aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/cz/crcs/ectester/standalone/ECTesterStandalone.java2
-rwxr-xr-xutil/plot_gen.py75
2 files changed, 50 insertions, 27 deletions
diff --git a/src/cz/crcs/ectester/standalone/ECTesterStandalone.java b/src/cz/crcs/ectester/standalone/ECTesterStandalone.java
index e75274d..d740579 100644
--- a/src/cz/crcs/ectester/standalone/ECTesterStandalone.java
+++ b/src/cz/crcs/ectester/standalone/ECTesterStandalone.java
@@ -502,7 +502,7 @@ public class ECTesterStandalone {
System.out.println("index;time[nano];pubW;privS");
int amount = Integer.parseInt(cli.getOptionValue("generate.amount", "1"));
- for (int i = 0; i < amount; ++i) {
+ for (int i = 0; i < amount || amount == 0; ++i) {
long elapsed = -System.nanoTime();
KeyPair kp = kpg.genKeyPair();
elapsed += System.nanoTime();
diff --git a/util/plot_gen.py b/util/plot_gen.py
index f6cd8e4..c07fc91 100755
--- a/util/plot_gen.py
+++ b/util/plot_gen.py
@@ -24,14 +24,21 @@ def hw(i):
i &= i - 1
return res
+def moving_average(a, n) :
+ ret = np.cumsum(a, dtype=float)
+ ret[n:] = ret[n:] - ret[:-n]
+ return ret[n - 1:] / n
+
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Plot results of ECTester key generation timing.")
parser.add_argument("-o", "--output", dest="output", type=argparse.FileType("wb"), help="Write image to [file], do not display.", metavar="file")
parser.add_argument("--priv", dest="priv", action="store_true", help="Show private key MSB heatmap plot.")
parser.add_argument("--hist", dest="hist", action="store_true", help="Show keygen time histogram.")
parser.add_argument("--export-hist", dest="export_hist", action="store_true", help="Show export time histogram.")
+ parser.add_argument("--avg", dest="avg", action="store_true", help="Show moving average of keygen time.")
parser.add_argument("--hw-hist", dest="hw_hist", action="store_true", help="Show Hamming weight heatmap (private key Hamming weight and keygen time).")
- parser.add_argument("--skip-first", dest="skip_first", action="store_true", help="Skip first entry, as it's usually a large outlier.")
+ parser.add_argument("--log", dest="log", action="store_true", help="Use logarithmic scale.")
+ parser.add_argument("--skip-first", dest="skip_first", nargs="?", const=1, type=int, help="Skip first entry, as it's usually a large outlier.")
parser.add_argument("-t", "--title", dest="title", type=str, nargs="?", default="", help="What title to give the figure.")
parser.add_argument("file", type=str, help="The file to plot(csv).")
@@ -44,14 +51,16 @@ if __name__ == "__main__":
print("Bad data?")
exit(1)
- plots = [opts.priv, opts.hist, opts.export_hist, opts.hw_hist]
+ plots = [opts.priv, opts.hist, opts.export_hist, opts.avg, opts.hw_hist]
n_plots = sum(plots)
if n_plots == 0:
+ plots = [True for _ in range(5)]
if len(header_names) == 4:
- n_plots = 3
- else:
n_plots = 4
- plots = [True for _ in range(n_plots)]
+ plots[2] = False
+ else:
+ n_plots = 5
+
if plots[2] and len(header_names) != 5:
n_plots = n_plots - 1
@@ -67,7 +76,7 @@ if __name__ == "__main__":
data = np.genfromtxt(opts.file, delimiter=";", skip_header=1, converters={3: hx, 4: hx}, dtype=np.dtype([("index", "u4"), ("gen_time", "u4"), ("export_time", "u4"), ("pub", "O"), ("priv", "O")]))
if opts.skip_first:
- data = data[1:]
+ data = data[opts.skip_first:]
gen_time_data = data["gen_time"]
export_time_data = None
@@ -80,21 +89,21 @@ if __name__ == "__main__":
gen_unit = "ms"
if header_names[1].endswith("[nano]"):
gen_unit = r"$\mu s$"
- gen_time_data = list(map(lambda x: x[1]//1000, gen_time_data))
+ gen_time_data = list(map(lambda x: x//1000, gen_time_data))
export_unit = "ms"
if len(header_names) == 5 and header_names[2].endswith("[nano]"):
export_unit = r"$\mu s$"
- export_time_data = list(map(lambda x: x[1]//1000, export_time_data))
+ export_time_data = list(map(lambda x: x//1000, export_time_data))
plt.style.use("ggplot")
fig = plt.figure()
layout_kwargs = {}
if opts.title is None:
fig.suptitle(opts.file)
- #layout_kwargs["rect"] = [0, 0.02, 1, 0.98]
+ layout_kwargs["rect"] = [0, 0.02, 1, 0.98]
elif opts.title:
fig.suptitle(opts.title)
- #layout_kwargs["rect"] = [0, 0.02, 1, 0.98]
+ layout_kwargs["rect"] = [0, 0.02, 1, 0.98]
fig.tight_layout(**layout_kwargs)
max_gen_time = max(gen_time_data)
@@ -104,29 +113,31 @@ if __name__ == "__main__":
cmap = deepcopy(plt.cm.plasma)
cmap.set_bad("black")
+ norm = colors.Normalize()
+ if opts.log:
+ norm = colors.LogNorm()
+
plot_i = 1
if plots[0]:
axe_private = fig.add_subplot(n_plots, 1, plot_i)
priv_msb = np.array(list(map(lambda x: x >> (bit_size - 8), priv_data)), dtype=np.dtype("u1"))
- heatmap, xedges, yedges = np.histogram2d(priv_msb, gen_time_data, bins=[128, max_gen_time - min_gen_time])
+ heatmap, xedges, yedges = np.histogram2d(priv_msb, gen_time_data, bins=[256, max_gen_time - min_gen_time])
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
- axe_private.imshow(heatmap.T, extent=extent, aspect="auto", cmap=cmap, origin="low", interpolation="nearest", norm=colors.LogNorm())
+ axe_private.imshow(heatmap.T, extent=extent, aspect="auto", cmap=cmap, origin="low", interpolation="nearest", norm=norm)
axe_private.set_xlabel("private key MSB value\n(big endian)")
- axe_private.set_ylabel("time ({})".format(gen_unit))
+ axe_private.set_ylabel("keygen time ({})".format(gen_unit))
plot_i += 1
if plots[1]:
axe_hist = fig.add_subplot(n_plots, 1, plot_i)
- time_max = max(gen_time_data)
- time_min = min(gen_time_data)
time_avg = np.average(gen_time_data)
time_median = np.median(gen_time_data)
- axe_hist.hist(gen_time_data, bins=int((time_max - time_min)/1.2), log=True)
+ axe_hist.hist(gen_time_data, bins=max_gen_time - min_gen_time, log=opts.log)
axe_hist.axvline(x=time_avg, alpha=0.7, linestyle="dotted", color="blue", label="avg = {}".format(time_avg))
axe_hist.axvline(x=time_median, alpha=0.7, linestyle="dotted", color="green", label="median = {}".format(time_median))
- axe_hist.set_ylabel("count\n(log)")
+ axe_hist.set_ylabel("count" + ("\n(log)" if opts.log else ""))
axe_hist.set_xlabel("keygen time ({})".format(gen_unit))
- axe_hist.xaxis.set_major_locator(ticker.MultipleLocator())
+ axe_hist.xaxis.set_major_locator(ticker.MaxNLocator())
axe_hist.legend(loc="best")
plot_i += 1
@@ -136,31 +147,43 @@ if __name__ == "__main__":
time_min = min(export_time_data)
time_avg = np.average(export_time_data)
time_median = np.median(export_time_data)
- axe_hist.hist(export_time_data, bins=int((time_max - time_min)/1.2), log=True)
+ axe_hist.hist(export_time_data, bins=time_max - time_min, log=opts.log)
axe_hist.axvline(x=time_avg, alpha=0.7, linestyle="dotted", color="blue", label="avg = {}".format(time_avg))
axe_hist.axvline(x=time_median, alpha=0.7, linestyle="dotted", color="green", label="median = {}".format(time_median))
- axe_hist.set_ylabel("count\n(log)")
+ axe_hist.set_ylabel("count" + ("\n(log)" if opts.log else ""))
axe_hist.set_xlabel("export time ({})".format(export_unit))
- axe_hist.xaxis.set_major_locator(ticker.MultipleLocator())
+ axe_hist.xaxis.set_major_locator(ticker.MaxNLocator())
axe_hist.legend(loc="best")
plot_i += 1
if plots[3]:
+ axe_avg = fig.add_subplot(n_plots, 1, plot_i)
+ #if len(header_names) == 5:
+ # axe_other = axe_avg.twinx()
+ # axe_other.plot(moving_average(export_time_data, 100), color="green", alpha=0.6, label="export, window = 100")
+ # axe_other.plot(moving_average(export_time_data, 1000), color="yellow", alpha=0.6, label="export, window = 1000")
+ # axe_other.legend(loc="lower right")
+ axe_avg.plot(moving_average(gen_time_data, 100), label="window = 100")
+ axe_avg.plot(moving_average(gen_time_data, 1000), label="window = 1000")
+ axe_avg.set_ylabel("keygen time ({})".format(gen_unit))
+ axe_avg.set_xlabel("index")
+ axe_avg.legend(loc="best")
+ plot_i += 1
+
+ if plots[4]:
axe_priv_hist = fig.add_subplot(n_plots, 1, plot_i)
priv_hw = np.array(list(map(hw, priv_data)), dtype=np.dtype("u2"))
h, xe, ye = np.histogram2d(priv_hw, gen_time_data, bins=[max(priv_hw) - min(priv_hw), max_gen_time - min_gen_time])
- im = axe_priv_hist.imshow(h.T, origin="low", cmap=cmap, aspect="auto", extent=[xe[0], xe[-1], ye[0], ye[-1]], norm=colors.LogNorm())
+ im = axe_priv_hist.imshow(h.T, origin="low", cmap=cmap, aspect="auto", extent=[xe[0], xe[-1], ye[0], ye[-1]], norm=norm)
axe_priv_hist.axvline(x=bit_size//2, alpha=0.7, linestyle="dotted", color="white", label=str(bit_size//2) + " bits")
axe_priv_hist.set_xlabel("private key Hamming weight")
- axe_priv_hist.set_ylabel("time ({})".format(gen_unit))
+ axe_priv_hist.set_ylabel("keygen time ({})".format(gen_unit))
axe_priv_hist.legend(loc="best")
fig.colorbar(im, ax=axe_priv_hist)
- if plot_i > 2:
- fig.text(0.01, 0.02, "Data size: {}".format(len(gen_time_data)), size="small")
+ fig.text(0.01, 0.02, "Data size: {}".format(len(gen_time_data)), size="small")
if opts.output is None:
- plt.tight_layout()
plt.show()
else:
fig.set_size_inches(12, 10)