr0SRlYNk+uOqcSCzGsn0wmriUOq8pizmHvI0P+Ut/5+LT80h79TMKN+7GZKx7mt9kNFJyMBajRos82LfW54vOHGB3RgKWUhlf970XG1nL+DwYdEYyzxbi36NaPInEIgJ6uJAeW4DOpOGX5Pc5kv83YpGEUV5Tefvl98g5rybjZAEAqrRSEvZnEdTX/artaEoq36QUtk3n15NRfp4lic/xb95ajCYD4XYDeSLoW8LtBl73Wr3WSMYZNcE9q52RxWIRQT2cSTlRWOc1vlEOZJwpIjW28vOC1DLO78ulbb+aQvT3d88Q2s+1qm6tTsPhgvUsin+Mf3J/RWssx9OyLeP93mOi3wJ8rNrXrwMaAb3WyMXTJbTrZV91TiwW0a6XPQnHiuu8JqijDRdPl5AUW/l5bmoFJ/eoaN+/2mH6xM58/Ntb8830s8zoeYi5dx9j7+qsJr2XhqDTmjh7Ukf3PtXLG2KxiO59FMRe5eGq1YJcXjPUgVwh4tjRumfsDAYTW38vo7zcREQn8/N3A6EfBJoW851vvQKDwcCaNWsoLS2lZ8+rbwvWaDRoNNUDXa1WN54NxWVgNCKxqxmrRGJrjS4jt85r9DkF6M8UouwVifsrj6DLyid/6e+Y9AYc7h1cVU6bkkXG7G8x6fSIFRa4vTgRC+/aoepNwIwDv/P78Mn42ziysOcontq7ttmXOstUGkwGE0qnmsJJ6aQgP6nyDcmIkQ3piyjQZnGHxyRGdRnPzgMe3NF7FCUlJRj1JjreH0DvKW3ragKT0cT2BbF4Rzni2qZpd9XoTVp25SzhnHofd3o+j5sikNFe/6O93UC2ZX5Noa7uh2VZoRajwYS1U80fTmsnC3KT6l4+jBrpSVmhlu8m/YsJMOpNdBvnw4AngqrKnNicQcbZIqatqr0cpDGWsTd3GUcLfqen8wN0crgLX2V7HlIuIKnkGPvzVpBW1ryzkiUqHUYD2DrVDPBn6yQjK7Gszmu6j3KlRKXngwmxYAKD3kT/8e7c9VS1v1huagW7f81k6GQvRjzlQ/LJEla+m4hUJqLXWLcmvaf6oFIZMRjAybnmO6GTs5jkhLqXM3r2k7Ps+2I6dbfAx0/KoX807NxajsFY81sdd07Hw2Nz0GpMWCpFfPytE0Eh5hBQsTZCP9wYDV3uEZaKzJSTJ09ibW2NXC7nqaeeYv369YSFXT23y/z587Gzs6s6fHxaNtiYyWRCbKvEecrdyAO8sO4Zgf2YARTvPFyjnMzTGa95z+I59ylsBncj95u1aNNy6qyzUFvOtH3r0Bj0DPUO4bn2fZrjVurN3tz1/HrxQ7R6DT3C+nPifAyv/jGBez/uTsK+LPZ/e67O67bOO0FuQjF3L2i+cP2ZFXEsTXye3TlL0Ru1BFp3YUrQIno5j2u0hI2Jh/PZ/V0Co98K59k1vZn4WUfO78ll56J4AAozy9n0/lke+CCyylm3LsoMRezIXsyi+MeJLtiEwaQjwLojk/w/5EG/+S06A3MjnD9UyOZvU5n4dhBvrovi6S9DOblHxaavqmcvTSbwC7fmnhn++IZZ02+cO30fcGPPSvOddblZXpltj2+AlLGDsukanM77swoZfb8V4iviTfoHSlm1xY1lG1154CFrZr2kIqGV+nbUxW3ZD0Icl3ph9sKlbdu2HD9+nEOHDvH000/zyCOPcObMmauWnzlzJkVFRVVHamrqVcveLBIbKxCLazniGtQltWZhLiG1t0Hm7oxIXN3VMk8XDIUlmPTVDqciqRSZuxPyAC8cx9+Bha8H6m0HrmrLKVUWbx3ZCsALEf0Y5h3SkFu7aawc5IgkIkqvcEAtza9A6Vx7+epU0UHunTySvMIc/F2DeXPIIkaMGc6A58I4sOQCpiveqrbNO0H83iwmLu6DrVvz+jMYMXAwbzU/JD5DUkll3Jf+ro/wWOCX+FlF1ihrZW+BWCKi5AoH1JJ8LTZ19APA31/E0XG0F13v88E9xIbwIe4MeyGEPd8nYDSayDijpjRfy1f3H+DNiK28GbGVpCMFHPzlIm9GbMVoqNlXJfp8/sr6mm/ipxJTsBmDSYe/MpKH/Bcw0W9Bs/jAWDvIEEtAnV/zAaLO12HrXPc0/obPUugx2pW+97vj3VZJp6HOjH3Rjy3fpWH8bzzYuVjgEVQzlYRHoBUFGXUvH7Q0Dg5iJBLIz6u5FJyfZ8TZpW4R6ugk4dPFzhw868XmAx5s2OmGlVKEl29NoSyzEOHrLyWsgwXTX7UjpJ2MFT/WbxdcUyP0g0BTYvbCxcLCguDgYDp37sz8+fOJjIzks88+u2p5uVxetQvp0tFYiKRS5AGeVJxOqDpnMhopP5WAvE1tfxQAeYgf+uz8Gj4tuqx8JPY2iKTXeIM3mTDprr2TZm1iLEvPHwHg416jaWfffFmQJTIxHu3sST5UvURmMppIPpSLV0TdeZWORh/lsTn3klp2ASupDY8GvMWYHhMrr/3vWWwymdg27wTnd2YwcXEf7L2VTX4vV6NAm87KlDfYmLaAUr0KZ7kvE/znM8brVWykTgBILcR4htkS/29+1XVGo4mEQ3n4RtrXWa+uwsCV2RvEl14rTRDUw4npG/rw7G+9qw6vcDsiR3ry7G+9EUvqTv2g1uWwLetLvombQkzBn+iNOnyV7Rnv9x6PBHxCiE1PaKJc41ILMX7h1pw9WFh1zmg0cfZgIUEd6962rK0wILriF0gkqe4HgOBOtmQlldcok51cjpOXecazkVmIaNdBxuF/KqrOGY0mDv+jua4fhlwhws1dgl4PO7aUM2DYtQW70QharXm+cgv9cGMIu4rqh9kLlysxGo01fFiaG9s7e1O86yjFe2PQpueQ/+PvmDRabPpX5pbJXbSGgpXbqssP6YahpJyCZX+iy8yj7Ng5CjfuxnZo96oyBSu3UX42CV2uCm1KFgUrt1FxNgnr3lHXtee9mO3szUzESmrB4v4P4GbZfLmCuk0K5vi6ZGJ/v0heopot7x5HV24g4m4/AH5/4yi7Pqv2tQju7862xf8y4+vHOJj2F2KRhMcGvcjvW9ehkFX+OG2bd4JTm1MZ835XLJRSSvIqKMmrQFdR9xbK5uCMejffxT9JdMEfGE0Gwuz680Twd/R0fgCJSEafRwI4ujaVmA1p5CSUsHHuabTlBjqNrQzAt2bmCbZ9Uh3LJnSAK4dWpXBicwYFaWXEHcjj7y/iCB3gilgiQq6U4t7GpsZhYSXByk6Ge5vrxy5R63PZlvUVi+If43D+enTGCjwt23Kvz1tMDVpEB7uhTZLIcehkL/atzuLA+mwyE8r4ZXYC2nIDve+p9EX54ZXzrPsouap85EBH9vyaxeE/c8lNreDMPyo2fnaRiIGOVeJsyCOeJJ0o5s9vUsm5WM6hP3LYuzqLARPML4L0JSZNsWHdylJ+X1tKYpyO994opLzMyJj7K0X4my8W8PkH1TvITh7TsGNLOWkpemIOa3jm4TyMRnj0yeq/9ecfFBF9SEN6qp64czo+/6CIo/9qGHG3+SQ2vRKhH24AYVdRvTBr59yZM2dy55134uvrS3FxMStWrGD37t1s27bt+hc3EdY9IzAWl6JauwNDUTFyPw/cXn20aqlIn1/E5a/TUid73F97lIJlm0mf+QUSB1vshvfCblS/qjIGdSl536xFX1iM2EqBhY877q8+imWH4FrtX4nBZOK5/etZO+wR2tg5s7j/A4zfvowyfdOv+YYN96ZMpWHv12cpzdPg1taOcV/3wtqpcieBOqsc0WUL1H2mtkUkgh2fH2fDm3fywkvPM3/OB9zZfzRdKjqx4uKHxKxeD8Avj++r0dbIuZ2IGOPX5Pd0NSqMJfyVtYgThdsY5j4Nb6swBrg+SpT9cHY+8AOlBVq2fxlHcZ4Gj1BbJn/btWqpqDCzAtFlY2Lgk0GIRPD353GocypQOlgQOsCVYc837nJfiT6fHdmLOZi3mi6OY+jsOBJnuS8jvV6kv+skzhau4WzRRnTGuren3ixdR7hQXKBj4+cpqHO1+LRT8vz37auWigoyNTXGw11P+4JIxIZPL1KYrcXGUUbEQEfGvlj9dw6IsOHpL9ux/uNkNn2VgrO3gnGvB9JjdPPNLt4sd4yyQpVvZNHHavJyDbQNk/H1z844/bdEkpmhrzHTpNFUxjBJS9VjZSWmz0AF737qiK1ddaGCPANvziggL8eAtY2YkFAZXy9zpmdfxZXNmw1CPwg0FSKTyXwl2+OPP86OHTvIzMzEzs6OiIgIXn31VYYOHXrDdajVauzs7PBb/BZiq1t3cHsr7Vh3x6M4K5Tszohn6p41GK740z7Y/mgLWXd1fK3aMt73ZewsnNAaK9iY9i3HC/c0aZvW0orrF7oO4bYDGOD2GLb/5WS6WBrLzuzvyaqIb3DdTYWF2JKODiPo6ng3NrLKpS6toZTzRX9wqnANpfq6ncFvdboqklvaBAEzoqTYSJ/2GRQVFTWqq8HlXHou9bxzLlJZ/Z9Lel0FB7fMalJbzRGzFi6Nwe0iXAAinTxZMXgillIZaxJO8OqhP2t8bo7CBUApseMB3xcItql0fI0u2MmmjO/RGhsuMOqiMYQLgEwkp4fzfXR3ug+ZuHJ25VThTvbk/oxaZ74iQCKSEmY7kN7Od+MgDwDAaNKTXLKHU6o15FS0XIDHlkAQLgKX06zCZXgjCJett59waXU+LgJX50R+BtP/2YDBaOT+oEheixrU0ibdEKWGIpYmvcP2rF8xmgx0dhzEtDYf4qEIaGnTronOpGFf7i98F/8Epwp3AtDefhBPBn3HILfHsZSYZy4dg0nPyaK/+e3iI2xN/x/ppUcRi6QE2gxmtO83jPb5liCbpvGDERAQEGgognC5xdiRHsfMw5sBeCKsB0+FXT1YnzlhwsiunDX8kPg2Rdp8XORePBX8Pn1d7kZk5sNUrc/lj4yF/Jg4neTSE0jFFnR3upengpfQ0/kBZGab0dlEWum/bEl/kXXJj3KhaDMGoxZXyzAGesxifOBaOjo+iqXEqaUNFRC4JRF2FdUP834iCNSLtYmxvBezHYBXogYyqU3nFrboxkkuPcMXcS9ypugQUrGM4R4P81jg29jJnK9/cQuTVRHPrxdnsiplFtkVCSgkSga4PspTbX6gs8OoRgtg1xQUaBPYmz2fX5Pu5WjeYkr1eVhJnejs/DgPBq5loPts3C2jWtpMAYFbC6Op4Uc9+Oqrr/D390ehUNC9e3cOHz581bLr1q2jS5cu2Nvbo1QqiYqKYtmyZfW940ZB8HG5hZkR0Z9n2/cG4PVDmxFZft/CFt0cnR0Gc5fnY8glllQYStmc8SPRqp0NrrexfFyujYgw2/70c52Eg0Xl1l21Lpd/clcSW/g3Rho323V9cJHWnUMIQIwUf5v+hNnfg7tldSZylSaJs0UbiVdvQ2u8NYJ+CT4uApfTnD4uvYbMabCPy4Htb9+UratWreLhhx/mm2++oXv37nz66aesWbOG8+fP4+pae7fe7t27UalUhIaGYmFhwaZNm3jppZf4888/ueOOO+pte0MQhMstzusdBzOlXWXMmHWpXxGt2tHCFt0cjhbu3OczHT9lKADn1dFsSP8GtS7/OldeneYRLpWIkRLpMIxezuOrdiAVaXM4kLeS2MLtLSpgriVcLsdRHkyY3ViCbIciE1fG29EbK0go3sH5oj9avTOvIFwELudWFy7du3ena9eufPnll0BlbDQfHx+ee+45XnvttRuqo1OnTtx1112888479ba9IQhLRbc4847t4MdzldOAd3s/TWeHwde5wrwo0GaxOOFNtmT8hM6opa1tZ6aHfEpnh9bheGxEzzHVZr6Jf5y/s76lRFeAnYUrd3pO56ng7+noMMKsl5AACjTx7M/5kBWJY/kn+2MKNIlIxQra2t3FaN9vuMdvKeH29yEX3z67GgQEGgMRDfRx+a8etVpd47hakFatVkt0dDRDhgypOicWixkyZAgHDx68rr0mk4kdO3Zw/vx5+vXrd93yTYUgXG4D3onZztLzRxCLxNzj8ww9nO5saZNuChNG9udt5Ku4l0gtu4ClRMk9Ps8yOeBtHC3cW9q8G8Jg0nG0YCOL4h/j76xvKNblY2fhynCPZ3k6eAldHcciE5n3jKDOWMrZovWsu/gIv6c8zYWiLeiNFTjKg+jp+jwTAtczyGM2XlbdzN6hWkDALGikyLk+Pj41kgvPnz+/zuby8vIwGAy4udXMrO7m5kZW1tUTlxYVFWFtbY2FhQV33XUXX3zxxU3FU2tszPtVT6DRmBv9N8GOmfRxGc0or6lYiC3Zm7uupc26KXI16XwX/zq9nEcx2H08wTaRTA/5hJ3Za/gn73cMppb3G7keepOWowW/c1y1lUj7O+jhfB+2MheGuE+lt/M4jqr+ILrgD8oN6pY29ZrkVJwip+IU/+Z+TpDNUNrajcRZEUKgzWACbQZTqsshTr2NC+otqHWNl+hUQECgNqmpqTWWiuTyxt3JaGNjw/HjxykpKWHHjh3MmDGDwMBABgwY0Kjt3CiCcLmN2JK5FK2xgkFuD3CHx0MoJFb8lbW8pc26KYz/zb6cUf/LGK+nCLaJ5A6Ph4hy6Mfv6d+RXHr1zOHmhN6kJVr1B8dUW2hvP4ieTvfjKPeir8tEujvdywnVNo4UrKfIjAPZAWiNJZwtWs/ZovU4ydsQYncXQTZDUcpciXKaRJTTJLLLTxGv3kZi8Q40xhvzqxEQuB1o6JbmS9feaEJhZ2dnJBIJ2dnZNc5nZ2fj7n712WuxWExwcGUKmqioKM6ePcv8+fNbTLgI87m3GTuyV7Il8ycA+rvewz3ezyCm7jTz5kyBNpsfk+awJuVzSvRFuCl8mRr0Lvd6P4e11L6lzbthjOiJLfyL7xKeZH3afDLL47AQK+jqNIangn9gjNereCjatLSZN0S+Jo6DOZ+yIvFutme8RUrJQYwmPW6W7ent9hITAjcwxONd/K37IxFdO0OwgMBtgakRjpvAwsKCzp07s2NH9SYNo9HIjh076NnzxmN+tXSyY2HG5TZkf+5GKgyljPF6ks6Og7GROvBrysImC7HflBwv3M354qMMc59IF8ehdHIcSJhdd3Zmr+bf/M2tYvkIKv14zqn3cU69D39lFD2c7iPAuhNhdv0Js+tPatkpjuRv5ELxQUwYW9rca2I06Ugu2U1yyW4sJY4E2Qwh2PYOnBUh+Nv0x9+mPxpDMckle0hQbyez/JjZ35OAwK3CjBkzeOSRR+jSpQvdunXj008/pbS0lMmTJwPw8MMP4+XlVeUnM3/+fLp06UJQUBAajYbNmzezbNkyFi1a1GL3IAiX25SjBdsp0RUyzu8lQmw7MSXwHZYlz6NYr2pp026ackMJG9O/JbpgJ6O8puBt1YYRno/SxXEImzN+JK7kWEubeFMklx4nufQ4rvIAujmNJcyuPz5W7fGxak+hNpto1R/Eqv6iohXEUSk3FHCqcDWnClfjaBFEkO1QgmyGYC1zo63dSNrajaRMn09i8U4Si3e0+q3VAgI3g8hkQtSAiCT1uXbcuHHk5uYya9YssrKyiIqKYuvWrVUOuykpKYjF1YsxpaWlTJs2jbS0NCwtLQkNDWX58uWMGzeu3nY3lNsmjkvHie8hsTDvXRtNjTpAVOtchKc7344fg6PSisyiYp5ctYHz2XktYF3jIALuiQznpcF9cFJaAbA3PokPtu8jPrcy9ovGW9eCFt48LpZKHgrtyEOhUTgpKu+pXK9jfcIZlp2N4awqt171hgelNaaZN4wIEe3tgujv2pnezlHYypRVn+VUFLAv9xj7co8RV5LSLPb4WRc0SzutAQdpWUub0OJoSnR81HtTs8Rx6dvvbaTSBsRx0Vewb++c2y7JoiBcbiPqEi4APg52fDf+bgKdHSnVavnfhq3sOJ/QzNY1LjZyOU/37cakbh2xkEgwGI2sPX6aL/ccJNW+sKXNqxdyiZQxge14tF0nwpyqtzMezU5j+bnjbLl4Ho3BcMP1tZRwuRypSEJHh7b0d+lMd6cOWF32I55Vkc8/ucf5J+8454svNpkNgnCpRhAugnBpDQjC5TbiasIFwFYh57N7R9Ir0BeAz3cf4Ot9h27W98vs8HO056VBfbijXaWDa7lOx/dnjvDdycMU67QtbF396ermzSPtOnGHXxtk4krn6vyKMtbGnWLlhRMkqa+/5GcOwuVyLMQyuji0o69LJ7o5haOQVG/pzNWoOJB3gn/yTnC2KBFjI45MQbhUIwiX5hUu/frOarBw2btvriBcbjUE4VLNtYQLgFQs5rWh/ZjUrSMA28/H88qGbZRqW+8D/hKdfTx5eXBfOvl4AlBQUcbXsYdYdu4YGkPrcOCtCxdLJeNCIpjQNhJPZfUP18HMFH49f4JtKReuOgtjbsLlcuRiGZ0dw+jjHEVXx/AaMzGF2mIO5Z/iYH4sx1Xn0TXQAVsQLtUIwqWZhUufRhAu+wXhcsshCJdqridcLnFPZBizRwxGLpWSlF/Ac2s2EZdb/9xA5sTgtkG8NKw3QfZOAGSVFvPliYOsiotFZ2y9O1skIhGDfIIYHxLJQO9AxKLKv3WhppwNCWdYHXeSMwU1Y8KYs3C5HJlISkeHUHo7R9LdqT02l/nElBs0xBSc5d/8kxwpOE2x/uYfvIJwqUYQLs0sXHq/1XDh8s87gnC51RCESzU3KlwAOni48cX9o/Cws6Fcp+OdLbv47cStseND76PnnuD2PB/VC29rOwDSS9R8FXuQNXEnW7WAAfBU2jCuTQT3temAl3X1j9np/GzWxp9iQ8IZVJryViNcLkciEtPeLpieThH0dI7AWW5f9ZnBZOSsOpFD+ac4nH+KtPIbC94nCJdqBOEiCJfWgCBcbiNuRrgAOFhZ8uGY4fQN9gfg95Nnmb15B6Xa1rUr50ou7SqyEEsYFxLBs5E9cbOyBioFzKLYf1kTf/KmHF3NEbFIRB8PPx4IiWCobzBySWX0A63BwO60RI6U7OFwwRn0rSTWTV0EW/vQw6kDPZw6EGDtVeOzjPJcDuef5kjBaU4VJVz1PgXhUo0gXJpXuPTv1XDhsueAIFxuOQThUs3NCheo3F48pVdXXhjYC6lYTFJ+AS+t28LpLPMORX8trtwOLZdIGB8SybSIHlUCJqu0mMWnj/Dr+ROU6Vu3UAOwlysYHdiO+4I7EOFcHdq7WFfKvtxj7M45yhl1EqZW7I7tKnekm1M43RzbE2HfBpm4OkxVuUHDcdV5jqrOEF1wllxNtfOyIFyqEYRLMwuXnm82XLgcfFcQLrcagnCppj7C5RKdfTz5aOwIPOxs0BkMfLHnIIsPHMXYCofP1eK4XBIwT3boVuXoqqoo5+ezMSw9G4NKU96cZjYZIfbO3BMczn0hbWssteRUFLAnJ5o9udEklWa0nIGNgKVETpR9W7o6htPFMQwnuV2Nz1NKs4hWnSVadZZi/RF0ptYvThsDQbgIwqU1IAiX24iGCBcAO4WcuXcNYXhYCADRKem8snEbaYVFjWFes3G9AHQWYgl3B4XxdEQPAmwdgMqAb6vjTvL9qSOklrSu+70aHYLSibBvwwDXLvR2jqqxcye1LIs9OTHszY0h/QZ9RcyZIGtvujiE0dmxHaG2AUhE1ZFBtUYt8SXnOKs+ybniU6SX377ZrAXh0rzCZUD3hguX3YcE4XLLIQiXahoqXC4xJqIds4YPxFoup1SrZeH2ffwaHdtqFhluNHKuWCRiuF8IT3XoXrW8YjAa+Sslju9PHyU6J70pzWxyLnfOtRDL6OYYTn/XznRxDMNCLKv6LLEknf25x9ifd/yWEDHWUksi7dvS2aEdnR3b1Zh1AijSFXK++DTn1Kc4V3yaQt3ts5QkCJdmFi7d3mi4cDn8niBcbjUE4VJNYwkXAC87W+aPHkZ3fx8ADiWn8uamv0lRmf9sRH1C/vf08OXJ9t0Y4B1Yde54biZLz0SzOfk8WmPrc+S92q4iK4mCHk4d6OfaiY72oUjF1dnDk0sz2J97nAN5J7hYltlcpjYp3Z0VtLPpQJhtBG1sQrEQy2t8nl2RybniU5wvPkNc8VlKDeafI6q+CMJFEC6tAUG41IP7B0Xy0PAuONkpiUvN5cNfdnEmKavOsgM7BfPoyG74uNojlUhIzVaxfFs0Ww6erSpjKZfx7H196d8xCDtrSzLyili1/Rjrdsc2ir2XaEzhAv/lBXKx4Y1JD6JUKimvqODzLdv5+UwC+jq2FBcdO0z2+pU165BKaTNrQdW/TSYT+Tu3UhT9L8aKcix9A3AddR8WTi6NZndDchW1sXdiSnhX7g4MQy6tdP7MLSthydZNfDlrLmnn47Dw8cBx4hjkgT5XrcdYVo7qt22Ux5zCUFqG1MkBxwdHYRkRWlWmeMcBirbuxVBUfEN13iw3sh3aWmpFL+cI+jh3JNI+pIaISS/L4WB+LAfyTnChOAUTJpLXx5K0MgZNQRk2Qc6EP98P+3buddb97/PrKDhee9bKpYcfXT8YXev8yY92kfr7Kdo925eA+6Nu/Eavw+XOuVKRlEBlG0JtO9DWJgw/q0DEly0rGU1G0stTuFB8lgslZ4kvOUe5ofbD/tTq8xz/+Sxl+eU4tXGgzytdcGvvXGf7G5/4m4zo2jNZvr09uevzgQCU5Zfz7+fHSf03E22xFo9OrvR5pQv2vo37sGps4XJ0ZSKHfoqjJK8CtxA7hr0WgWcHx6uWP7w8npjVSaizyrC0lxM61JOB08ORyivH3YEfznN+Rwb5SSVI5WK8o5wY+EI4Tv42jWZzswqXro0gXI4IwuWWo7GFy9CuIcyeMpz3l+3gVGImDw7txOAuIdz3+o+oims7b3Zq642tUkFyZgE6vYG+kYE8P64/L366nn9PV+Zfef2RIXQJ9eXdpX+RmaemR3s/XnloMK9+9Tt7jyc22OZLNLZwKT55jKx1K+gy5Rk+euFZ+oZWhtU/n5nNrC27OJ5e84286NhhcjdvwH/6a9UnRSKk1tU/OgX7dlCwbwfuYycgc3Akb+cWtNmZ+D37KmKZjMagMZIsOsotebBtJJNCO+KurLRfbzCw5fwpFn33LdsWL8Vz3stIbK1rXWvS68matwiJrTW2dw1E6mCLPr8QsaUCC9/KyL6lh0+Q9/0qnCaNxSLQl+K/91N29ORV66wPNxvHxVpqSXenDvR2jqSjQ2iN5aR8TRG7Tu7nxzlfkxVhRNnWieQ1x8ncHU//5Q8hd7CqVZ9WXYFJZ6jx7/2P/0qH/w3G+852Ncpm7U0g7qfDaAvLCRzfqcmEy5VYSqxoYx1KqE17Qmza4WlZUzgaTUbSylOIKz5LXMlZ4kvOE7vlNDtmHaT/691wbe9M7IpzJGxP4cF1o7ByrP0bVFGkwagz1vj36gc3M+DN7oSODsJkMrF+8l+IpSJ6vdgZmVJG7C9nSTmQwfi1o5BZSmvVWV8aU7ic2ZrGH29GM/zNKDw7OHDklwTO/ZXOkxuHonSS1yp/enMqm96OYeScTnhFOlJwsYRNs2IIu8OLIf+LAGDl0/8QNtwbj3AHjAYTu784TW68mifWDcHCqnH6oTmFy8AurzdYuOw6Ou+2Ey6NN+KbgPnz57Nu3TrOnTuHpaUlvXr14oMPPqBt27YtZtOEOzqzYe8p/thfGYxt/s/b6R0RyOi+7flp85Fa5WPO13w4rNx+jLt6hxEV4lUlXCKCPPnzwOmqsuv3nGRs/wjCAtwbVbg0NqoDe7Dt3IMiL3+mrNnE6PZteaVvN9p6uLHqsfGsOXaSj3b+g6rsMkEnAqlN3V8wk8mE6uBeHPsNxbpdewDc75lA4oK3KTl3CtsOHZvjtm6IAk05X8X+y7cnD9MjJolpU6fSq0MUo8IiGfXp15yb9gLLDuzmT4sKCjUVNa4t2XcUY2kZ7q9PQyStfJOUOtd8C1Vv24dNv25Y9+0KgOPDYymPPUfJviPY3TWweW7yCkr05ezIPsyO7MNYSuR0dgijl3MEXR3DcZLbcV+Xu7jvj7soN2g4pjrHv91O8snYt0jbfIagiV1q1WdhW/MHO2NnHBK5FPcBwTXOV+SWcObzPXT9cAxHX/ujSe/xSsoNZcQWxRBbFAOAjdSWEJt2hFiHEWIThpvCA18rf3yt/BnsdidGk5GzijPERh2nNERFfMl5HF63JWV/Ouc2JtBpcnitNhR2NR/icX9dRKqQEDTUD4CilGKyT+YxbvVdOAbZA9BvZjeWDvuNuK3JhI0NvrJKs+Dwsnii7vEn8u7K+7jzzSji92ZxYkMyvR6v/RuedrwA7ygnwkdUikN7LyVhw73JOFktLMcv6l3jmpFzO/PZwM1knS3Et3PdM1oCtx5mLVz27NnDM888Q9euXdHr9bz++usMGzaMM2fOoFQqr19BIyOViAn1c2Ppn4erzplMcPjMRToEedxQHV3b+eDn7sgXa/ZVnYtNyKBfVBC/7ztNbmEJnUN98HV34JOVuxv7FhoNk15PRWYajv0GV537/dR51n7+MXOfe4ZJ94zl/o4dGBrahs92/cOqmJMAGLVaEj96B0wm5J5eOA+5C7lr5VKCTlWAoaQYq6CQqjolCksUXr5UpCablXC5hE6n5ZevvuEvUwmdBg/godAoxgaFExoSwnshIcwy6NmafIFVcbEczEzBBJQdP4M8yI+C5RsoO34GiY0SZfcobEcMQCQWY9Lr0V5MryFQRGIxirBgNAkpLXezl1Fu0LA/7xj7844hFUnpYB2E9yEJ90y8D1cbZ3o5R9LLOZIXTk/g2NkTnFamcyT/DImlV5/lSf3zDB6DQpBaVs/kmIwmTrz3NwHjO2ET4NQct3ZNivVqolWHiFYdAsBOZk8b63a0sQ6ljU0o7govwtu2J7xt+6prciqyGbpiLIdi/sVKLiJbc23foHMb4gke5l81k2LQVs5KSSyql+lEYhESCwlZx3PNUrgYdEYyzxbS8/Hq77JILCKghwvpsXXPcHlHOXJqcyoZJwvw7OCIKq2UhP1ZtB/pe9V2NCWVs6cKW4vGvYHmwmSqPBpy/W2IWQuXrVu31vj30qVLcXV1JTo6mn79+jW7PfY2lkglYgrUNadTC9Rl+Htcfd1WaWnB5o+ewEIqwWAy8cGyHRw+U/0A+vCXXbz+yBA2f/wEer0Bo8nEez/9zbEL5rtrxVBWCkYjEmXNteUinZEnpr/A5iItb905kDB3V94eMZjxnSOYvVzGbpEICzdPjBXlqP7ZTeriz/F79hVkdvYYStQANZaOACTWNuhLipvt3m4GQ3FZZT/YWnNOlcubB/9m/pE9DFUZeGTQMDq278CYoDDGBIWRUlzImriTfGXxK0lHT6LsEYXrC5PR5+RTsGwDJoMB+zFDa9R5ORJbG3SZuS10p1dHb9JzMCmanU//yDLjTrr06Ep3p/Z0c2xPsI0PncM70pmOPOw/knxNUWX8lIIzHFOdp9RQORtXeDaLkqR8Il4dVKPuhBXRiCQi/O+NbIlbuy5FukKOqg5yVHUQAEmRjIwv1Ux+5yEi/TviZemLq8KNe4bcxz1D7gOgRF9MYkkciaVxJJRcIKUssSqOTPapPAoSihgwq0dVG/b+dli7W3Hoy+P0f6MbUkspsb+cozS7jLI884wtVKbSYDKYai0JKZ0U5CfV7dwcPsKHMpWWnx/dC4BRb6Lj/QH0nlL3DLvJaGL7gli8oxxxbdNKl0lMQEMyjNyeusW8hcuVFBVV7lhxdLy6SNBoNGg0mqp/q9XqJrfrepRVaHn9mz/JKyylSzsfXhzfn/TcoqqloXGDo+gQ5MGMzzaQma+mY4g3rzw0mLzC0hoCpzURk5bBvd+vYHynDjw/sDdt3Vz49aVn2DlqOB9u30divgpL3wCSv3ifoqMHcR58Z0ub3GiU6rX8uGUziz79jGGfvsu4kA6MDgzD18aelzr15cXD0ezev48/TMVsS4mjzN8bg6oI9da92I8Z2tLmNwgTJuJLUokvSeWXi1soXBVHZ6cwHpz+CFEObXGS2zHMvQfD3HtgMBk4r75IjOocq39fhl2wSw1H3qLzOST/doI+i8chEjWuf1ZTodYWsW7dekyjSnCvcEEhtiTQug2KM3a082hP185dsZbaEGHfiQj7TgAYTHpSyy6SVBrP5j1bieyfUcORVyITM3xhP3bNPcSSgWsRSUR4d3PHt7cnt5KL4sUjuRz44TzD36j0iVGllPL3glj2f3uOPk+G1iq/dd4JchOKmbS0+V9iGwuRyYSoAX/Dhlzbmmk1wsVoNPLCCy/Qu3dv2rdvf9Vy8+fPZ86cOU1iQ2FxOXqDEUfbmo6GjrZW5BeVXvW6PhGBzJ82ks0HzjDvp+34ezjy6F3diDmfhlwmZdq9ffjfl7/zT2wSAPFpeYT4uvDQHV3MVrhIrJQgFmMorTkTYigtRmJTOWNiNJlYER3Ln6fP82y/nkzoGsmgkCD6BQew9tgpvtr7L5ke3ugK8irr/C8hoL6kuIYfjKGkGLlHzTw05oLExqqyH9Q13yIN6mIkdjaczM/i5MEs3j28izv9Q7i/TQd6efgxqF9/BgGlOi3bLsaxUiPhtzVbMOn1163THLGws0QkEaFR1ZyNvJiQTPyJ8yQM0SEVSWlvF0gXx3C6OLbDx8qdMLtAwuwCeWjhCIrmqDlZlkCM6hzHVOdJij2OVlXGrgeWVtVnMpg4+/V+ktceZ+CqR5v3Jm8Ahb0ckUREeX6lX1OFsZwz6lh2fHcAbYmOkZ8MwsfSn0DrEAKVwQQqQ7C3cMBfGYS/MoiBL94BL1bO5CSXxpNcmkBSaQLy8EQe+HUEmmItRr0RSwcFvz28FZewq7/EXUmwdVtCbdqTWBpHRnlak8ansXKo7IfSfE2N86X5FSidazvmAuz56iztR/oQdY8/AK5t7NCV69n8znF6T22LSFwtXrfNO0H83iwmLemLrZtlk92HgHnSaoTLM888w6lTp9i/f/81y82cOZMZM2ZU/VutVuPj0zhbSPUGI+cuZtO1nS97jiUAIBJB13a+rNl5/KrXWcgkSCVixvaPoLhMg1gkwuKSU6ZEjEwqqfXmZDSaMOeXTJFUisLDm7LEOKzbdQDAZDRSlhiHfbc+NcoWVWh476/d/BoTy8uD+jC4bRDjO0cwJqIdn4vKWbTlbwBkDo5IrG0oS4xD8Z9QMVRUUJGegl23mk555oJIKsXCz4uKs/FYdap0vDQZjVScjcdmUK+qchUGPesTzrA+4Qw2+45xT5sOPDrtKQLsHLknOJx7gsPJvHsiWwvS2JhwlqwbqNOcEMsk2Ia4kh+dhnvfIKByKj8/JhW/sZU7QvQmPccLL3C88ALfJ67HRe5AZ4d2tNN60dUnAjs7O/ooO9LHpdKXKb39NI4+e5LojFMcyzpDkaaEw//biNewtnjfGdZi93otJDIJLqGOpB3JImBg5e+OyWgi/UgW7R9oi8FkILksgeSyBHb+d42jhTOByjbY57jgIwmgY6eO2MnsibTvQqR9pVOz0WQkqyKd5NJELpYlcDIhFlWcmm5P3/gSWg/HfgRZh+Cm8MRd4UFCyQW2ZG2kSKfCVe6OTCyjQhePkYbHJJLIxHi0syf5UC5tB3lW9UPyoVw6jw+s8xp9haHWzJpIUvlvk6ky/ILJZOKv+bGc35nBQz/0xd67+X0dGxUTDfRxaTRLWhWtQrg8++yzbNq0ib179+Lt7X3NsnK5HLm8bkXfGKzYFs3bU4ZzNjmb00lZPDi0E5ZyWdUuo9lThpOrKuGr3yoF1qMjunImOZtF6/7h2fv68vCdXTEYjMz/eTsApRVaos+lMv3+flRo9WTlq+nU1psRvcL41IydcwEcevUna/2vyD19UHj7UnhwD0atFttO3QDI/G0FUltbXIaOBODIml955N+D9OzcmVfvGkKXoABefeF5nnpiKksOHWPZ4WM49OxHwZ6/sXByrtwOvWMrUhtbrEOvPsvW0tje0Ze871dj4e+NPMAb9d/7MWl0WPepfOjkLV6FxMEWh/sql8NU4QG88+ZcPtnxJ/0njefuwDDGhEXh4e7OZHd3Jod1IbnnHaz4fgnbLuYRLzPUqtMcCXggitj527ELdcU+1I2ktcfRl+urRMaJ9/5C7mJN6BOV4itXo2Jr1gHefnYtSjc7HlgwlY4OoXRyCKWtrR9eSle82g5mTNtKB/DEkjQ2aXpyjjRyA4yUGSquaktLEvlQKDvfPohLOyfc2jsRu+IcunIDoaMrH9g7Zh1A6WJJj+cqBVqBNo8CbR7rn/oLa1crRrw/EB8rf/yVwQQog/G3CsJJ7oynpQ+elj70oj8P+sLbxe+ToUvjYmkiF8uSSClLIqsi/aqJMp3lrqxIWUJcSWUMKblYjsaoob1tFN0ce+Oq8MBaomBr5s+cVv+LCBEmTEhEUgz1yCDebVIwf7wVjUe4PZ7tHTi8PAFduYGI/3YZ/f7GUWxcLRn4fKU4D+7vzuFl8biF2uPVwQFVail7vzpLm37uiP8TMNvmneD0ljTu+7QHFkopJXmVY0BuLUOmkNRtiDkjOOfWC7MWLiaTieeee47169eze/duAgICWtok/j5yAXsbK568uxdOdlZcSM1l+ifrqhx23R1tMBmrB5NCLuPVSYNxdbChXKPDUi5DIhFjq6zeCvrGN3/yzH19eOeJEdgqFWTlq1m0bj+/NXIAusbGpkNH9GUl5O/ciqFEjdzdC69JT1Q51+qLVDXeoAwV5WRvXM1vv3zP+jesuPehh5nz5huEennw4sDePNq9Ez92jeJzqZS039dUBaDzmvREo8VwaQqU3SIxFJdSuOGv/4LFeeL64mNVyzr6gkK4bJpb6miP24zHKVj5B5umzGCrgy0zB/bkrscfYXRQGMN82+Dv7Mrrr73G68D58+dZZ+fHjvtKiVea74+z56AQtIXlXFhyCG1BKTbBLnT7cDRyx8ql1fKckhr9AFCSokJ1MpPgR7pxrjiZc8XJ/JqyFUuJgvZ2QXR0aEukfQj+Sk8Crb2Z/uSzABhMRhJL0jhZGMfJogROFyVUOfq2NMHD/ClXaTjyzQnK8itwDnFg5BcDsXKqXNIoySqtNbOgSlaTdTyXkV8NQmfSkVha6bx7ibRNuVgm2BHRNpLuvbrTrWs3bJW2BFhUiptLvHHyeVS6/Drt8rT0ppNDN0SIuFiWgMZYuYzzgM/DrE//lWOFR2hv48lQ9wdJKTtPsV6Fq9yX/q734GkZQKE2lz8zl5CnubEEnGHDvSlTadj79VlK8zS4tbVj3Ne9sHaq/O1TZ5XXWP7pM7UtIhHs/eoMxTnlWDnICe7vzoBnq2fXYlZXLqf/8vi+Gm2NnNuJiDF+N2SXQOvHrBodn28AAD4ESURBVAPQTZs2jRUrVrBx48YasVvs7OywtLyxdU1zC/k/ZVQPnhxb+cb59II1HD3XfAndGjsAXWMgFokYER7Cs/16EOBUuV5fVF7BT4crZ2DUFZrr1HDzNEYAuqbEUipjkHcgowLbMdArsCpCL0CyWsXWixfYmnyBE3mZDZopvtkAdC2JvcyGDvbBRNqHEGHXBi8r1xqfG01GkkozOFUUz+miRE4XJVCou7GdaNcKQGfOuMjd8LMKxNcqAD+rQBwsHJl1ekadZaUiGb2c+mMns8dfGUSuJpvVqT/jaxXA1MDpvHHqeUSIsJeWMjPsR7668BJqfQHPtfmYg/mbOas+QlfHIVhKbNiWuaxRlpPMleYMQDeow6tIJfVfIdAbNOw8+cFtF4DOrIXL1XYS/Pjjjzz66KM3VIe5CReAR+/qhr21gk9X7b1mOblMikZ381O0V8MchcslJCIRI8Lb8nTfbgQ5V8brKNFoWBl9kp8OxZBTcnXn55vF3IXL5SilFgz2DeJOvxAGegeikFbPPGWVFvNXShx/pcRxKCsVXR1pFq5FaxIuV+JkYUcH+zZ0sAuivV0w3lZutcqkl+VwWp3A6aJEzhQlklFR91by1ipc6osYCY/4P0lWRQa5mmx6OPXly/jKtBsBlkom+L3CrykLsZU6MN7vJT44OxUAG6kDz7b5iPfPTsHUoD285k1zCpfB7V9psHDZcWrBbSdczH6p6Fbk8gB2V0OpsOC1h4dwKjGTVduPNYNVLYvBZOKPU+f48/R57mjXhqf7dKOtmwtTenXh4W5RbDx5lh//jSEh7/Z6yJTqtfyeeJbfE89iJZUx0DuQO/4TMe5KGx5u14mH23VCralgd3oS21Pj2Z2WiFrb+DNV5kS+tojdOUfZnXMUAAcLW8Jtg2hvF0S4XRD+Sg+8rFzxsnJlmHtPAFRaNWfVSVVHfHEqunr4brQ2LvmqXMKIgTJDKdZSG8oNZah11YlR3RS+FOsrv2OelkGklF2o+sxKakOxXoVCYkX5LZxoUsD8MWvhcjujsJCy4q9olr45AaXCgiWbDrW0Sc2C0WRiy5kLbDlzgf7BATzZuyudfb24v2MH7u/Ygb3xSfz4bwwHksxzm3hTUqbX8Wfyef5MPo+FWEJvTz+G+bZhiE8QLlbWjA5sx+jAduiNRqJz0tmRmsCutATiCuv2ebiVUGnVVZF8oTKvUjvbAMJsgwi3C6SNjS8OFrZVEX0BdEY9CSVppJefJbksnqTSeAq0t15fiRBzv/dEJCIp54pPYS21wdvSj/Xpv9LBrhOl+moREmQdQYm+CJU2GzeFbw1/FjeFH3maTKQi8/U3a3UIzrn1QhAuZkq+uoy2fm4kZxVw6MzFljanRdgTn8Se+CQ6enswuUdnhoYG0y84gH7BAcTl5rP88HE2njxDeSMup7UWtEYDu9IS2ZWWyOtAlIsHQ3yCGewbTKiDC93dfeju7sPrXQeQVlzE7vREdqclcSDzImX61rNUVl9K9OUcKTjDkYIzQGXW5zY2PrSzDag6HCxsCbX1J9TWv+q6yvgpCZVHWQIXSxOpMJqH0299MWLg34J9BClDCLeNRCa2YG3aci6WJSJCxEDX4YTbRqI1avFXtmNXzhoAnOQeZBQmVNXjr2xHkS6PMkNt3yEHmSu2MidyNKnCbMzNIAiXemHWPi6NgTn6uNwITrZWfDdzHMu2HOX3facw/vdnkohFGIz1+5OZs4/LjeDjYMfDXTtyb8dwlBaVuUnUFRWsO36GlTGxJOWrbqie1uTjUh+8rW0Z5BPEQO9Aern71XDu1RoMHMlOY296EhniQySVZlx1++ytjpvCkXa2gXR1dCdAGYy3lS8SUc13OaPJSHZFJhfLEkkpSyS5NJG08hT0pltnDA12vZMw2wisJEp2Zi8noSQWE0b6uYxFKbVjS+ZSlBI7ngh+jz/SFxNfcqJWHQNc72Wo+0QAinUqsitSyNGkklPx36FJazWCpll9XMJebriPy5mFt52PiyBczJRPnr+bAnUZHyzbgVZf6cH/6qTByGUSPJ3t+GD5DpIybs7fo7ULl0tYyy24JzKch7pG4edoX3X+YFIKK6Nj2XE+4ZqOqre6cLkchURKTw9fBnoH0t8rAD9bhxqfF2qLOVZ4nuOq8xwvPE+eprBlDG1BLjnnykSyy+KnBOFnFYiz3LVWeYNJT0Z5GillyaSUJZJSlkx6eeotIWYcpNWRj+ViS8b5zsDRwg2tsYIY1S7+zd9S53V9Xe6mu9OdOFi4XLXuEl0hOZpUcivSK/+rSSe3Ig213rz81ppVuLR7qeHC5exHgnC51WhNwiU80J3TiVmMH9KRO3u147WvNpGZr0apsOCtx4Zhb23Jh7/sJCLYk4l3dOb5T9aTnlt0/Yr/41YRLpcQAX2D/XmwcwT9gwOQiMUAFJSWsT72DGuPnSKxjlmY20m4XIm/rQP9vQLo6+lPby8fLK/40Uwry+ZEYRwnCi9wsjAOtb7xdnOZK9faVWQttcXfKhA/ZSB+VoH4WQVgI7OrVe6SmEktSyalLJm08ouklaegNbYuJ+nLhcslJCIpdjJnCrRZ173eQqzAVe6Dm8IHV4UvLnIvXBW+1xQ0FYYy8jTp5GrSSSg5yTHVrgbdQ0NpVuHSthGEy/nbT7gIPi5mgsJCyuMju+Nga4WLvTWvfPk7WQWVCSLHDojA3dGWqe+vQqc3kJCeT0SQJ/Y2ljclXG41TMDe+GT2xifjYWvDuE4duCcyHDdbax7v2YXHe3YhJjWDdSdOs+XMBUo02pY2ucVJVqtIVqv46WwMkcGZhNoGEGUfQpRDW0Js/PC2csPbyo27PCvTNiSWpBNbGMfJojhOFSVQoq/9YLuVKdGrOaU+zin18apzjhZO+FoF1DispTb4WPnjY+XPpaQMRpORHE0WaWUXSS2/SFpZMmnlKRTrWz7x681gMOlvSLQAaI0VpJXHkVYeV+O8hViBi9wLF7kPrgovXOTeuCi8cbRwRyGx4v/t3Xd8U1X/wPFPunfTvfegQGnZpaBSARmCgKAMF8qDA0FFQRAfUZwgKA+CCP5c4AYHoMiQVWZFKFR2907TPelMcn9/BAKxZbal67xfr7xK7j25Ofdw035z7vec42kRhKdFEAYywxYPXG4nscjirRGBSytRXavipRWbeXHSQO67oysuDjacTcvFw8mWh4b25PX/20bdxVtGDraWDAj344ddx3Wvb+o5X9qanLJylkcfZuW+GO4K9OPBHqEMDPKjp5c7Pb3ceW3Y3eyKT2LzqXPsrUlGJbXfeShulEpSc7o0idOlSXybvhVLQ3O6yQMJkwddMVutB/5WHoz1jEIjaUi7kMOZ0iROX5yttvgGJ3lrT4pqCymqLSSu5Jhum52xNpjRBi8+eJn7Ijexw9XMHVczd3oTqStbWldCdlUG2VUZZFVqfyqrc9r1pG61mmqyq5LJrkrW224oM8LBxA1HU3ecTD3Jr2m7cwu1JatWrWLp0qUolUrCw8NZuXIlffv2bbDsZ599xtdff83p06cB6NWrF++9995Vy98OInBpZf734z7iErKZNrofB+KSmXxPT46dy9SbYfeFCXexNzaJhIx8vF3kjIsKw8NJTrqymI9/PnCNo7d/aklib2IKexNTcLKyZEy3ztwf3oVAJwdGhYYwKjSEgqoL/J56nt9TznE8/8amL+8ILqir+KvwFH8VngK0s9WG2moDmTB5IF4WrrpA5j6PgcCNT/LW3hXXFVJcWsg/pZeDGRsjWzzMvXXBjKe5D06mLtgay7E1ltPFJkxXVqVRoazORlGdRXZVBoqqLBRVmRQ34wrOrYFaUmmTeGsygY4x5YOeFhhVtH79el566SXWrFlDREQEy5cvZ9iwYcTHx+PsXD+nKzo6msmTJ9O/f3/MzMx4//33GTp0KGfOnMHDw+PW694IIsellTI0NECt1jBhcHdMjAz5dkcsAI8M60XfLj6s3niIkvIqVs4ex1+n09lx5DwPD+uFRpJY8OnWBkcetbccl5vRzc2F0d06MzK0Ew6WFrrtWeWl/J56jt9Tz3O2KK8Fa3j73ezMubbGVoTaBtLNNoCutoH4WrphIDPQK1NSW87ZshTOlaVyviyNpIpMajWtO6fods6ca2JgiruZJx7m3niYe+Fp4YOHuRfmhhYNlq9UXSCnOhtFVRY51Vm6n811u6mhHJeO5nbmuAwJmNXoHJddyctvqq4RERH06dOHjz/+GACNRoOXlxfPPfccr7zyynVfr1arsbOz4+OPP+axxx675bo3huhxaaXUau2tDGVhGbMmRiGhXQLhkWG9eOPz7SjyS5n54J0kZObzwffae8Lvf7OblyZFYWRoiFrTcW8bNeRUTi6ncnJ5f9d++vT1YIx/Z4Z6B+Fpbcv0sH5MD+tHalkxW1PPszU9gTOFuS1d5VantK6CQwVxHCqIAy5P8tbVJoDOtv4EW3sjN7GuN8lbSkUW58vTiC9LI748HWV1+5vk7UbVampIq9TOEXMlexMHXTDjZuaFh7knLmZuWBhZEmAVTIBVsF75ClU5OVXZKKuzyanOIqdagbI6m9K6ktt4NkJbU1tbS2xsLPPnz9dtMzAwYMiQIcTExNzQMSorK6mrq8Pe3r65qnldInBp5fbHpaAoKGPa6H6cS8tl4efbOXImnVEDutAj2IMn3vlBV7ZPF286+7l06FyX61FpNERnpRCdlYKZoRGDvAK4zy+Euz398bOxY0Z4JDPCI8kqL9UuZpiewPF8hW4eHeGyhiZ5C7Ty1E3w1sXWHzsTGzrZ+NLJxhcu9iqX1JaTUJ5OfHk6ieUZJJSnU97Bkn7/7VLezKnSy8t7GMoMcTF1w83cE3czT9zNPXEz88TR1BkrI2uCrEMIsg7RO06VuhJlteLiIxtldQ7K6mwKa/LRtOP1hdqsJrpVVFam3wNnamqKqWn9npyCggLUajUuLvpre7m4uHD+/Pkbest58+bh7u7OkCFDbrHSjScClzYgKauAVz7ZontuaCBj8tBefPH7EcortcMt5dbmTL6nJ99s095jN5DJxB/b66hWq9iaFs/WtHgsjUwY5OXPCN9ORHn44Wlty7TQPkwL7UNB1QX2ZCazMzOJg4p0qjrAzLO3QiWpOF+exvnyNDZma3sBXczsCbHWBi4h1n74W3kgN7Gmr0MofR1Cda/NqSogoTydpIpMEsozSK7Iokpd3VKn0iqoJTWK6iwU1VnEXrHdWGaCi5kb7uaeF5N/PXAz88DJ1AVzQwv8LAPxswzUO5ZKoyK/JpfcGgW51TnaR432Z6W6/Q95b70aGbhcnDzSy8tLb+sbb7zBwoULG3Hchi1evJgff/yR6OhozMxaLvWiwwQutt/93W7W2JDJZCRHhpGzYifyM9qk3blrZ5Kx5wynF/6C/CoT0zk6ONzOarZaUm3Dw6ITOUki8Km5CT0HdeWO0b3oOzwcR7klE4LDmBAcRk1VLf/sP8eRHf9w9M9T5GW23dseah/3Zn8PBSoUJLGHJACMTYwICHGlUzcvOnX1IDjUE09fR9zMtY+Bzr10r81KyyfxrIKkcwqSzuWQfE5BRXnTBzOJ1vUTEls7bR9X4cWHNpna2NgQD097vH0d8fZ1xMvbAS8fB7x8HDEzM8bN3AM38/rJlKUllWRlFpKdWURWeiHZmYVkZxShyCqiurrjBekqVTWw5brlWpPMzEy9HJeGelsAHB0dMTQ0JDdX/1Z4bm4urq6u13yPDz74gMWLF7Nr1y7CwsKuWba5dZjk3CjGtJvABeCF1U/iEeTOD4t+ZeCE/gT38mfxIyvIOJ991dcYicAFuHrg0hBDI0NC+wfRb0QPIkd2x9VHfyKt9PMKju08xbFdpzh9OIG62pu7TWdiZkzE8HAUKXkkn7zNC0fehsDlRlhZmxHU1YPgrh66n85u8gbLKrOLST6fc/GhICVeSb6ycXMZqa3bTtL+rZDJwNHZBm+fi8GMtwOeFx/OLtdO6CzIK0ORVUx2ljawUWQVocgsRpFdRHVV+wxqVKpq9sYuuj3JuX7PYWTQiORcTQ27UlfedHJu3759WblyJaBNzvX29mbmzJlXTc5dsmQJ7777Ljt27KBfv363XN+mIgKXNuyB2ffRpV8wipRcNq/cRn7Wtb/9i8BF62YCl3/zCXEnYkR3+g4No3PfAAyNDHX7qitrOHkwntjdpzm+5wyZCTnXPZ5XsBtTFtyPnZMtZpam/LUtjm/e23TL9bsprSRwaYitnQWBnd0J7OJBYGc3AkLccfdqOBmwvLSSlHglKQlKUuKVpCYoyUjJo7bmxoLI9h64XIuZmTHunnZ4el0MZjzs8PB2wNPbHhvbhkc6XVJUWIEiq4icrGIU2cXkZBehyCpGqSimpLjt5izd1sDFZ2bjA5f0j2+qruvXr2fKlCl8+umn9O3bl+XLl7NhwwbOnz+Pi4sLjz32GB4eHixatAiA999/n9dff53vv/+eAQMG6I5jZWWFlZXVLde9MUTg0sYZGhmivjgxnUwm49//nSOmDebwpqOUFpSJwOWixgQuV7KSW9Dj7q70vacbvQaHYu8q19tfoChm+9f7+XbR5qsew8zSFHWdmrpaFT6dPXh43mg2rd7J2SNJRAwPZ+z0eygrquDPbw8Su/t0k9RbpxUHLg2xsjbDP8SNgE5u+Ie4ERjihpefE0bGhvXKqtUaFBmFpCXmkpqYS2qCkrSkXHKzi9H8a6qAjhy4/JtMfTmB19rGDHdPezy87HH3tNf7t6382kFNVWUtOYpilNnF5ChKyMkuRqkoQakoJjenhJobDCpbQnsPXAA+/vhj3QR03bt3Z8WKFURERAAQFRWFr68va9euBcDX15f09PR6x2iuPJobIQKXdixsYBc+3PsmVRXVbFq5lY1fHaK8WCTiNVXg8m9+XT3pNTiUnoO6EhoZjImZMb+u+pP/e/XHa77OwNAAjVqDsakRS/6Yx7eLNmHvIqfv8HAObj6GldyC7nd15os3fkaZpp3gzdHdDntXOalnMqm71T8CbSxwaYixsSHeAc74d3LDL9gFv2BX/INdsbWzbLB8dVUtman5pCfnkZ6UR3pyHqnKUnKVJY3LkWwnrgxcrsXSyhR3D3vcvexw87DH3cMON0873NztcHS2wcDg2nNGFRaUk5tTSm5OCUpFCbk52kdWZiG5OS27jMltDVy8n2184JLxiVirSGg/VLUqEo4lE9w7gMnzxzFm5gh+/3Ifmz7dTUl+x5uqvbmlnski9UwWP6/YjomZMV0iAinMKbnmawwMZGgu/rGYPOc+6mpUnDuawoq9C/ji9Z+I+UM7PHbow3cQGhmEMi2f8LtCiHogAv9QL+xd5fz80XY2f7qruU+vVaqrU+tyXq5k72iFb5ArvkHaYMYvyAUvPyfMzE0I6uJBUBf9JNWqqloy0wvISCskPS2fjLQCMtILUGQXo1GLiObfLlTUkBifQ2J8/duhxsaGuLjJcfOww9Vdjqu7He66f8uxtDLDwdEaB0drunTz1Hvt4X3nWThvw+06jZbXAjPntgcicGnHzsYkMKPvK0SO7s2UhRMJ6O7LxBeGM/apQez47hC/rNpJXlb7nlK8pdRW1xG379x1y2k0Ej6dPRjz9GD8u3nz/rRPsbA2w9HdThe0ABTnluoCnKfencSf3x7ko+fXYWlrzju/vMTfO0+Sk9KxZv69lqKCCooKkjgek6TbZmAgw83LHp8AZ3wCXPAJdMYn0BlPXyfMzU0IDnEnOES/F6quTo0iq4iM9AKyMorIzCgkK6OQzIzCZhnh9Nzs4ZiaGqPILiYjvYCYAwm6ySjbiro6NVkX26kh1jZmuLppAxkXN20w4+xqi6ubnIy0gttc2xamkbg0pPnWX9/xiMClA4j57Rh//R5L/8lRTHpxBCG9/Bg97W5GPn4XB347zsY1u0k4kdbS1exwTC1MuGN0b/rd2x1lWj6vjF5K9YUa7hjTS6+nxs7Zhro6NZXl1bh4O+AV7MbmT3chk8m4UFqFla0FZuYmLXcibYRGI5GdXkh2eiGH91wOKiW5Oe4edvj6OWlH3vg64uPriKe3A+bmJvj4OeHj51TveMVFFWRmFJGdWUhWRpF2SHFWEYrsYupqb23BxH17zuHkZI27pz2Dh2rnuTkYfR5XdzkzZg3D1NSI5KRcvlyzl7q6trkoY3lZNeVlDffWCMKNEIFLByFJEkd2nOTIjpOE39GJCS8Mp2dUZ6LG9SFqXB/O/p3Mb5/v5dCWE6ja6C/EtublT6fRf1RPvn53Ez9+cHneCM8gN1LPXF5U0y/UCwMDGVmJSroN6ERGvHZhSEmScPZyIDs5FxuHlsnubw80akkbeGQUAfG67ZeGEfv4OOLlox114+XjiLePAw6O1tjZW2Fnb0VYd2/942kk8vPKyM4s0gYyWdqf2VnF5CiuHdScPHE5CXLQ0FAem3oXfx1MYO5ro9nz52nSUvMZOiKce8f0YPPP2skmO3f1YPoL92BsbERSgpKPlm5FpWpbvTQdlrhVdEtE4NIB/XMwnn8OxhPQzYuxTw9i4P196NI3gC59AyjKK2X71wfZ9s1BChTFLV3Vdm37ugOknMqkc58AVuxdADIZCyet4OyRJHxC3LGxt6KsqILhj91FgaKYrCQl458fxrmjl9e58Qlxp7KsiqqKjj3LbHOQJMjPLSM/t4xjf6fo7TO3MMHTyx5Pbwc8PLU/Pb3s8fSyx9LKDBdXW1xcbenZx0/vdb9uOMLqj3Ze9T1d3eSMeaA3RkaGWFiasnfXGbqFe2Nra8GWTce1721uwlMzh7D552P4+jvx7KyhfP3FfjLTC3lgcgTjJ0aw/rsbW3dGaGESjQxcmqwmbYoIXDqw5FOZfDhzHV++vZERj97JvVPuxMFVzkNzRjLxxREc232aHd8e4u+dp1CLb3BN7tgu7cR1l/iFelGcW0qRsoQhk/qz5I+5FOeXUVVezaY12uRbSSNRWnA5sbrnoFCK88rIbSCfYNrbD5IRn0PSP+lknFeInrQmVFVZS2K8ksR4Zb19crkFHl4Xhw572OPhZXfxpz2K7Gt/GbhQUc35swruHBhCVVUtWzbGMm5SBGdPX17JWyaTUVZSiUwG4T19qK1RcfQvbTB7Mi6DByf3E4GL0K6JwEWgOLeM7z/4g/XLt9F/ZA/unXIn3e8MIWJoGBFDwyjOK2PvL3+za30MqWeuPjOv0Dippy/fHlo240sc3e0ICPPm1OEEKsuqAPjt/3bz5DsTiRzZg8KcYgaO78vCSSv0ghkAJ097Hnh+hO55Xa2K9PPZpJzMJPlkBimnM0gtVTVLgmlHV1JSSUlJJWdOZdXbZ2B47WHC5eXV7Nt9ln27zzL3tdEMvTccExMjcq+YHdjJ2QZlTgn2Dta4udtx7uzlz6SJsRHFRRcwMTGi9iZncRZagLhVdEtE4HILRj87jAfnjMbeVU7yP+msev5L4o8mNVjWp4snU96cSFAvf1x9nfnkxa/Y+NFWvTLd7uzMg3NGE9zLHwd3e964fwmHNx+9HaeiR63ScGBzLAc2x+Lh78zwR+9g8IR+2DnbMG76EMZNH0LK6Sz2/vI30b8epUBRzKipA3lgxlDsnG1IOZPF6vnrr5ro693JjUdfuY+gMB9cvB349LUNbPp0T71yDq5ypr5+P70Hd8XU3ARFaj7/e34dif/c5inxb8J90wbxwPPDsXOxJeV0Jp+8/B0Jx1MbLOsT4s6j/x1LULgvLj6OrHnlBzatrn/7oEBRTIGimAkv3svUhQ+w8ZOdfPbaeg5tOc59Tw7CyMiQ5TO/avB9JI3ELyt3EBDuTUCYN9ZySwLDfAgM89Erl5dTQmqCktTE3IuTtSnJSiu45R62+yZG8MDjd2DnaEVKgpJPFm0h4XTDwe7w8b0Zcl93fAK1K9UmnVXw1Yo/deUNjQyYMnMIfe4Mxs3Tngvl1Zw4ksyXy/+kqJUP5x89rhcPPhSJvb0VyUm5rPrfDuLPKRocWj3ivh4MvbcbPr7aBODEeCVffroXHz8njsQkERzixplTmXj7ODDt2cH07uuPzECGr78TJcWV/HUoUXcsB0crCvLLMTYxrBe4mJkZ3/a1h+4b35sHH+mPvb0VKUm5rPpwG/FnFQ2WHTGmB0NGhOPrf6kdcvhq9R698nMWjGboyO56rzsak8R/X/y+2c6hWWk00JhVuzUdsydcBC43aeCE/jz94RRWTP8/zh1JYtyskSza/l+mhrxASX5ZvfKmFqbkpOax/+cYnln2eIPHNLM0JeVkOju+2svCX19u5jO4MdkpeXzx5q+sfXcTvQd1ZcikSCKGdsM/1BP/UE/+88Y4MuJz8PB35rOFP3Mi+jxjnx7EOxue48nIhfV6AADMzE1QphVwcPNxnnrnwQbf18rWgg//eJl/DsWzYNLHlBaW4+HvTEVp651C/K5xfXjyvYmsfPEb4o+lMPbZe3h340tM6/Vqg+1gamGCMi2fA5uO8fR7k6557OCevtz7xEBSTml7YzRqDVu/jGbrl9HXfF2BopjPXluve+7i44h/qBcB3bSBjF+oJ64+Tji7yXF2kxMxMERXtq5ORVZagXaCtqQ80pNzSU/OIyezqN6ss3rtMCyUJ18ewcq3fyP+VCZjH+nPu2seZ9ro5ZQW1Z/4MKy3H9HbTnI2LoPaGhUTpt7Fe2se5+lxKyjMK8fUzJjAzu58/2k0qQlKrGzMeGbeSBaueITnJ6++5vm3pIGDu/D0c/ewYuk2zp3NZtyEvixaNpmpk1dTUlL/Og7v6cO+PefoG1mHiYkRdg6WLPvkMc6fVXAqLoPAIBd8/J2ZMm0g27bE4eXjwOZfjpGbU8LjT0ZResVnI6iTGynJeVReqKn3Pq+9PY7uvXwpyCsnL7eU/Lwy8vK0OTwF+WXk5ZZRqCxtsl64gUO68PQLQ1nx/h+cP5PNuEkRvLf8Yf4zcVWDSwKE9/QleudpzpzMpK5WxYRHB7Doo0d48qHVFF4RqB6NSeKDty/PRt1WR1cJt67VBy779+9n6dKlxMbGkpOTw8aNGxk7dmyL1Wf8i6PY9vludqyNBuCjZ/6PiHt7MmzqINa/v6le+YRjySQc095//s+ihxs85tHtcRzdHtdMNW4ctUrDkT9PceTPU1jbWXLHqB5Eje9L2IBgvDu5AfDU2w9yOiaJw3/EETFMxdCH+vPTih31jpUQl05CnHbUxBML7m/w/R58fij5iiL+9/zXum0N5W+0JuNmDGP7uv3s/O4gACtnfU3foWEMe/RONvxva73yCcfTSDieBsDUNx646nHNLE2Z+9lTfPT8OibPGdWoOuamF5CbXqA3N4xFVz/d5Gx+Fydr8w1ywdLKDL8gV/yC9FeLra2pIzu9kPTkPDJT88lIySczNZ/s9ELqalWMe2wA2385xs7N2iTSlW//Rt87OzFsbC82fLm/Xp2WzP9J7/nyhRsZMKQL3SMC2P17HJUVNbz69Fq9Mp+8t4UVP0zHydW20YsrNpfxEyPY9vsJdmz9B4CPlm4lon8gw0Z1Z/23h+uVX/zmJgD+OpiIp5c9bh52PPP8Pezfe5aiwgo2fBfD5989gyRBaJgX0bvOsuOPf6iqrKVHLz/8ApzZv+cccjtLAoNd2fjz0QbvIDi72GJqaqzLv7ma6qpa8vPKKMgrpyCvjPz8Mgrztf8uyC+nML+ckuIL1wxiAcZPjmTb5uP8+cfFdnj/D/r2D2LYqB6s/+ZQ/XZ4Y6Pe8/+99zt33N2ZHr392LXtpG57Xa2K4gYC4TZJ3Cq6Ja0+cLlw4QLh4eFMnTqVcePGtWhdjIyNCO7lz4+LL3/AJEni+K6TdOkX3II1uz3Kiy+w7RvtiCNXHwe+OPI2OWn5eAS4EDYgmLAB2jaY8PwwDI0MOLLj5E3nxPQbFk7s3rO8+sWTdIsMolBZwpYv97P924PNcUqNZmRsSFB3H9Yv+0O3TZIkTkSfpXOfgEYde8YHj/D3jpOciD7b6MClIZUVNZw5ns6Z4/rrkDi52uIbqA1ifAKd8Qlw1s066xfsil+wfkCjVmvIVRTj5mFPcUEFI8b3JiutgOz0Ak4cSaZzuNcN1cfUzBgjI0PKS6uuWsbSygyNRsOFVpqbY2RkQHAnN3684g+zJMHxY2l0CfW4xitBmVOCMqcEcwsTnn5uCEpFCQAVFdWYmRuz449/6BLqycixPenV158fvznEui/2seDt8Xz+7dPU1an5+ce/OHsqs8Hjz/jPFzg4WePsbIOTsw1OLhd/XvGwlWvnBPLyccTLx/GqdVWrNBQVVVB4MZApyC+jsKCCwoJyii4GNkGd3Phx3eXPrSTBiaOpdP7XbLlXY2pmjJGhAeVl+tdDWE9fNmydTXl5FXGxaaxds7demTZDBC63pNUHLiNGjGDEiBHXL3gb2DpaY2hkSHGu/je94rxSvEKu/UupvamtVmFgaMAHM9dSpCyl/8ge9B/ZndB+gVjZWjBl/himzB9DfnYRf/95iqO7ThN3MJ6aymuvE+Tq48jIx+/i1zW7WL98O8HdfXjmvQmo6lTsWv/XbTq7G2fjoL0mSvL0bxOW5JfhFex2y8cdOL4vgeE+PH/3W42t4k3LV5aSryzl6MEE3TaZTIazuxwffye8A5zx9nfGy88RLz8nrGzMcffSLuAZeXdnIu/urHtdXa0KtVrDK+9PIDu9EEVGIdkZBSgyiij7122TqS8OozC/nBN/JdMQYxMjpr44lOhtpxq8FdIa2MotMDQyqNcjUFxUgZf3jS1yOm36IAoLKjh+TJu7JLezxMLClOGjurP2s2j+OZ5O74gA3njvQV5+7hteefF7LK1MkcstyM66+qilujr1xYUOS65axtTIAEcna5ycbXF0tsbRyUb308HJGkcna+wcrDA0MtAFO9fy2rsPUFhQTmFBBUWF5bi6ybGVWzL8vu4UFV6gqLCcosIKbQ/Ov/J/ps0YTGFBOcePXh6KfiwmmYPR51EqSnD3sOOJ6YN4938PMevJL6/bAyS0H60+cLlZNTU11NRc/qVWVlY/70RoWnlZRWz6dDebPt3N9EWT6DOkK2nnFPQY2BknD3tGPjGQkU8MpK6mjvnjl3PmSMN/mABkBjIS49JZ9672HnbyqUx8Ortz75S7WmXg0hwcPex4ZvFkXh374a0voNjEJEkiN7uY3Oxi/j6QoLfP3tGKzt29WbDsIfZtO4m5lSmePo64eNhhbGKEMRA1IqzeMcvLqvjsg238uek4E6beRdTwbsyd+gV1DYyGMTQy4L8fTEQmk/HxO78112m2uImP9CdqSFfmzPxGN1HdpQULYw4k8Ov6vwFITsylazdPRo3txcm4DC5U1HChovHBXG2NCkVWMYprBEAGhjLs7K1wcNQGMg4XH45O1tg7WOPgaIWDkw02tuYYXVy3yMVNrneMl/47Wu+5RiNRVlLJvt1nWPXhdiY+OoCBQ0J5ecY6vQn7oned0f07LTmPlKRcvv71ecJ6+hJ3rOFk+FZNTPl/S9pd4LJo0SLefPPNZjl2aUE5apUaOxdbve12zrYUK0ua5T1bq7KiCm1bOOl/47KwNiXtnIK3HluNiZkx4Xd0os89ofQe1BVHdztSTtcfInqlotxSMhL0pwLPTFAyYFTPJj+HplBWqL0m5P/65il3sqnXM3ejgrr7Yudsy8f739BtMzQyJHRAMKOfGsR9Tk+1qm+XRQUVHImOR61SE739FDF7tdPpGxsbMn/pJOydrDjw52k8fBzx8HbA3dsBJ1dbrG3MqbpQw/gpA5gw9U7mP/UVqYm59Y5vaGTAq0sn4ewmZ960L1ttbwtAaUklapUGO3v91ant7K0oLqq45msfmNyPSY/0Z96s70hNvrzuVGlJJSqVmvR/reOTkVZAaNiN3YZrShq1pLtFlHCV5biMjAz4PfpVViz5g9TkPBycrLF3sGLk2F5YWpmSlpKPvYMl9g7WyO0tMTQ0QG5viYmpEQ88FMnExwYw77lvSE269vpbSkUJJcUX8PC0a5OBiyRpkKRbHxnUmNe2Ze0ucJk/fz4vvfSS7nlZWRleXk3z4VbVqUiITaHH4G664coymYweg7uxedX2JnmPtkJVpybxnwy63xVCzDZt8p1MJqP7nSH89kU0oF1o8Oiu0xzddRoAR3c7qq7zR+fs38l4Xhwee4lHgAt5ma0zQVdVpyYxLp3uAzvrEl9lMhndB3bm98/qD/W+EXH7zvF0vwV622Z/MpXMhBw2LN/WqoKWS1QqNYnnFHSP8NcFLiqVhqCu7vz+wxF+WaefjGlqZoyrpx0DhnRh/KN38N/pa0lsYJjspaDFw8eBef/54pr5L62BSqUhIT6HHr39OHyxZ0omgx69fNn8y7Grvm7CQ5E8NGUA81/6gYR/rXStUmmIP6eod6vJw8teb36X1kSl0pAYn4NfkAvbfrv0uYBJU+7gt5+O6iXnGhjIsLE1x87BikHDuvHw1DuZ/8J3JJ6//lpGjk7W2NhaUFh47aCw1ZKkxvWaiByX9sHU1BRTU9NmO/4v/9vC3LUzSDiWTPzfSdw/ayRmlqbs+GovAHPXzqRAUcSXr2rnFTAyNsKnizYZzdjECEcPBwLCfamqqEaRrJ1108zSDI/AywmPrn7OBIT7UlZUQX5m610tdeOaXcxe+TiJcenEH09j7NODMLUwYecP2pETsz9+nEJlCWvf2QRo8z78Q7VtYWRiiIOrHP9QT6ou1JCTmg/ApjW7+XDrXCbOGs7+zbF06uHLiEfvYMXs71rkHG/Er6t2MGf1NBJPpBEfm8r9z96DmaUpf15MKJ6zZhqFOcV89eYvgDah1/viKsRGJkY4usvx7+albYeUPKoqqkk/p5/UXH2hhrKiC/W2tya/fn2IOe+MJ/GsgvhTWdz/SH/MzE34c1MsAHPeHU9hbhlfrdhJTXUdfe/sxKRpUbz/ygZys0uwu7jeUlVlLdVVtRgaGfDah5MJ7OzO6zO/wcDAQFemvLQKlap1DoP9Zf0R5v53NAnnc4g/m839EyIwM9Mm1wLMfW00BQXlfLlG+ztj4sORPDZtIIve3IQyp0TXW1NVVUt1lXbelZ++/4v/vjWOk3EZ/HM8jT79AogcEMzs575pmZO8Ab/8EMPLC8aSeE7B+bMKxk281A5xALz8+hgK88v5cvUeSoorGTqqO/dPjGDxG7+S20A7mJkb8+h/BnJg7zmKiypw87DnyZmDUWQVEXuVvCihfWp3gUtz27fhMHInG6a8ORE7VznJcWm8OuJdSvK033ycvR2RroigHdztWHNiqe75hDmjmTBnNP9En2HOoIUABPf258O9l29vTb8438ufa6NZOnVVs5/Trdq/KRZbB2semXcf9s42JJ/OYsHElZRcnHPB2dMe6YpvBPauclbtfU33/IGZQ3lg5lBOHkpg3thlgHbI9NtT1vD4a2N5aPZIlBkFfPraT+z95e/be3I3Yf+vR7F1sObRV8dqJ6A7lclr4/6nm9fH2dMe6YqJohzc5Hxy8PL/9wPPj+CB50dw8sB55o5actvr31T27ziNrZ0ljz47WDsBXXwOr01fR8nFRFVnV7neZ2PUhL6YmBixYNlDesf5dvUevl29B0dnG12i7+qfZ+qVmTv1C0620lsD+3afRS63YMq0gdjZW5KcmMurs3+gpPhiO7jY6n0uRt3fCxMTI954V39o/Ndf7Oebi8PID+2P56OlW5n86ABmvDiUrIxC3vzvz5w52fAIotZg366z2MoteezJKOwcrEhJzOW/L35/xfXwr3YY1xsTEyNeXzRB7zjffL6Pbz7fh0Yj4Rfowj33hmNpbaZN3D2SzNr/i267c7lIjcxx6aA9LjJJat1nXlFRQVKSdlbaHj16sGzZMu6++27s7e3x9va+zqu1t4psbW2JYgxGMuPmrm6rZuRwY6Ma2jup9tojmzoMH/eWrkGroLY2a+kqtBoydcfMmbiSSlXN3thFlJaWYmNz7VFTt+rS36XB1g9jJDO55eOopFp2l3/XrHVtjVp9j8uxY8e4++67dc8v5a9MmTKFtWvXtlCtBEEQBEFoCa0+cImKiqKVdwoJgiAIws0Tt4puSasPXARBEAShPZI0GiSZGA59swxaugKCIAiCIAg3SvS4CIIgCEJLELeKbokIXARBEAShJWgkkInA5WaJW0WCIAiCILQZosdFEARBEFqCJAGNSLDtoD0uInARBEEQhBYgaSSkRtwq6qhThYjARRAEQRBagqShcT0uYji0IAiCIAhCqyZ6XARBEAShBYhbRbdGBC6CIAiC0BLEraJb0u4Dl0sRqYq6Rs3z0y5oxKrIAJIk2gEAdU1L16BVUKtaugath1gdGlQXPxe3ozejsX+XVNQ1XWXakHYfuJSXlwNwkK0tXJNWoKilKyC0KmdbugKC0HqVl5dja2vbLMc2MTHB1dWVg8rG/11ydXXFxMSkCWrVdsikdn6TTKPRoFAosLa2RiaTtUgdysrK8PLyIjMzExsbmxapQ2sg2kFLtIOWaIfLRFtotYZ2kCSJ8vJy3N3dMTBovvEr1dXV1NY2vvfXxMQEMzOzJqhR29Hue1wMDAzw9PRs6WoAYGNj06F/KV0i2kFLtIOWaIfLRFtotXQ7NFdPy5XMzMw6XMDRVMRwaEEQBEEQ2gwRuAiCIAiC0GaIwOU2MDU15Y033sDU1LSlq9KiRDtoiXbQEu1wmWgLLdEOwo1o98m5giAIgiC0H6LHRRAEQRCENkMELoIgCIIgtBkicBEEQRAEoc0QgYsgCIIgCG2GCFyayMKFC5HJZHqPkJAQ3f7q6mpmzJiBg4MDVlZWjB8/ntzc3BascdPYv38/9913H+7u7shkMjZt2qS3X5IkXn/9ddzc3DA3N2fIkCEkJibqlSkqKuLhhx/GxsYGuVzOf/7zHyoqKm7jWTSN67XF448/Xu8aGT58uF6Ztt4WixYtok+fPlhbW+Ps7MzYsWOJj4/XK3Mjn4WMjAxGjhyJhYUFzs7OvPzyy6hUbWdRoRtph6ioqHrXwzPPPKNXpq23A8Dq1asJCwvTTSoXGRnJtm3bdPs7wvUgNC0RuDShrl27kpOTo3scPHhQt+/FF1/k999/56effmLfvn0oFArGjRvXgrVtGhcuXCA8PJxVq1Y1uH/JkiWsWLGCNWvWcOTIESwtLRk2bBjV1dW6Mg8//DBnzpxh586dbNmyhf379/PUU0/drlNoMtdrC4Dhw4frXSM//PCD3v623hb79u1jxowZ/PXXX+zcuZO6ujqGDh3KhQsXdGWu91lQq9WMHDmS2tpaDh8+zLp161i7di2vv/56S5zSLbmRdgB48skn9a6HJUuW6Pa1h3YA8PT0ZPHixcTGxnLs2DEGDRrEmDFjOHPmDNAxrgehiUlCk3jjjTek8PDwBveVlJRIxsbG0k8//aTbdu7cOQmQYmJiblMNmx8gbdy4Ufdco9FIrq6u0tKlS3XbSkpKJFNTU+mHH36QJEmSzp49KwHS0aNHdWW2bdsmyWQyKTs7+7bVvan9uy0kSZKmTJkijRkz5qqvaY9tkZeXJwHSvn37JEm6sc/C1q1bJQMDA0mpVOrKrF69WrKxsZFqampu7wk0kX+3gyRJ0sCBA6UXXnjhqq9pj+1wiZ2dnfT555932OtBaBzR49KEEhMTcXd3x9/fn4cffpiMjAwAYmNjqaurY8iQIbqyISEheHt7ExMT01LVbXapqakolUq987a1tSUiIkJ33jExMcjlcnr37q0rM2TIEAwMDDhy5Mhtr3Nzi46OxtnZmU6dOjF9+nQKCwt1+9pjW5SWlgJgb28P3NhnISYmhm7duuHi4qIrM2zYMMrKynTf0tuaf7fDJd999x2Ojo6EhoYyf/58KisrdfvaYzuo1Wp+/PFHLly4QGRkZIe9HoTGafeLLN4uERERrF27lk6dOpGTk8Obb77JnXfeyenTp1EqlZiYmCCXy/Ve4+LiglKpbJkK3waXzu3KXziXnl/ap1QqcXZ21ttvZGSEvb19u2ub4cOHM27cOPz8/EhOTubVV19lxIgRxMTEYGho2O7aQqPRMGvWLAYMGEBoaCjADX0WlEplg9fMpX1tTUPtAPDQQw/h4+ODu7s7J0+eZN68ecTHx/Prr78C7asdTp06RWRkJNXV1VhZWbFx40a6dOlCXFxch7sehMYTgUsTGTFihO7fYWFhRERE4OPjw4YNGzA3N2/BmgmtxaRJk3T/7tatG2FhYQQEBBAdHc3gwYNbsGbNY8aMGZw+fVov16sjulo7XJm71K1bN9zc3Bg8eDDJyckEBATc7mo2q06dOhEXF0dpaSk///wzU6ZMYd++fS1dLaGNEreKmolcLic4OJikpCRcXV2pra2lpKREr0xubi6urq4tU8Hb4NK5/XuEwJXn7erqSl5ent5+lUpFUVFRu24bAH9/fxwdHUlKSgLaV1vMnDmTLVu2sHfvXjw9PXXbb+Sz4Orq2uA1c2lfW3K1dmhIREQEgN710F7awcTEhMDAQHr16sWiRYsIDw/no48+6nDXg9A0RODSTCoqKkhOTsbNzY1evXphbGzM7t27dfvj4+PJyMggMjKyBWvZvPz8/HB1ddU777KyMo4cOaI778jISEpKSoiNjdWV2bNnDxqNRveLvL3KysqisLAQNzc3oH20hSRJzJw5k40bN7Jnzx78/Pz09t/IZyEyMpJTp07pBXE7d+7ExsaGLl263J4TaaTrtUND4uLiAPSuh7beDlej0WioqanpMNeD0MRaOju4vZg9e7YUHR0tpaamSocOHZKGDBkiOTo6Snl5eZIkSdIzzzwjeXt7S3v27JGOHTsmRUZGSpGRkS1c68YrLy+XTpw4IZ04cUICpGXLlkknTpyQ0tPTJUmSpMWLF0tyuVzavHmzdPLkSWnMmDGSn5+fVFVVpTvG8OHDpR49ekhHjhyRDh48KAUFBUmTJ09uqVO6Zddqi/LycmnOnDlSTEyMlJqaKu3atUvq2bOnFBQUJFVXV+uO0dbbYvr06ZKtra0UHR0t5eTk6B6VlZW6Mtf7LKhUKik0NFQaOnSoFBcXJ23fvl1ycnKS5s+f3xKndEuu1w5JSUnSW2+9JR07dkxKTU2VNm/eLPn7+0t33XWX7hjtoR0kSZJeeeUVad++fVJqaqp08uRJ6ZVXXpFkMpn0559/SpLUMa4HoWmJwKWJTJw4UXJzc5NMTEwkDw8PaeLEiVJSUpJuf1VVlfTss89KdnZ2koWFhXT//fdLOTk5LVjjprF3714JqPeYMmWKJEnaIdELFiyQXFxcJFNTU2nw4MFSfHy83jEKCwulyZMnS1ZWVpKNjY30xBNPSOXl5S1wNo1zrbaorKyUhg4dKjk5OUnGxsaSj4+P9OSTT+oN8ZSktt8WDZ0/IH311Ve6MjfyWUhLS5NGjBghmZubS46OjtLs2bOlurq623w2t+567ZCRkSHdddddkr29vWRqaioFBgZKL7/8slRaWqp3nLbeDpIkSVOnTpV8fHwkExMTycnJSRo8eLAuaJGkjnE9CE1LJkmSdPv6dwRBEARBEG6dyHERBEEQBKHNEIGLIAiCIAhthghcBEEQBEFoM0TgIgiCIAhCmyECF0EQBEEQ2gwRuAiCIAiC0GaIwEUQBEEQhDZDBC6CIDRKWloaMplMN2W9IAhCcxKBiyC0Q2vXrkUul9fb7uvry/Lly297fQRBEJqKCFwEQRAEQWgzROAiCK1QVFQUzz//PHPnzsXe3h5XV1cWLlyo279s2TK6deuGpaUlXl5ePPvss1RUVAAQHR3NE088QWlpKTKZDJlMxsKFC4mKiiI9PZ0XX3xRtx2gsLCQyZMn4+HhgYWFBd26deOHH37Qq49Go2HJkiUEBgZiamqKt7c37777boN1V6vVTJ06lZCQEDIyMpqngQRB6LBE4CIIrdS6deuwtLTkyJEjLFmyhLfeeoudO3cCYGBgwIoVKzhz5gzr1q1jz549zJ07F4D+/fuzfPlybGxsyMnJIScnhzlz5vDrr7/i6enJW2+9pdsOUF1dTa9evfjjjz84ffo0Tz31FI8++ih///23ri7z589n8eLFLFiwgLNnz/L999/j4uJSr841NTU8+OCDxMXFceDAAby9vW9DSwmC0JGIRRYFoRWKiopCrVZz4MAB3ba+ffsyaNAgFi9eXK/8zz//zDPPPENBQQGgzXGZNWsWJSUleuV8fX2ZNWsWs2bNuub7jxo1ipCQED744APKy8txcnLi448/Ztq0afXKpqWl4efnx4EDB1i4cCE1NTVs2bIFW1vbmz9xQRCE6zBq6QoIgtCwsLAwvedubm7k5eUBsGvXLhYtWsT58+cpKytDpVJRXV1NZWUlFhYWN/U+arWa9957jw0bNpCdnU1tbS01NTW645w7d46amhoGDx58zeNMnjwZT09P9uzZg7m5+U3VQRAE4UaJW0WC0EoZGxvrPZfJZGg0GtLS0hg1ahRhYWH88ssvxMbGsmrVKgBqa2tv+n2WLl3KRx99xLx589i7dy9xcXEMGzZMd6wbDULuvfdeTp48SUxMzE3XQRAE4UaJwEUQ2pjY2Fg0Gg0ffvgh/fr1Izg4GIVCoVfGxMQEtVpd77UNbT906BBjxozhkUceITw8HH9/fxISEnT7g4KCMDc3Z/fu3des1/Tp01m8eDGjR49m3759jThDQRCEqxOBiyC0MYGBgdTV1bFy5UpSUlL45ptvWLNmjV4ZX19fKioq2L17NwUFBVRWVuq279+/n+zsbF0+TFBQEDt37uTw4cOcO3eOp59+mtzcXN2xzMzMmDdvHnPnzuXrr78mOTmZv/76iy+++KJe3Z577jneeecdRo0axcGDB5uxFQRB6KhE4CIIbUx4eDjLli3j/fffJzQ0lO+++45Fixbplenfvz/PPPMMEydOxMnJiSVLlgDw1ltvkZaWRkBAAE5OTgC89tpr9OzZk2HDhhEVFYWrqytjx47VO96CBQuYPXs2r7/+Op07d2bixIm6fJt/mzVrFm+++Sb33nsvhw8fbvoGEAShQxOjigRBEARBaDNEj4sgCIIgCG2GCFwEQRAEQWgzROAiCIIgCEKbIQIXQRAEQRDaDBG4CIIgCILQZojARRAEQRCENkMELoIgCIIgtBkicBEEQRAEoc0QgYsgCIIgCG2GCFwEQRAEQWgzROAiCIIgCEKbIQIXQRAEQRDajP8HzbEObuv54fcAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 2 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_performance(bayes_classifier, top_5_scorer, 500, gre, distributions_mults)" ] }, { |
