diff options
| author | J08nY | 2025-11-04 17:51:10 +0100 |
|---|---|---|
| committer | J08nY | 2025-11-04 17:51:10 +0100 |
| commit | a89cc36a0d7e976488f22bef6328be90292d40af (patch) | |
| tree | f0bcf32a038bdd05f50064c2e02baa7304d4b7c3 | |
| parent | c22bce41b09ae9018cc4c7ac271eeac0b67b140c (diff) | |
| download | ECTester-a89cc36a0d7e976488f22bef6328be90292d40af.tar.gz ECTester-a89cc36a0d7e976488f22bef6328be90292d40af.tar.zst ECTester-a89cc36a0d7e976488f22bef6328be90292d40af.zip | |
| -rw-r--r-- | analysis/scalarmults/visualize.ipynb | 593 |
1 files changed, 366 insertions, 227 deletions
diff --git a/analysis/scalarmults/visualize.ipynb b/analysis/scalarmults/visualize.ipynb index a77ba9d..b198060 100644 --- a/analysis/scalarmults/visualize.ipynb +++ b/analysis/scalarmults/visualize.ipynb @@ -20,18 +20,27 @@ "import glob\n", "import gc\n", "import random\n", + "import sys\n", "\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", + "from copy import copy, deepcopy\n", "from tqdm.auto import tqdm, trange\n", "from statsmodels.stats.proportion import proportion_confint\n", "\n", "from pyecsca.ec.mult import *\n", - "from pyecsca.misc.utils import TaskExecutor\n", + "from pyecsca.ec.countermeasures import *\n", "\n", - "from common import *\n", + "from epare.config import all_configs, Config, MultIdent, CountermeasureIdent\n", + "from epare.prob_map import ProbMap\n", + "from epare.error_model import ErrorModel\n", + "\n", + "if sys.version_info >= (3, 14):\n", + " from compression import zstd\n", + "else:\n", + " from backports import zstd\n", "\n", "%matplotlib ipympl" ] @@ -52,26 +61,8 @@ "metadata": {}, "outputs": [], "source": [ - "# Setup the ticks and colors deterministically.\n", - "mult_klasses = sorted(list(set(map(lambda mult: mult.klass, all_mults))), key=lambda klass: klass.__name__)\n", - "mult_kwarg_map = {klass: 0 for klass in mult_klasses}\n", - "mult_cm_map = {mult: 0 for mult in all_mults}\n", - "mult_colors = matplotlib.cm.tab20(range(len(mult_klasses)))\n", - "mult_styles = ['-', '--', '-.', ':', (5, (10, 3)), (0, (5, 1)), (0, (3, 1, 1, 1, 1, 1)), (0, (3, 1, 1, 1)), (0, (1, 1)), (0, (3, 10, 1, 10))]\n", - "mult_markers = [None, \"o\", \"+\", \"*\", \"^\", \"s\"]\n", - "colors = {}\n", - "styles = {}\n", - "markers = {}\n", - "for mult in all_mults:\n", - " color = mult_colors[mult_klasses.index(mult.klass) % len(mult_colors)]\n", - " style = mult_styles[mult_kwarg_map[mult.klass] % len(mult_styles)]\n", - " mult_kwarg_map[mult.klass] += 1\n", - " for cm in (None, \"gsr\", \"additive\", \"multiplicative\", \"euclidean\", \"bt\"):\n", - " mwc = mult.with_countermeasure(cm)\n", - " colors[mwc] = color\n", - " styles[mwc] = style\n", - " markers[mwc] = mult_markers[mult_cm_map[mult] % len(mult_markers)]\n", - " mult_cm_map[mult] += 1\n", + "# mult_styles = ['-', '--', '-.', ':', (5, (10, 3)), (0, (5, 1)), (0, (3, 1, 1, 1, 1, 1)), (0, (3, 1, 1, 1)), (0, (1, 1)), (0, (3, 10, 1, 10))]\n", + "# mult_markers = [None, \"o\", \"+\", \"*\", \"^\", \"s\"]\n", "\n", "majticks = np.arange(0, 1, 0.1)\n", "minticks = np.arange(0, 1, 0.05)" @@ -93,141 +84,415 @@ "metadata": {}, "outputs": [], "source": [ - "from common import divisor_map\n", + "from epare.divisors import divisor_map\n", "for d, ds in divisor_map.items():\n", " print(f\"{d:<27}\", ds[:3], \"...\", ds[-1:])" ] }, { + "cell_type": "markdown", + "id": "8b008248-a0aa-41fa-933c-f325f8eec31b", + "metadata": {}, + "source": [ + "## Loading\n", + "Load the merged probability maps." + ] + }, + { "cell_type": "code", "execution_count": null, - "id": "638f8634-1f6e-4844-a796-096611dfbac2", + "id": "19d986ab-5fe7-4dd6-b5b5-4e75307217d6", "metadata": {}, "outputs": [], "source": [ - "bits = 256\n", - "num_workers = 28" + "with zstd.open(\"merged.zpickle\", \"rb\") as f:\n", + " config_map = pickle.load(f)" ] }, { "cell_type": "markdown", - "id": "8b008248-a0aa-41fa-933c-f325f8eec31b", + "id": "3afb10e0-383b-443b-a164-2670c606c146", "metadata": {}, "source": [ - "## Configuration\n", - "Select the mults you want to compute the prob-maps for here as well as a set of divisors. It is good to set `all` here, compute the prob-maps for all the divisors, save them and they continue with visualizing them on subsets of divisors." + "## Plots" ] }, { - "cell_type": "code", - "execution_count": null, - "id": "4d2a0f19-8275-4db8-b3fc-c930d8ba2177", + "cell_type": "markdown", + "id": "7f6c5506-8636-4570-824b-701eec5fbaa7", "metadata": {}, - "outputs": [], "source": [ - "selected_mults = all_mults\n", - "divisor_name = \"all\"\n", - "showci = False\n", - "selected_divisors = divisor_map[divisor_name]\n", - "show_error_model = ErrorModel({}, \"all\", True)" + "### 1. Error models\n", + "First, lets plot the effect different error models have on the error probability given the same multiplier and countermeasure." ] }, { "cell_type": "code", "execution_count": null, - "id": "19d986ab-5fe7-4dd6-b5b5-4e75307217d6", + "id": "8736fb1d-9af0-4173-902c-1124e6729956", "metadata": {}, "outputs": [], "source": [ - "with open(f\"merged.pickle\", \"rb\") as f:\n", - " distributions_mults = pickle.load(f)" + "plot_configs = []\n", + "plot_divisors = divisor_map[\"small_primes\"]\n", + "\n", + "# Here are several useful filters when playing around with the data. We want to select a single multiplier and countereasure combination.\n", + "only_ltr_example = lambda config: config.mult.klass == LTRMultiplier and not config.mult.kwargs[\"always\"] and not config.mult.kwargs[\"complete\"]\n", + "only_rtl_example = lambda config: config.mult.klass == RTLMultiplier and not config.mult.kwargs[\"always\"] and not config.mult.kwargs[\"complete\"]\n", + "only_sliding_example = lambda config: config.mult.klass == SlidingWindowMultiplier and config.mult.kwargs[\"width\"] == 4 and config.mult.kwargs[\"recoding_direction\"] == ProcessingDirection.LTR\n", + "only_comb_example = lambda config: config.mult.klass == CombMultiplier and config.mult.kwargs[\"width\"] == 4 and config.mult.kwargs[\"always\"] == True\n", + "single_layer_ctr = lambda config: all(map(lambda ident: isinstance(ident, MultIdent), config.composition.args))\n", + "single_type_ctr = lambda config: all(map(lambda ident: isinstance(ident, MultIdent) or ident.klass == config.composition.klass, config.composition.args))\n", + "single_type_ctr_full = lambda config: all(map(lambda ident: ident.klass == config.composition.klass, config.composition.args))\n", + "\n", + "groups = {}\n", + "for config, probmap in config_map.items():\n", + " if config.composition.klass == GroupScalarRandomization and single_layer_ctr(config) and only_rtl_example(config):\n", + " plot_configs.append(config)\n", + " pmap = deepcopy(probmap)\n", + " pmap.narrow(plot_divisors)\n", + " group = groups.setdefault(pmap.id(), [])\n", + " group.append(config)\n", + "print(f\"Plotting {len(plot_configs)} configs in {len(groups)} groups:\")\n", + "inverse_groups = {}\n", + "for i, group in groups.items():\n", + " for c in group:\n", + " inverse_groups[c] = i\n", + " print(c.error_model)\n", + " print()\n", + "\n", + "L = len(plot_divisors)\n", + "N = len(plot_mults)\n", + "x = list(range(L))\n", + "\n", + "fig = plt.figure(figsize=(20, 10))\n", + "ax = plt.subplot(111)\n", + "colors = matplotlib.cm.tab10(range(8))\n", + "color_map = {\n", + " \"affine\": 0,\n", + " \"affine,equal_multiples\": 1,\n", + " \"affine,divides\": 2,\n", + " \"affine,half_add\": 3,\n", + " \"affine,divides,equal_multiples\": 4,\n", + " \"affine,equal_multiples,half_add\": 5,\n", + " \"affine,divides,half_add\": 6,\n", + " \"affine,divides,equal_multiples,half_add\": 7\n", + "}\n", + "\n", + "style_map = {}\n", + "for i, config in enumerate(plot_configs):\n", + " probmap = config_map[config]\n", + " y_values = [probmap[l] for l in plot_divisors]\n", + " # Use the same style for several entries that are fully overlapping (in the same group)\n", + " group = inverse_groups[config]\n", + " if group in style_map:\n", + " style = style_map[group]\n", + " else:\n", + " style = dict(color=colors[color_map[\",\".join(sorted(config.error_model.checks))]],\n", + " marker=\"o\" if config.error_model.precomp_to_affine else \"\",\n", + " linestyle=\"-\" if config.error_model.check_condition == \"all\" else \"--\")\n", + " style_map[group] = style\n", + " ax.plot(x, y_values, **style, label=str(config.error_model))\n", + "\n", + "ax.set_xlabel(\"divisor\")\n", + "ax.set_ylabel(\"error probability\")\n", + "ax.set_ylim((-0.05, 1.05))\n", + "ax.set_yticks(majticks)\n", + "ax.set_yticks(minticks, minor=True)\n", + "ax.set_xticks(x, plot_divisors, rotation=90)\n", + "\n", + "ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n", + "ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n", + "ax.grid(axis=\"x\", alpha=0.7)\n", + "#plt.tight_layout()\n", + "box = ax.get_position()\n", + "ax.set_position([box.x0-0.08, box.y0, box.width, box.height+0.08])\n", + "\n", + "ax.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", + "\n", + "fig.savefig(\"error_models.pdf\")\n", + "plt.close();" ] }, { "cell_type": "markdown", - "id": "ef5b7a43-74b4-4e72-a3a1-955e175f5297", + "id": "c9daec59-b75c-432d-a543-ddac7ef9ec2d", "metadata": {}, "source": [ - "Now, go over all the divisor sets and visualize them (without the combs) into PNGs in the graphs/ directory." + "### 2. Countermeasures\n", + "Next up, we can have a look at how the countermeasure(s) used change the error probability, given a single multiplier and error model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5b3e3d65-815b-4a2d-afce-53069f7a7daf", + "metadata": {}, + "outputs": [], + "source": [ + "plot_configs = []\n", + "plot_divisors = divisor_map[\"small_primes\"]\n", + "\n", + "# Here are several useful filters when playing around with the data. We want to select a single multiplier and error model.\n", + "only_ltr_example = lambda config: config.mult.klass == LTRMultiplier and not config.mult.kwargs[\"always\"] and not config.mult.kwargs[\"complete\"]\n", + "only_rtl_example = lambda config: config.mult.klass == RTLMultiplier and not config.mult.kwargs[\"always\"] and not config.mult.kwargs[\"complete\"]\n", + "only_sliding_example = lambda config: config.mult.klass == SlidingWindowMultiplier and config.mult.kwargs[\"width\"] == 4 and config.mult.kwargs[\"recoding_direction\"] == ProcessingDirection.LTR\n", + "only_comb_example = lambda config: config.mult.klass == CombMultiplier and config.mult.kwargs[\"width\"] == 4 and config.mult.kwargs[\"always\"] == True\n", + "\n", + "fixed_error_model = lambda config: config.error_model == ErrorModel({\"divides\"}, \"all\", True)\n", + "single_layer_ctr = lambda config: all(map(lambda ident: isinstance(ident, MultIdent), config.composition.args))\n", + "single_type_ctr = lambda config: all(map(lambda ident: isinstance(ident, MultIdent) or ident.klass == config.composition.klass, config.composition.args))\n", + "single_type_ctr_full = lambda config: all(map(lambda ident: ident.klass == config.composition.klass, config.composition.args))\n", + "\n", + "groups = {}\n", + "for config, probmap in config_map.items():\n", + " if fixed_error_model(config) and single_layer_ctr(config) and only_ltr_example(config):\n", + " plot_configs.append(config)\n", + " pmap = deepcopy(probmap)\n", + " pmap.narrow(plot_divisors)\n", + " group = groups.setdefault(pmap.id(), [])\n", + " group.append(config)\n", + "print(f\"Plotting {len(plot_configs)} configs in {len(groups)} groups:\")\n", + "inverse_groups = {}\n", + "for i, group in groups.items():\n", + " for c in group:\n", + " inverse_groups[c] = i\n", + " print(c)\n", + " print()\n", + "\n", + "L = len(plot_divisors)\n", + "N = len(plot_mults)\n", + "x = list(range(L))\n", + "\n", + "fig = plt.figure(figsize=(20, 10))\n", + "ax = plt.subplot(111)\n", + "colors = matplotlib.cm.tab10(range(len(groups)))\n", + "color_map = {group: colors[i] for i, group in enumerate(groups)}\n", + "\n", + "style_map = {}\n", + "for i, config in enumerate(plot_configs):\n", + " probmap = config_map[config]\n", + " y_values = [probmap[l] for l in plot_divisors]\n", + " # Use the same style for several entries that are fully overlapping (in the same group)\n", + " group = inverse_groups[config]\n", + " if group in style_map:\n", + " style = style_map[group]\n", + " else:\n", + " style = dict(color=color_map[group],\n", + " marker=\"o\",\n", + " linestyle=\"-\")\n", + " style_map[group] = style\n", + " ax.plot(x, y_values, **style, label=str(config.composition.klass.__name__))\n", + "\n", + "ax.set_xlabel(\"divisor\")\n", + "ax.set_ylabel(\"error probability\")\n", + "ax.set_ylim((-0.05, 1.05))\n", + "ax.set_yticks(majticks)\n", + "ax.set_yticks(minticks, minor=True)\n", + "ax.set_xticks(x, plot_divisors, rotation=90)\n", + "\n", + "ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n", + "ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n", + "ax.grid(axis=\"x\", alpha=0.7)\n", + "#plt.tight_layout()\n", + "box = ax.get_position()\n", + "ax.set_position([box.x0-0.08, box.y0, box.width, box.height+0.08])\n", + "\n", + "ax.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", + "\n", + "fig.savefig(\"countermeasures.pdf\")\n", + "plt.close();" ] }, { "cell_type": "markdown", - "id": "9b6f169b-07b3-4b27-ba36-8b90418cd072", + "id": "7ee79c41-44c7-4882-9f7c-27f619a0d01b", "metadata": {}, "source": [ - "## Plots (nocomb)\n", - "Let's visualize all the divisor groups while looking at the multipliers and countermeasures except the comb-like ones." + "### 3. Multipliers (small primes)\n", + "We can also have a look at how different scalar multipliers influence the error probability." ] }, { "cell_type": "code", "execution_count": null, - "id": "906b5d78-b3a4-4cbb-8051-092d411ba735", + "id": "7bb99570-d417-4121-b5ef-aeafb6f823b4", "metadata": {}, "outputs": [], "source": [ - "for divisor_name in divisor_map:\n", - " plot_mults = list(filter(lambda mult: mult in distributions_mults and mult.klass not in (CombMultiplier, BGMWMultiplier), distributions_mults))\n", - " print(divisor_name, \"nocomb\")\n", - " plot_divisors = sorted(divisor_map[divisor_name])\n", - " L = len(plot_divisors)\n", - " N = len(plot_mults)\n", - " x = list(range(L))\n", - " \n", - " fig = plt.figure(figsize=(L/4+10, 24))\n", - " ax = plt.subplot(111)\n", - " \n", - " vals = np.zeros((N, L))\n", - " n_samples = 0\n", - " for i, mult in enumerate(plot_mults):\n", - " clear_mult = mult.with_error_model(None)\n", - " probmap = distributions_mults[mult]\n", - " y_values = [probmap[l] for l in plot_divisors]\n", - " vals[i,] = y_values\n", - " ax.plot(x, y_values,\n", - " color=colors[clear_mult],\n", - " linestyle=styles[clear_mult],\n", - " marker=markers[clear_mult],\n", - " label=str(mult) if mult.countermeasure is None and mult.error_model == show_error_model else \"_nolegend_\")\n", - " if showci:\n", - " cis = [conf_interval(p, probmap.samples) for p in y_values]\n", - " ci_low = [ci[0] for ci in cis]\n", - " ci_high = [ci[1] for ci in cis]\n", - " ax.fill_between(x, ci_low, ci_high, color=\"black\", alpha=0.1)\n", - " n_samples += probmap.samples\n", - " \n", - " ax.set_title(f\"{divisor_name}\\nSamples: \" + str(n_samples//N))\n", - " \n", - " #var = np.var(vals, axis=0)\n", - " #ax.plot(x, var / np.max(var), label=\"cross-mult variance (normalized)\", ls=\"--\", lw=2, color=\"black\")\n", - " \n", - " ax.set_xlabel(\"divisors\")\n", - " ax.set_ylabel(\"error probability\")\n", - " ax.set_yticks(majticks)\n", - " ax.set_yticks(minticks, minor=True)\n", - " ax.set_xticks(x, plot_divisors, rotation=90)\n", - " \n", - " ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n", - " ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n", - " ax.grid(axis=\"x\", alpha=0.7)\n", - " plt.tight_layout()\n", - " box = ax.get_position()\n", - " ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])\n", - " \n", - " ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))\n", + "plot_configs = []\n", + "plot_divisors = divisor_map[\"small_primes\"]\n", "\n", - " fig.savefig(f\"graphs/{divisor_name}-nocomb{'+ci' if showci else ''}.pdf\");\n", - " plt.close()" + "# Here are several useful filters when playing around with the data. We want to select a single countermeasure config and error_model\n", + "only_ltrs = lambda config: config.mult.klass == LTRMultiplier\n", + "only_rtls = lambda config: config.mult.klass == RTLMultiplier\n", + "only_slidings = lambda config: config.mult.klass == SlidingWindowMultiplier\n", + "only_combs = lambda config: config.mult.klass == CombMultiplier\n", + "no_combs = lambda config: config.mult.klass not in (CombMultiplier, BGMWMultiplier)\n", + "\n", + "fixed_error_model = lambda config: config.error_model == ErrorModel({\"divides\"}, \"all\", True)\n", + "fixed_no_countermeasure = lambda config: isinstance(config.composition, MultIdent)\n", + "fixed_gsr_countermeasure = lambda config: config.composition.klass == GroupScalarRandomization\n", + "\n", + "groups = {}\n", + "for config, probmap in config_map.items():\n", + " if fixed_error_model(config) and fixed_no_countermeasure(config) and no_combs(config):\n", + " plot_configs.append(config)\n", + " pmap = deepcopy(probmap)\n", + " pmap.narrow(plot_divisors)\n", + " group = groups.setdefault(pmap.id(), [])\n", + " group.append(config)\n", + "print(f\"Plotting {len(plot_configs)} configs in {len(groups)} groups:\")\n", + "inverse_groups = {}\n", + "for i, group in groups.items():\n", + " for c in group:\n", + " inverse_groups[c] = i\n", + " print(c.mult)\n", + " print()\n", + "\n", + "L = len(plot_divisors)\n", + "N = len(plot_mults)\n", + "x = list(range(L))\n", + "\n", + "fig = plt.figure(figsize=(20, 10))\n", + "ax = plt.subplot(111)\n", + "colors = matplotlib.cm.tab20(range(12))\n", + "color_map = {\n", + " LTRMultiplier: 0,\n", + " RTLMultiplier: 1,\n", + " CoronMultiplier: 2,\n", + " BinaryNAFMultiplier: 3,\n", + " WindowNAFMultiplier: 4,\n", + " FixedWindowLTRMultiplier: 5,\n", + " SlidingWindowMultiplier: 6,\n", + " WindowBoothMultiplier: 7,\n", + " SimpleLadderMultiplier: 8,\n", + " BGMWMultiplier: 9,\n", + " CombMultiplier: 10,\n", + " FullPrecompMultiplier: 11\n", + "}\n", + "\n", + "label_map = {}\n", + "for i, config in enumerate(plot_configs):\n", + " probmap = config_map[config]\n", + " y_values = [probmap[l] for l in plot_divisors]\n", + " style = dict(color=colors[color_map[config.mult.klass]],\n", + " marker=\"o\",\n", + " linestyle=\"-\")\n", + " if config.mult.klass in label_map:\n", + " label = \"__nolegend__\"\n", + " else:\n", + " label = config.mult.klass.__name__\n", + " label_map[config.mult.klass] = label\n", + " ax.plot(x, y_values, **style, label=label)\n", + "\n", + "ax.set_xlabel(\"divisor\")\n", + "ax.set_ylabel(\"error probability\")\n", + "ax.set_ylim((-0.05, 1.05))\n", + "ax.set_yticks(majticks)\n", + "ax.set_yticks(minticks, minor=True)\n", + "ax.set_xticks(x, plot_divisors, rotation=90)\n", + "\n", + "ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n", + "ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n", + "ax.grid(axis=\"x\", alpha=0.7)\n", + "#plt.tight_layout()\n", + "box = ax.get_position()\n", + "ax.set_position([box.x0-0.08, box.y0, box.width, box.height+0.08])\n", + "\n", + "ax.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", + "\n", + "fig.savefig(\"multipliers_small_primes.pdf\")\n", + "plt.close();" ] }, { "cell_type": "markdown", - "id": "4068e7d0-addb-45d0-ba87-e572d4c82fbd", + "id": "ffd2dfc7-7ad3-4dc1-a860-21a76fd1275a", "metadata": {}, "source": [ - "## Plots (allmults)\n", - "Now, lets also do plots with allmults for all divisor groups." + "### 4. Multiplier options (small primes)\n", + "Scalar multipliers are often parametrizable, we can examine how parameters like \"width\" in a window-based multiplier influence the error rate, given a single error model and no countermeasures." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ad44583f-8052-44d9-a0d7-1335aa707817", + "metadata": {}, + "outputs": [], + "source": [ + "plot_configs = []\n", + "plot_divisors = divisor_map[\"small_primes\"]\n", + "\n", + "# Here are several useful filters when playing around with the data. We want to select a single countermeasure config and error_model\n", + "only_ltrs = lambda config: config.mult.klass == LTRMultiplier\n", + "only_rtls = lambda config: config.mult.klass == RTLMultiplier\n", + "only_slidings = lambda config: config.mult.klass == SlidingWindowMultiplier\n", + "only_combs = lambda config: config.mult.klass == CombMultiplier\n", + "\n", + "fixed_error_model = lambda config: config.error_model == ErrorModel({\"divides\"}, \"all\", True)\n", + "fixed_no_countermeasure = lambda config: isinstance(config.composition, MultIdent)\n", + "fixed_gsr_countermeasure = lambda config: config.composition.klass == GroupScalarRandomization\n", + "\n", + "groups = {}\n", + "for config, probmap in config_map.items():\n", + " if fixed_error_model(config) and fixed_no_countermeasure(config) and only_slidings(config):\n", + " plot_configs.append(config)\n", + " pmap = deepcopy(probmap)\n", + " pmap.narrow(plot_divisors)\n", + " group = groups.setdefault(pmap.id(), [])\n", + " group.append(config)\n", + "print(f\"Plotting {len(plot_configs)} configs in {len(groups)} groups:\")\n", + "inverse_groups = {}\n", + "for i, group in groups.items():\n", + " for c in group:\n", + " inverse_groups[c] = i\n", + " print(c.mult)\n", + " print()\n", + "\n", + "L = len(plot_divisors)\n", + "N = len(plot_mults)\n", + "x = list(range(L))\n", + "\n", + "fig = plt.figure(figsize=(20, 10))\n", + "ax = plt.subplot(111)\n", + "colors = matplotlib.cm.tab10(range(len(groups)))\n", + "color_map = {group: colors[i] for i, group in enumerate(groups)}\n", + "\n", + "label_map = {}\n", + "for i, config in enumerate(plot_configs):\n", + " probmap = config_map[config]\n", + " y_values = [probmap[l] for l in plot_divisors]\n", + " # Use the same style for several entries that are fully overlapping (in the same group)\n", + " group = inverse_groups[config]\n", + " if group in style_map:\n", + " style = style_map[group]\n", + " else:\n", + " style = dict(color=color_map[group],\n", + " marker=\"o\",\n", + " linestyle=\"-\")\n", + " style_map[group] = style\n", + " ax.plot(x, y_values, **style, label=str(config.mult))\n", + "\n", + "ax.set_xlabel(\"divisor\")\n", + "ax.set_ylabel(\"error probability\")\n", + "ax.set_ylim((-0.05, 1.05))\n", + "ax.set_yticks(majticks)\n", + "ax.set_yticks(minticks, minor=True)\n", + "ax.set_xticks(x, plot_divisors, rotation=90)\n", + "\n", + "ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n", + "ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n", + "ax.grid(axis=\"x\", alpha=0.7)\n", + "#plt.tight_layout()\n", + "box = ax.get_position()\n", + "ax.set_position([box.x0-0.08, box.y0, box.width, box.height+0.08])\n", + "\n", + "ax.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", + "\n", + "fig.savefig(\"multiplier_options_small_primes.pdf\")\n", + "plt.close();" ] }, { @@ -289,132 +554,6 @@ " fig.savefig(f\"graphs/{kind}-kind/{divisor_name}-allmults{'+ci' if showci else ''}.pdf\")\n", " plt.close()" ] - }, - { - "cell_type": "markdown", - "id": "df2e236a-4540-4677-a7f1-563c4cc37a3e", - "metadata": {}, - "source": [ - "## Interactive plot\n", - "Below you can choose a concrete divisor set and visualize it with all the mults, or just some to your liking." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b464865d-b169-446e-a9e7-0cead699aee1", - "metadata": {}, - "outputs": [], - "source": [ - "#divisor_name = \"powers_of_2_large\"\n", - "single_mult = random.choice(list(distributions_mults.keys())).with_error_model(None)\n", - "divisor_name = \"all_integers\"\n", - "plot_mults = list(filter(lambda mult: mult.with_error_model(None) == single_mult, distributions_mults))\n", - "plot_divisors = divisor_map[divisor_name]\n", - "#plot_divisors = (61, 65, 111, 165, 1536, 12288) \n", - "#plot_divisors = (55, 65, 165, 248, 3072)\n", - "L = len(plot_divisors)\n", - "N = len(plot_mults)\n", - "x = list(range(L))\n", - "\n", - "colors = plt.get_cmap('tab20').colors +plt.get_cmap('tab20b').colors[:12]\n", - "\n", - "fig = plt.figure(figsize=(L/4+15, 24))\n", - "ax = plt.subplot(111)\n", - "\n", - "vals = np.zeros((N, L))\n", - "n_samples = 0\n", - "groups = {}\n", - "for i, mult in enumerate(plot_mults):\n", - "\n", - " clear_mult = mult.with_error_model(None)\n", - " probmap = distributions_mults[mult]\n", - " y_values = [probmap[l] for l in plot_divisors]\n", - " y_tup = tuple(y_values)\n", - " group = groups.setdefault(y_tup, set())\n", - " group.add(mult)\n", - " vals[i,] = y_values\n", - " offset = (i - N/2) * 0.0001\n", - " ax.plot(x,[v + offset for v in y_values],\n", - " color=colors[i],\n", - " linestyle=styles[clear_mult],\n", - " marker=markers[clear_mult],\n", - " label=str(mult))\n", - " if showci:\n", - " cis = [conf_interval(p, probmap.samples) for p in y_values]\n", - " ci_low = [ci[0] for ci in cis]\n", - " ci_high = [ci[1] for ci in cis]\n", - " ax.fill_between(x, ci_low, ci_high, color=\"black\", alpha=0.1)\n", - " n_samples += probmap.samples\n", - "\n", - "ax.set_title(f\"{divisor_name}\\nSamples(avg): \" + str(n_samples//N))\n", - "\n", - "#var = np.var(vals, axis=0)\n", - "#ax.plot(x, var / np.max(var), label=\"cross-mult variance (normalized)\", ls=\"--\", lw=2, color=\"black\")\n", - "\n", - "ax.set_xlabel(\"divisors\")\n", - "ax.set_ylabel(\"error probability\")\n", - "ax.set_yticks(majticks)\n", - "ax.set_yticks(minticks, minor=True)\n", - "ax.set_xticks(x, plot_divisors, rotation=90)\n", - "\n", - "ax.grid(axis=\"y\", which=\"major\", alpha=0.7)\n", - "ax.grid(axis=\"y\", which=\"minor\", alpha=0.3)\n", - "ax.grid(axis=\"x\", alpha=0.7)\n", - "plt.tight_layout()\n", - "box = ax.get_position()\n", - "ax.set_position([box.x0, box.y0, box.width * 0.7, box.height])\n", - "\n", - "# Put a legend to the right of the current axis\n", - "ax.legend(loc='center left', bbox_to_anchor=(1, 0.5));\n", - "for _, group in groups.items():\n", - " print(group)\n", - " print()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "bf6a5acb-2836-445b-a877-c29ed0f03bf7", - "metadata": {}, - "outputs": [], - "source": [ - "divisor_name = \"all\"\n", - "plot_divisors = divisor_map[divisor_name]\n", - "ngroups = []\n", - "for mult in all_mults_with_ctr:\n", - " groups = {}\n", - " for error_model in all_error_models:\n", - " full = mult.with_error_model(error_model)\n", - " probmap = distributions_mults[full]\n", - " y_values = [probmap[l] for l in plot_divisors]\n", - " y_tup = tuple(y_values)\n", - " group = groups.setdefault(y_tup, set())\n", - " group.add(mult)\n", - " ngroups.append(len(groups))\n", - "print(np.min(ngroups))\n", - "print(np.mean(ngroups))\n", - "print(np.median(ngroups))\n", - "print(np.max(ngroups))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9c41722a-45b1-40f0-afc4-1aadc882fcc0", - "metadata": {}, - "outputs": [], - "source": [ - "plt.close(\"all\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e7d7e614-467d-4e7d-874b-0495ef4dcf27", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { |
