diff options
| author | J08nY | 2018-11-23 15:25:22 +0100 |
|---|---|---|
| committer | J08nY | 2018-11-23 15:25:22 +0100 |
| commit | 977bc58d83195e804769f837bd206c3467354ffe (patch) | |
| tree | 19129b8e10ac636f3ec8fee865bbc3d66fccdcbb /util/plot_gen.py | |
| parent | 644ebed6714df70df0a78bbeb04c9941eb7f69f8 (diff) | |
| download | ECTester-977bc58d83195e804769f837bd206c3467354ffe.tar.gz ECTester-977bc58d83195e804769f837bd206c3467354ffe.tar.zst ECTester-977bc58d83195e804769f837bd206c3467354ffe.zip | |
Diffstat (limited to 'util/plot_gen.py')
| -rwxr-xr-x | util/plot_gen.py | 43 |
1 files changed, 8 insertions, 35 deletions
diff --git a/util/plot_gen.py b/util/plot_gen.py index c07fc91..9d4863f 100755 --- a/util/plot_gen.py +++ b/util/plot_gen.py @@ -17,17 +17,7 @@ from matplotlib import ticker, colors from copy import deepcopy import argparse -def hw(i): - res = 0 - while i: - res += 1 - i &= i - 1 - return res - -def moving_average(a, n) : - ret = np.cumsum(a, dtype=float) - ret[n:] = ret[n:] - ret[:-n] - return ret[n - 1:] / n +from utils import hw, moving_average, plot_hist if __name__ == "__main__": parser = argparse.ArgumentParser(description="Plot results of ECTester key generation timing.") @@ -85,7 +75,6 @@ if __name__ == "__main__": pub_data = data["pub"] priv_data = data["priv"] - gen_unit = "ms" if header_names[1].endswith("[nano]"): gen_unit = r"$\mu s$" @@ -121,39 +110,23 @@ if __name__ == "__main__": if plots[0]: axe_private = fig.add_subplot(n_plots, 1, plot_i) priv_msb = np.array(list(map(lambda x: x >> (bit_size - 8), priv_data)), dtype=np.dtype("u1")) - heatmap, xedges, yedges = np.histogram2d(priv_msb, gen_time_data, bins=[256, max_gen_time - min_gen_time]) - extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] + max_msb = max(priv_msb) + min_msb = min(priv_msb) + heatmap, xedges, yedges = np.histogram2d(priv_msb, gen_time_data, bins=[max_msb - min_msb, max_gen_time - min_gen_time]) + extent = [min_msb, max_msb, yedges[0], yedges[-1]] axe_private.imshow(heatmap.T, extent=extent, aspect="auto", cmap=cmap, origin="low", interpolation="nearest", norm=norm) - axe_private.set_xlabel("private key MSB value\n(big endian)") + axe_private.set_xlabel("private key MSB value") axe_private.set_ylabel("keygen time ({})".format(gen_unit)) plot_i += 1 if plots[1]: axe_hist = fig.add_subplot(n_plots, 1, plot_i) - time_avg = np.average(gen_time_data) - time_median = np.median(gen_time_data) - axe_hist.hist(gen_time_data, bins=max_gen_time - min_gen_time, log=opts.log) - axe_hist.axvline(x=time_avg, alpha=0.7, linestyle="dotted", color="blue", label="avg = {}".format(time_avg)) - axe_hist.axvline(x=time_median, alpha=0.7, linestyle="dotted", color="green", label="median = {}".format(time_median)) - axe_hist.set_ylabel("count" + ("\n(log)" if opts.log else "")) - axe_hist.set_xlabel("keygen time ({})".format(gen_unit)) - axe_hist.xaxis.set_major_locator(ticker.MaxNLocator()) - axe_hist.legend(loc="best") + plot_hist(axe_hist, gen_time_data, "keygen time ({})".format(gen_unit), opts.log) plot_i += 1 if plots[2]: axe_hist = fig.add_subplot(n_plots, 1, plot_i) - time_max = max(export_time_data) - time_min = min(export_time_data) - time_avg = np.average(export_time_data) - time_median = np.median(export_time_data) - axe_hist.hist(export_time_data, bins=time_max - time_min, log=opts.log) - axe_hist.axvline(x=time_avg, alpha=0.7, linestyle="dotted", color="blue", label="avg = {}".format(time_avg)) - axe_hist.axvline(x=time_median, alpha=0.7, linestyle="dotted", color="green", label="median = {}".format(time_median)) - axe_hist.set_ylabel("count" + ("\n(log)" if opts.log else "")) - axe_hist.set_xlabel("export time ({})".format(export_unit)) - axe_hist.xaxis.set_major_locator(ticker.MaxNLocator()) - axe_hist.legend(loc="best") + plot_hist(axe_hist, export_time_data, "export time ({})".format(export_unit), opts.log) plot_i += 1 if plots[3]: |
